Involvement of human ELAC2 gene product in 3' end processing of mitochondrial tRNAs
Accurate tRNA processing is crucial for human mitochondrial genome expression, but the mechanisms of mt-tRNA cleavage and the key enzymes involved in this process are poorly characterized. At least two activities are required for proper mt-tRNA maturation: RNase P cleaving precursor molecules at the...
Saved in:
Published in: | RNA biology Vol. 8; no. 4; pp. 616 - 626 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Taylor & Francis
01-07-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Accurate tRNA processing is crucial for human mitochondrial genome expression, but the mechanisms of mt-tRNA cleavage and the key enzymes involved in this process are poorly characterized. At least two activities are required for proper mt-tRNA maturation: RNase P cleaving precursor molecules at the 5' end and tRNase Z at the 3' end. In human mitochondria only RNase P has been identified so far. Using RT-PCR and northern blot analyses we found that silencing of the human ELAC2 gene results in impaired 3' end of mt-tRNAs. We demonstrate this for several mitochondrial tRNAs, encoded on both mtDNA strands, including tRNA
Val
, tRNA
Lys
, tRNA
Arg
, tRNA
Gly
, tRNA
Leu(UUR)
and tRNA
Glu
. The silencing of the MRPP1 gene that encodes a subunit of mtRNase P resulted in inhibition of both 5' and 3' processing. We also demonstrate the double mitochondrial/nuclear localization of the ELAC2 protein using immunofluorescence. Our results indicate that ELAC2 functions as a tRNase Z in human mitochondria and suggest that mt-tRNase Z preferentially cleaves molecules already processed by the proteinaceous mtRNase P. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1547-6286 1555-8584 |
DOI: | 10.4161/rna.8.4.15393 |