COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches

Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus wa...

Full description

Saved in:
Bibliographic Details
Published in:Computers in biology and medicine Vol. 121; p. 103805
Main Authors: Toğaçar, Mesut, Ergen, Burhan, Cömert, Zafer
Format: Journal Article
Language:English
Published: United States Elsevier Ltd 01-06-2020
Elsevier Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease. [Display omitted] •Chest data obtained from patients infected with the new Coronavirus (COVID-19) were used.•It was detected with deep learning models using COVID-19, normal, and pneumonia chest data.•The original dataset was restructured with the Fuzzy Color technique and two datasets were stacked.•Efficient features were selected by applying Social Mimic optimization to feature sets extracted from CNN models.•The efficient features obtained were combined, and classified with a success rate of 99.27% with SVM method.
AbstractList Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease.
Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease. Image 1 • Chest data obtained from patients infected with the new Coronavirus (COVID-19) were used. • It was detected with deep learning models using COVID-19, normal, and pneumonia chest data. • The original dataset was restructured with the Fuzzy Color technique and two datasets were stacked. • Efficient features were selected by applying Social Mimic optimization to feature sets extracted from CNN models. • The efficient features obtained were combined, and classified with a success rate of 99.27% with SVM method.
Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease. [Display omitted] •Chest data obtained from patients infected with the new Coronavirus (COVID-19) were used.•It was detected with deep learning models using COVID-19, normal, and pneumonia chest data.•The original dataset was restructured with the Fuzzy Color technique and two datasets were stacked.•Efficient features were selected by applying Social Mimic optimization to feature sets extracted from CNN models.•The efficient features obtained were combined, and classified with a success rate of 99.27% with SVM method.
ArticleNumber 103805
Author Cömert, Zafer
Toğaçar, Mesut
Ergen, Burhan
Author_xml – sequence: 1
  givenname: Mesut
  orcidid: 0000-0002-8264-3899
  surname: Toğaçar
  fullname: Toğaçar, Mesut
  email: mtogacar@firat.edu.tr
  organization: Department of Computer Technology, Vocational School of Technical Sciences, Fırat University Elazig, Turkey
– sequence: 2
  givenname: Burhan
  orcidid: 0000-0003-3244-2615
  surname: Ergen
  fullname: Ergen, Burhan
  email: bergen@firat.edu.tr
  organization: Department of Computer Engineering, Faculty of Engineering, Fırat University Elazig, Turkey
– sequence: 3
  givenname: Zafer
  orcidid: 0000-0001-5256-7648
  surname: Cömert
  fullname: Cömert, Zafer
  email: zcomert@samsun.edu.tr
  organization: Department of Software Engineering, Faculty of Engineering, Samsun UniversitySamsun, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32568679$$D View this record in MEDLINE/PubMed
BookMark eNqFUsmOEzEQtdAgJhP4BWSJC5cO3rrdviBB2EYalAOLuFmOu5Jx6LZ77O4RycfwrbhJGJYLp1JVvVfru0BnPnhACFOyoIRWz3YLG7p-7UIHzYIRNoV5Tcp7aEZrqQpScnGGZoRQUoialefoIqUdIUQQTh6gc87Kqq6kmqHvy9Xny1cFVbiBAezggsdjcn6bfehxCyb6yetCA23CQ8DwrW-DG_CHYJ1p8XvXOYtX_ZDtwfzkG9_gNMTRDmOEBttrSAP-UkSzx64zW0inDpvxcNhjG9oQTxxjv04J0_cxmIn3EN3fmDbBo5Odo09vXn9cviuuVm8vly-uCltKPhScV0Iysa5UzRQRwhooBTV1RYHT0hplqgaUFIySTWOoZFRWnCjJVU0pV5zP0fNj3X5c55ta8EM0re5jHjjudTBO_53x7lpvw62W-fp1nmGOnp4KxHAz5oV155KFtjUewpg0E7RiNZFEZeiTf6C7MEaf18uo6TFMlSSj6iPKxpBShM3dMJToSQR6p3-LQE8i0EcRZOrjP5e5I_76ega8PALyS-HWQdTJOvAWGhezBnQT3P-7_ACcBsth
CitedBy_id crossref_primary_10_1080_0952813X_2021_2021300
crossref_primary_10_1520_JTE20200574
crossref_primary_10_1016_j_bspc_2022_104392
crossref_primary_10_1088_1742_6596_1963_1_012048
crossref_primary_10_1007_s12553_021_00520_2
crossref_primary_10_32604_iasc_2021_018350
crossref_primary_10_1016_j_clinimag_2021_07_004
crossref_primary_10_1007_s40747_021_00424_8
crossref_primary_10_1109_ACCESS_2024_3396728
crossref_primary_10_1155_2022_5998042
crossref_primary_10_1016_j_eswa_2022_119475
crossref_primary_10_1007_s00530_024_01275_2
crossref_primary_10_1016_j_bspc_2021_103455
crossref_primary_10_1016_j_compbiomed_2021_104210
crossref_primary_10_1016_j_heliyon_2021_e07211
crossref_primary_10_1016_j_compbiomed_2023_106877
crossref_primary_10_16984_saufenbilder_774435
crossref_primary_10_3390_computation9010003
crossref_primary_10_1016_j_asoc_2020_106580
crossref_primary_10_1007_s42979_024_02695_7
crossref_primary_10_1155_2022_1306664
crossref_primary_10_1007_s12206_023_1022_4
crossref_primary_10_1007_s10278_022_00667_y
crossref_primary_10_1111_exsy_13427
crossref_primary_10_1002_int_22686
crossref_primary_10_1016_j_knosys_2022_108207
crossref_primary_10_3390_app11156917
crossref_primary_10_21923_jesd_955916
crossref_primary_10_3390_diagnostics12123171
crossref_primary_10_1007_s42600_021_00182_z
crossref_primary_10_1016_j_jbi_2021_103791
crossref_primary_10_2196_25181
crossref_primary_10_3389_fpubh_2022_875971
crossref_primary_10_7759_cureus_38373
crossref_primary_10_1186_s12911_021_01521_x
crossref_primary_10_7717_peerj_cs_358
crossref_primary_10_5937_afmnai39_38354
crossref_primary_10_1007_s13198_021_01272_y
crossref_primary_10_3390_s20236764
crossref_primary_10_1016_j_asoc_2021_107160
crossref_primary_10_30794_pausbed_745767
crossref_primary_10_3390_s22051890
crossref_primary_10_1007_s00371_022_02489_z
crossref_primary_10_3390_a15020071
crossref_primary_10_1016_j_bbe_2022_07_009
crossref_primary_10_1016_j_chaos_2020_110338
crossref_primary_10_1016_j_chaos_2020_110337
crossref_primary_10_2174_0115680266282179240124072121
crossref_primary_10_1016_j_procs_2024_04_122
crossref_primary_10_1016_j_iswa_2023_200315
crossref_primary_10_1007_s00521_023_08867_5
crossref_primary_10_1088_1757_899X_993_1_012046
crossref_primary_10_1111_exsy_12904
crossref_primary_10_1136_bmjinnov_2020_000648
crossref_primary_10_1007_s00500_022_07798_y
crossref_primary_10_1007_s11042_021_11580_x
crossref_primary_10_3389_fams_2023_1303714
crossref_primary_10_1155_2021_9437538
crossref_primary_10_1007_s10489_020_02102_7
crossref_primary_10_3390_diagnostics13020260
crossref_primary_10_31590_ejosat_1009611
crossref_primary_10_3389_fdgth_2021_637944
crossref_primary_10_1002_cpe_6958
crossref_primary_10_3390_app10217514
crossref_primary_10_3390_diagnostics11050855
crossref_primary_10_1007_s00354_021_00152_0
crossref_primary_10_1109_JSEN_2021_3062442
crossref_primary_10_1007_s10278_021_00434_5
crossref_primary_10_3390_s21113579
crossref_primary_10_1134_S1054661821020140
crossref_primary_10_1007_s42979_022_01326_3
crossref_primary_10_3390_s21062215
crossref_primary_10_1002_ima_22747
crossref_primary_10_1002_hsr2_1244
crossref_primary_10_1016_j_heliyon_2024_e33108
crossref_primary_10_1016_j_ins_2022_01_062
crossref_primary_10_1016_j_bspc_2021_102812
crossref_primary_10_2196_21394
crossref_primary_10_1007_s11831_023_10006_1
crossref_primary_10_1142_S1793005722500211
crossref_primary_10_1016_j_compbiomed_2022_106483
crossref_primary_10_32604_cmc_2022_020820
crossref_primary_10_1016_j_asoc_2020_106810
crossref_primary_10_1016_j_imu_2022_100929
crossref_primary_10_1007_s10489_022_04446_8
crossref_primary_10_1063_5_0059829
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_7717_peerj_cs_313
crossref_primary_10_1007_s00521_023_08997_w
crossref_primary_10_2196_21980
crossref_primary_10_1016_j_eswa_2022_118628
crossref_primary_10_1007_s10489_021_02945_8
crossref_primary_10_1002_int_22504
crossref_primary_10_1007_s12539_021_00431_w
crossref_primary_10_32604_csse_2023_034449
crossref_primary_10_1016_j_jbi_2021_103751
crossref_primary_10_3390_math9091002
crossref_primary_10_1016_j_patcog_2021_108081
crossref_primary_10_3390_app11094306
crossref_primary_10_1007_s00138_020_01101_5
crossref_primary_10_1016_j_bea_2023_100076
crossref_primary_10_1016_j_bspc_2022_104241
crossref_primary_10_1155_2021_8829829
crossref_primary_10_1016_j_eswa_2021_116330
crossref_primary_10_1002_ima_22965
crossref_primary_10_3390_math11061489
crossref_primary_10_32604_cmes_2021_016981
crossref_primary_10_1007_s12559_021_09926_6
crossref_primary_10_3389_fimmu_2022_977443
crossref_primary_10_1016_j_jiph_2021_11_013
crossref_primary_10_1007_s12652_022_04329_3
crossref_primary_10_1007_s13246_021_01075_2
crossref_primary_10_1007_s42979_023_02573_8
crossref_primary_10_21015_vtse_v11i2_1460
crossref_primary_10_1016_j_jksuci_2023_101754
crossref_primary_10_1016_j_chaos_2021_110714
crossref_primary_10_3390_diagnostics11081317
crossref_primary_10_3390_ijerph20032035
crossref_primary_10_31590_ejosat_1082297
crossref_primary_10_1007_s13369_021_05956_2
crossref_primary_10_1186_s43055_021_00524_y
crossref_primary_10_1109_MITP_2020_3036820
crossref_primary_10_3390_diagnostics13010131
crossref_primary_10_1007_s11760_021_02094_y
crossref_primary_10_1016_j_asoc_2020_106912
crossref_primary_10_2196_36660
crossref_primary_10_1155_2021_9973277
crossref_primary_10_1016_j_imu_2022_100945
crossref_primary_10_1007_s00521_023_08344_z
crossref_primary_10_1007_s41066_021_00254_6
crossref_primary_10_3233_XST_200784
crossref_primary_10_1109_ACCESS_2023_3236812
crossref_primary_10_1002_ima_22715
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_46632_psr_1_1_2
crossref_primary_10_1007_s00521_021_06810_0
crossref_primary_10_34248_bsengineering_1247962
crossref_primary_10_1016_j_compbiomed_2021_104927
crossref_primary_10_3389_fpubh_2021_768278
crossref_primary_10_3390_app11167174
crossref_primary_10_1155_2021_6919483
crossref_primary_10_1002_cpe_7314
crossref_primary_10_35414_akufemubid_1114346
crossref_primary_10_1016_j_chaos_2020_110190
crossref_primary_10_2478_acss_2023_0005
crossref_primary_10_1016_j_bspc_2021_102582
crossref_primary_10_35234_fumbd_863118
crossref_primary_10_1007_s11042_022_13154_x
crossref_primary_10_7717_peerj_cs_345
crossref_primary_10_1142_S0218001423570033
crossref_primary_10_1016_j_eswa_2020_113909
crossref_primary_10_2196_23811
crossref_primary_10_1016_j_compbiomed_2020_104181
crossref_primary_10_1016_j_asoc_2021_107669
crossref_primary_10_1007_s11042_023_15903_y
crossref_primary_10_1038_s41598_023_30941_0
crossref_primary_10_1371_journal_pone_0295599
crossref_primary_10_1016_j_asoc_2020_106859
crossref_primary_10_3389_frai_2021_612914
crossref_primary_10_1007_s11036_023_02161_3
crossref_primary_10_1016_j_eswa_2020_114054
crossref_primary_10_1016_j_bspc_2020_102365
crossref_primary_10_1016_j_image_2021_116359
crossref_primary_10_2174_1573405618666220928145344
crossref_primary_10_1016_j_compbiomed_2021_105143
crossref_primary_10_1007_s13735_021_00218_1
crossref_primary_10_1007_s00034_022_02035_1
crossref_primary_10_1177_01423312221147335
crossref_primary_10_1109_ACCESS_2022_3208138
crossref_primary_10_1080_0954898X_2022_2147231
crossref_primary_10_1007_s13246_022_01110_w
crossref_primary_10_1007_s41870_022_01149_8
crossref_primary_10_1016_j_chaos_2020_110059
crossref_primary_10_1016_j_asoc_2022_109319
crossref_primary_10_1007_s42979_022_01493_3
crossref_primary_10_1016_j_engappai_2023_107743
crossref_primary_10_3390_s22197303
crossref_primary_10_1007_s44163_024_00110_x
crossref_primary_10_1109_ACCESS_2023_3279402
crossref_primary_10_3390_electronics12214544
crossref_primary_10_1016_j_bspc_2020_102257
crossref_primary_10_3390_a16090430
crossref_primary_10_1016_j_bspc_2022_103595
crossref_primary_10_1007_s00530_022_00917_7
crossref_primary_10_1007_s11042_023_15029_1
crossref_primary_10_1007_s11042_023_14642_4
crossref_primary_10_1111_exsy_13141
crossref_primary_10_1007_s12539_020_00403_6
crossref_primary_10_1007_s00521_021_06044_0
crossref_primary_10_3390_mi13081349
crossref_primary_10_36548_jismac_2021_2_006
crossref_primary_10_3233_JIFS_222749
crossref_primary_10_1002_cpe_6767
crossref_primary_10_3390_jpm11121276
crossref_primary_10_3389_fphys_2021_652799
crossref_primary_10_1155_2021_7804540
crossref_primary_10_1016_j_jbi_2021_103920
crossref_primary_10_1007_s10489_020_01941_8
crossref_primary_10_3390_biomedinformatics3030045
crossref_primary_10_1590_1678_4324_2023230609
crossref_primary_10_1016_j_eswa_2021_115401
crossref_primary_10_3390_su151914401
crossref_primary_10_7717_peerj_cs_405
crossref_primary_10_2174_1573405617666210713113439
crossref_primary_10_1002_ima_22911
crossref_primary_10_1145_3571728
crossref_primary_10_1007_s13755_021_00166_4
crossref_primary_10_1016_j_compbiomed_2021_105127
crossref_primary_10_1016_j_neuri_2022_100069
crossref_primary_10_1007_s12559_021_09848_3
crossref_primary_10_1016_j_robot_2021_103902
crossref_primary_10_1016_j_inffus_2020_10_004
crossref_primary_10_1016_j_compbiomed_2022_106092
crossref_primary_10_1186_s12880_021_00628_x
crossref_primary_10_1111_exsy_12759
crossref_primary_10_1016_j_compbiomed_2021_104729
crossref_primary_10_15302_J_QB_021_0274
crossref_primary_10_1016_j_ijmedinf_2021_104599
crossref_primary_10_55529_jipirs_36_37_50
crossref_primary_10_1007_s12553_021_00598_8
crossref_primary_10_15302_J_QB_021_0278
crossref_primary_10_1016_j_compbiomed_2021_104605
crossref_primary_10_3390_electronics11193113
crossref_primary_10_1002_int_22262
crossref_primary_10_1007_s42600_021_00135_6
crossref_primary_10_1088_1742_6596_1751_1_012072
crossref_primary_10_1080_13682199_2023_2210402
crossref_primary_10_1016_j_asoc_2021_107540
crossref_primary_10_3389_fcvm_2021_638011
crossref_primary_10_1016_j_eswa_2023_121300
crossref_primary_10_18185_erzifbed_1090984
crossref_primary_10_1007_s00354_021_00143_1
crossref_primary_10_1007_s11760_021_02098_8
crossref_primary_10_3389_fmed_2021_704256
crossref_primary_10_36222_ejt_1035007
crossref_primary_10_4108_eetpht_10_5174
crossref_primary_10_1016_j_bspc_2022_104197
crossref_primary_10_1016_j_compbiomed_2021_104771
crossref_primary_10_1080_21681163_2021_1889404
crossref_primary_10_1109_ACCESS_2022_3210543
crossref_primary_10_1109_JIOT_2021_3098158
crossref_primary_10_1016_j_compbiomed_2022_105342
crossref_primary_10_3390_app11114878
crossref_primary_10_1155_2021_9942873
crossref_primary_10_1155_2022_3836498
crossref_primary_10_1007_s11042_022_13183_6
crossref_primary_10_1016_j_eswa_2022_117812
crossref_primary_10_1016_j_bspc_2021_102605
crossref_primary_10_1007_s42044_024_00190_z
crossref_primary_10_1063_5_0076314
crossref_primary_10_1007_s10462_021_10106_z
crossref_primary_10_1016_j_health_2023_100278
crossref_primary_10_1186_s12880_021_00629_w
crossref_primary_10_1002_spy2_434
crossref_primary_10_3390_app112311423
crossref_primary_10_1007_s11227_022_04755_2
crossref_primary_10_1088_1742_6596_1963_1_012099
crossref_primary_10_2174_1573405617666210806123720
crossref_primary_10_1007_s11831_021_09641_3
crossref_primary_10_1016_j_patcog_2021_108242
crossref_primary_10_1109_JSAC_2023_3310096
crossref_primary_10_1186_s12911_024_02576_2
crossref_primary_10_3390_sym14071310
crossref_primary_10_1016_j_compbiomed_2022_105335
crossref_primary_10_3390_healthcare9010071
crossref_primary_10_1016_j_bspc_2021_103128
crossref_primary_10_1145_3453170
crossref_primary_10_1007_s10278_023_00791_3
crossref_primary_10_1007_s10479_021_04006_2
crossref_primary_10_32604_cmes_2021_017679
crossref_primary_10_1007_s10278_022_00754_0
crossref_primary_10_1016_j_scs_2022_103713
crossref_primary_10_3390_sym12091530
crossref_primary_10_1016_j_inffus_2020_11_005
crossref_primary_10_12998_wjcc_v10_i26_9207
crossref_primary_10_1007_s12652_020_02669_6
crossref_primary_10_1016_j_chaos_2020_110121
crossref_primary_10_32604_cmc_2022_019809
crossref_primary_10_1007_s42979_023_02467_9
crossref_primary_10_1016_j_imu_2021_100709
crossref_primary_10_1016_j_patrec_2021_06_021
crossref_primary_10_1615_CritRevBiomedEng_2022042286
crossref_primary_10_1007_s13246_022_01102_w
crossref_primary_10_1038_s41598_022_27266_9
crossref_primary_10_1007_s10796_021_10140_w
crossref_primary_10_1016_j_bspc_2024_106515
crossref_primary_10_1109_ACCESS_2022_3159025
crossref_primary_10_1007_s13198_022_01788_x
crossref_primary_10_1016_j_cmpb_2020_105740
crossref_primary_10_1177_01423312231160819
crossref_primary_10_1155_2021_8340779
crossref_primary_10_1007_s13246_020_00957_1
crossref_primary_10_1002_ima_22558
crossref_primary_10_1016_j_compbiomed_2021_105047
crossref_primary_10_1152_physiolgenomics_00084_2020
crossref_primary_10_1007_s11042_024_19549_2
crossref_primary_10_1016_j_compbiomed_2021_104994
crossref_primary_10_1007_s42979_024_02941_y
crossref_primary_10_1016_j_asoc_2020_107052
crossref_primary_10_3934_mbe_2023409
crossref_primary_10_3390_mti7080075
crossref_primary_10_3233_JIFS_212160
crossref_primary_10_1007_s11063_022_11060_9
crossref_primary_10_1080_15368378_2022_2065679
crossref_primary_10_1002_cpe_7157
crossref_primary_10_1016_j_ipemt_2022_100008
crossref_primary_10_1109_TETCI_2022_3174868
crossref_primary_10_1016_j_inffus_2022_09_023
crossref_primary_10_21923_jesd_870263
crossref_primary_10_1007_s11517_022_02758_y
crossref_primary_10_12688_f1000research_126197_1
crossref_primary_10_1016_j_ijleo_2021_167572
crossref_primary_10_1016_j_compbiomed_2022_105233
crossref_primary_10_1109_ACCESS_2022_3153059
crossref_primary_10_1155_2021_6677314
crossref_primary_10_56977_jicce_2022_20_3_219
crossref_primary_10_1016_j_compbiomed_2022_105350
crossref_primary_10_1016_j_irbm_2021_07_002
crossref_primary_10_46810_tdfd_948098
Cites_doi 10.1016/j.bbe.2019.11.001
10.3390/ijgi8120582
10.1155/2019/4180949
10.3906/elk-1801-157
10.1016/j.measurement.2019.05.076
10.1155/2018/4168538
10.1016/j.mehy.2019.109531
10.1186/s40537-019-0276-2
10.1007/s10462-018-9641-3
10.1038/s41598-019-42294-8
10.3390/app10020559
10.1056/NEJMc2001468
10.1016/j.eswa.2019.05.035
10.1016/j.optlaseng.2019.05.005
10.1016/S0140-6736(20)30522-5
10.2339/politeknik.369132
10.1007/s41745-019-0098-4
10.1016/j.mehy.2019.109503
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
2020. Elsevier Ltd
2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
– notice: 2020. Elsevier Ltd
– notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7RV
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
K9.
KB0
LK8
M0N
M0S
M1P
M2O
M7P
M7Z
MBDVC
NAPCQ
P5Z
P62
P64
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1016/j.compbiomed.2020.103805
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database (ProQuest)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Computing Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest research library
Biological Science Database
Biochemistry Abstracts 1
Research Library (Corporate)
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Biochemistry Abstracts 1
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Research Library Prep


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 103805
ExternalDocumentID 10_1016_j_compbiomed_2020_103805
32568679
S0010482520301736
Genre Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
3V.
4.4
457
4G.
53G
5GY
5VS
7-5
71M
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABLVK
ABMAC
ABMZM
ABOCM
ABUWG
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFKRA
AFKWA
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHMBA
AHPSJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LCYCR
LK8
LX9
M0N
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PQQKQ
PROAC
PSQYO
Q38
R2-
RIG
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
AAXKI
AFCTW
AFJKZ
AKRWK
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
M7Z
MBDVC
P64
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c573t-3364724b69829044cae541a861e315ca9a6de974210fda1721763097398113933
ISSN 0010-4825
IngestDate Tue Sep 17 21:23:43 EDT 2024
Fri Oct 25 04:32:51 EDT 2024
Thu Oct 10 22:41:45 EDT 2024
Thu Sep 26 18:28:59 EDT 2024
Sat Sep 28 08:30:59 EDT 2024
Fri Feb 23 02:42:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
Deep learning
Social mimic
2019-nCoV
Fuzzy color technique
Stacking technique
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c573t-3364724b69829044cae541a861e315ca9a6de974210fda1721763097398113933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3244-2615
0000-0001-5256-7648
0000-0002-8264-3899
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7202857
PMID 32568679
PQID 2425682950
PQPubID 1226355
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7202857
proquest_miscellaneous_2416280709
proquest_journals_2425682950
crossref_primary_10_1016_j_compbiomed_2020_103805
pubmed_primary_32568679
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_103805
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Oxford
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Lee, Ullah, Wan, Gao, Fang (bib22) 2019; 19
Rothe, Schunk, Sothmann, Bretzel, Froeschl, Wallrauch, Zimmer, Thiel, Janke, Guggemos, Seilmaier, Drosten, Vollmar, Zwirglmaier, Zange, Wölfel, Hoelscher (bib1) 2020; 382
Wang, Yu, Fang (bib24) 2020; 12
Liu, Deng, Yang (bib6) 2019; 52
Ahmed (bib16) 2019
Toğaçar, Ergen, Cömert (bib19) 2020; 134
Arnal, Súcar (bib29) 2020; 10
Rahman, Chowdhury, Khandakar (bib14) 2020
Abiyev, Ma’aitah (bib10) 2018; 2018
Sandler, Howard, Zhu, Zhmoginov, Chen (bib17) 2018
Jaiswal, Tiwari, Kumar, Gupta, Khanna, Rodrigues (bib7) 2019; 145
Gingold (bib33) 2019
Soto-Hidalgo, Sánchez, Chamorro-Martínez, Martínez-Jiménez (bib30) 2019
Cengil, Çınar (bib35) 2016; 6
Bardak, Bardak (bib28) 2017; 20
Zhang, Lei, Cui, Jiang (bib20) 2019; 8
Awad, Khanna (bib26) 2015
Elleboudy, Ezz Eldin, Azab (bib32) 2016; 6
Balochian, Baloochian (bib34) 2019; 134
Cömert (bib36) 2020; 40
Patrascu (bib31) 2019
Fu, Sun, Zhu, Yang, Cao, Yang, Cao (bib21) 2019; 121
Sharif, Chaudhuri (bib23) 2019; 27
Netrapalli (bib25) 2019; 99
Stephen, Sain, Maduh, Jeong (bib11) 2019; 2019
Doǧan, Glasmachers, Igel (bib27) 2016; 17
Ai Blog (bib18)
Lancet (bib2) 2020; 395
Yadav, Jadhav (bib9) 2019; 6
Hosseiny, Kooraki, Gholamrezanezhad, Reddy, Myers (bib15) 2020
Peng, Xu, Li, Cheng, Zhou, Ren (bib4) 2020
Chouhan, Singh, Khamparia, Gupta, Tiwari, Moreira, Damaševičius, de Albuquerque (bib12) 2020; 10
Razai, Doerholt, Ladhani, Oakeshott (bib3) 2020; vol. 800
(bib37) 2019
Baltruschat, Nickisch, Grass, Knopp, Saalbach (bib8) 2019; 9
Toğaçar, Ergen, Cömert (bib5) 2020
Cohen (bib13) 2020
Peng (10.1016/j.compbiomed.2020.103805_bib4) 2020
Toğaçar (10.1016/j.compbiomed.2020.103805_bib5) 2020
Cömert (10.1016/j.compbiomed.2020.103805_bib36) 2020; 40
Netrapalli (10.1016/j.compbiomed.2020.103805_bib25) 2019; 99
Doǧan (10.1016/j.compbiomed.2020.103805_bib27) 2016; 17
Patrascu (10.1016/j.compbiomed.2020.103805_bib31) 2019
Arnal (10.1016/j.compbiomed.2020.103805_bib29) 2020; 10
Lee (10.1016/j.compbiomed.2020.103805_bib22) 2019; 19
Fu (10.1016/j.compbiomed.2020.103805_bib21) 2019; 121
Ahmed (10.1016/j.compbiomed.2020.103805_bib16) 2019
Wang (10.1016/j.compbiomed.2020.103805_bib24) 2020; 12
Gingold (10.1016/j.compbiomed.2020.103805_bib33)
Rahman (10.1016/j.compbiomed.2020.103805_bib14) 2020
Sandler (10.1016/j.compbiomed.2020.103805_bib17) 2018
Abiyev (10.1016/j.compbiomed.2020.103805_bib10) 2018; 2018
Balochian (10.1016/j.compbiomed.2020.103805_bib34) 2019; 134
Rothe (10.1016/j.compbiomed.2020.103805_bib1) 2020; 382
Chouhan (10.1016/j.compbiomed.2020.103805_bib12) 2020; 10
Cohen (10.1016/j.compbiomed.2020.103805_bib13)
Liu (10.1016/j.compbiomed.2020.103805_bib6) 2019; 52
Stephen (10.1016/j.compbiomed.2020.103805_bib11) 2019; 2019
Razai (10.1016/j.compbiomed.2020.103805_bib3) 2020; vol. 800
Sharif (10.1016/j.compbiomed.2020.103805_bib23) 2019; 27
Yadav (10.1016/j.compbiomed.2020.103805_bib9) 2019; 6
Elleboudy (10.1016/j.compbiomed.2020.103805_bib32) 2016; 6
Cengil (10.1016/j.compbiomed.2020.103805_bib35) 2016; 6
Hosseiny (10.1016/j.compbiomed.2020.103805_bib15) 2020
Jaiswal (10.1016/j.compbiomed.2020.103805_bib7) 2019; 145
Soto-Hidalgo (10.1016/j.compbiomed.2020.103805_bib30) 2019
Bardak (10.1016/j.compbiomed.2020.103805_bib28) 2017; 20
Baltruschat (10.1016/j.compbiomed.2020.103805_bib8) 2019; 9
Zhang (10.1016/j.compbiomed.2020.103805_bib20) 2019; 8
Ai Blog (10.1016/j.compbiomed.2020.103805_bib18)
Awad (10.1016/j.compbiomed.2020.103805_bib26) 2015
Lancet (10.1016/j.compbiomed.2020.103805_bib2) 2020; 395
Toğaçar (10.1016/j.compbiomed.2020.103805_bib19) 2020; 134
References_xml – volume: vol. 800
  start-page: 1
  year: 2020
  end-page: 5
  ident: bib3
  publication-title: Coronavirus Disease 2019 (Covid-19): a Guide for UK GPs
  contributor:
    fullname: Oakeshott
– start-page: 1
  year: 2020
  end-page: 6
  ident: bib4
  article-title: Transmission routes of 2019-nCoV and controls in dental practice
  publication-title: Int. J. Oral Sci.
  contributor:
    fullname: Ren
– year: 2019
  ident: bib33
  article-title: Image stack: simple code to load and process image stacks
  contributor:
    fullname: Gingold
– volume: 9
  start-page: 6381
  year: 2019
  ident: bib8
  article-title: Comparison of deep learning approaches for multi-label chest X-ray classification
  publication-title: Sci. Rep.
  contributor:
    fullname: Saalbach
– volume: 395
  start-page: 755
  year: 2020
  ident: bib2
  article-title: Editorial COVID-19 : too little , too late ?
  publication-title: Lancet
  contributor:
    fullname: Lancet
– volume: 99
  start-page: 201
  year: 2019
  end-page: 213
  ident: bib25
  article-title: Stochastic gradient descent and its variants in machine learning
  publication-title: J. Indian Inst. Sci.
  contributor:
    fullname: Netrapalli
– volume: 52
  start-page: 1089
  year: 2019
  end-page: 1106
  ident: bib6
  article-title: Recent progress in semantic image segmentation
  publication-title: Artif. Intell. Rev.
  contributor:
    fullname: Yang
– volume: 10
  year: 2020
  ident: bib12
  article-title: A novel transfer learning based approach for pneumonia detection in chest X-ray images
  publication-title: Appl. Sci.
  contributor:
    fullname: de Albuquerque
– volume: 121
  start-page: 397
  year: 2019
  end-page: 405
  ident: bib21
  article-title: A deep-learning-based approach for fast and robust steel surface defects classification
  publication-title: Optic Laser. Eng.
  contributor:
    fullname: Cao
– volume: 6
  start-page: 235
  year: 2016
  end-page: 239
  ident: bib32
  article-title: Focus stacking technique in identification of forensically important Chrysomya species (Diptera: calliphoridae), Egypt
  publication-title: J. Forensic Sci.
  contributor:
    fullname: Azab
– volume: 8
  year: 2019
  ident: bib20
  article-title: A dual-path and lightweight convolutional neural network for high-resolution aerial image segmentation
  publication-title: ISPRS Int. J. Geo-Inf.
  contributor:
    fullname: Jiang
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib15
  article-title: Radiology perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute respiratory syndrome and Middle East respiratory syndrome
  publication-title: Am. J. Roentgenol.
  contributor:
    fullname: Myers
– ident: bib18
  article-title: MobileNetV2: the next generation of on-device computer vision networks
  contributor:
    fullname: Ai Blog
– year: 2019
  ident: bib16
  article-title: Pneumonia Sample X-Rays
  contributor:
    fullname: Ahmed
– year: 2020
  ident: bib13
  article-title: COVID-19 Chest X-Ray dataset or CT dataset, GitHub
  contributor:
    fullname: Cohen
– start-page: 109503
  year: 2020
  ident: bib5
  article-title: Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders
  publication-title: Med. Hypotheses
  contributor:
    fullname: Cömert
– volume: 382
  start-page: 970
  year: 2020
  end-page: 971
  ident: bib1
  article-title: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany
  publication-title: N. Engl. J. Med.
  contributor:
    fullname: Hoelscher
– volume: 19
  year: 2019
  ident: bib22
  article-title: Real-time vehicle make and model recognition with the residual SqueezeNet architecture
  publication-title: Sensors (Basel)
  contributor:
    fullname: Fang
– volume: 6
  start-page: 96
  year: 2016
  end-page: 103
  ident: bib35
  article-title: A new approach for image classification: convolutional neural network
  publication-title: Eur. J. Teach. Educ.
  contributor:
    fullname: Çınar
– year: 2020
  ident: bib14
  article-title: COVID-19 Radiography Database
  contributor:
    fullname: Khandakar
– volume: 2018
  start-page: 4168538
  year: 2018
  ident: bib10
  article-title: Deep convolutional neural networks for chest diseases detection
  publication-title: J. Healthc. Eng.
  contributor:
    fullname: Ma’aitah
– volume: 2019
  start-page: 4180949
  year: 2019
  ident: bib11
  article-title: An efficient deep learning approach to pneumonia classification in healthcare
  publication-title: J. Healthc. Eng.
  contributor:
    fullname: Jeong
– volume: 145
  start-page: 511
  year: 2019
  end-page: 518
  ident: bib7
  article-title: Identifying pneumonia in chest X-rays: a deep learning approach
  publication-title: Measurement
  contributor:
    fullname: Rodrigues
– volume: 10
  year: 2020
  ident: bib29
  article-title: Hybrid filter based on fuzzy techniques for mixed noise reduction in color images
  publication-title: Appl. Sci.
  contributor:
    fullname: Súcar
– year: 2019
  ident: bib37
  article-title: Coronavirus disease
– start-page: 39
  year: 2015
  end-page: 66
  ident: bib26
  publication-title: Support Vector Machines for Classification BT - Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers
  contributor:
    fullname: Khanna
– volume: 27
  start-page: 595
  year: 2019
  end-page: 604
  ident: bib23
  article-title: A multiseed-based SVM classification technique for training sample reduction
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  contributor:
    fullname: Chaudhuri
– volume: 20
  start-page: 979
  year: 2017
  end-page: 984
  ident: bib28
  article-title: Prediction of wood density by using red-green-blue (RGB) color and fuzzy logic techniques
  publication-title: J. Polytech.
  contributor:
    fullname: Bardak
– volume: 134
  start-page: 109531
  year: 2020
  ident: bib19
  article-title: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
  contributor:
    fullname: Cömert
– volume: 6
  start-page: 113
  year: 2019
  ident: bib9
  article-title: Deep convolutional neural network based medical image classification for disease diagnosis
  publication-title: J. Big Data
  contributor:
    fullname: Jadhav
– volume: 40
  start-page: 40
  year: 2020
  end-page: 51
  ident: bib36
  article-title: Fusing fine-tuned deep features for recognizing different tympanic membranes
  publication-title: Biocybern. Biomed. Eng.
  contributor:
    fullname: Cömert
– year: 2019
  ident: bib30
  article-title: Color comparison in fuzzy color spaces
  publication-title: Fuzzy Set Syst.
  contributor:
    fullname: Martínez-Jiménez
– start-page: 4510
  year: 2018
  end-page: 4520
  ident: bib17
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
  publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
  contributor:
    fullname: Chen
– volume: 17
  start-page: 1
  year: 2016
  end-page: 32
  ident: bib27
  article-title: A unified view on multi-class support vector classification
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Igel
– year: 2019
  ident: bib31
  article-title: Fuzzy color image enhancement algorithm
  publication-title: Github
  contributor:
    fullname: Patrascu
– volume: 12
  year: 2020
  ident: bib24
  article-title: Multiple kernel-based SVM classification of hyperspectral images by combining spectral, spatial, and semantic information
  publication-title: Rem. Sens.
  contributor:
    fullname: Fang
– volume: 134
  start-page: 178
  year: 2019
  end-page: 191
  ident: bib34
  article-title: Social mimic optimization algorithm and engineering applications
  publication-title: Expert Syst. Appl.
  contributor:
    fullname: Baloochian
– ident: 10.1016/j.compbiomed.2020.103805_bib18
  contributor:
    fullname: Ai Blog
– volume: 40
  start-page: 40
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib36
  article-title: Fusing fine-tuned deep features for recognizing different tympanic membranes
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.11.001
  contributor:
    fullname: Cömert
– volume: 8
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib20
  article-title: A dual-path and lightweight convolutional neural network for high-resolution aerial image segmentation
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi8120582
  contributor:
    fullname: Zhang
– volume: 12
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib24
  article-title: Multiple kernel-based SVM classification of hyperspectral images by combining spectral, spatial, and semantic information
  publication-title: Rem. Sens.
  contributor:
    fullname: Wang
– volume: 2019
  start-page: 4180949
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib11
  article-title: An efficient deep learning approach to pneumonia classification in healthcare
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2019/4180949
  contributor:
    fullname: Stephen
– volume: 27
  start-page: 595
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib23
  article-title: A multiseed-based SVM classification technique for training sample reduction
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-1801-157
  contributor:
    fullname: Sharif
– volume: 6
  start-page: 96
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103805_bib35
  article-title: A new approach for image classification: convolutional neural network
  publication-title: Eur. J. Teach. Educ.
  contributor:
    fullname: Cengil
– start-page: 4510
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103805_bib17
  article-title: MobileNetV2: inverted residuals and linear bottlenecks
  publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
  contributor:
    fullname: Sandler
– volume: 145
  start-page: 511
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib7
  article-title: Identifying pneumonia in chest X-rays: a deep learning approach
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.05.076
  contributor:
    fullname: Jaiswal
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib31
  article-title: Fuzzy color image enhancement algorithm
  publication-title: Github
  contributor:
    fullname: Patrascu
– volume: 2018
  start-page: 4168538
  year: 2018
  ident: 10.1016/j.compbiomed.2020.103805_bib10
  article-title: Deep convolutional neural networks for chest diseases detection
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/4168538
  contributor:
    fullname: Abiyev
– volume: 134
  start-page: 109531
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib19
  article-title: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109531
  contributor:
    fullname: Toğaçar
– volume: 19
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib22
  article-title: Real-time vehicle make and model recognition with the residual SqueezeNet architecture
  publication-title: Sensors (Basel)
  contributor:
    fullname: Lee
– volume: 6
  start-page: 113
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib9
  article-title: Deep convolutional neural network based medical image classification for disease diagnosis
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0276-2
  contributor:
    fullname: Yadav
– volume: 52
  start-page: 1089
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib6
  article-title: Recent progress in semantic image segmentation
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9641-3
  contributor:
    fullname: Liu
– volume: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib29
  article-title: Hybrid filter based on fuzzy techniques for mixed noise reduction in color images
  publication-title: Appl. Sci.
  contributor:
    fullname: Arnal
– volume: 9
  start-page: 6381
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib8
  article-title: Comparison of deep learning approaches for multi-label chest X-ray classification
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-42294-8
  contributor:
    fullname: Baltruschat
– volume: 6
  start-page: 235
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103805_bib32
  article-title: Focus stacking technique in identification of forensically important Chrysomya species (Diptera: calliphoridae), Egypt
  publication-title: J. Forensic Sci.
  contributor:
    fullname: Elleboudy
– volume: 10
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib12
  article-title: A novel transfer learning based approach for pneumonia detection in chest X-ray images
  publication-title: Appl. Sci.
  doi: 10.3390/app10020559
  contributor:
    fullname: Chouhan
– volume: 17
  start-page: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2020.103805_bib27
  article-title: A unified view on multi-class support vector classification
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Doǧan
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib4
  article-title: Transmission routes of 2019-nCoV and controls in dental practice
  publication-title: Int. J. Oral Sci.
  contributor:
    fullname: Peng
– ident: 10.1016/j.compbiomed.2020.103805_bib33
  contributor:
    fullname: Gingold
– volume: 382
  start-page: 970
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib1
  article-title: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2001468
  contributor:
    fullname: Rothe
– start-page: 39
  year: 2015
  ident: 10.1016/j.compbiomed.2020.103805_bib26
  contributor:
    fullname: Awad
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib30
  article-title: Color comparison in fuzzy color spaces
  publication-title: Fuzzy Set Syst.
  contributor:
    fullname: Soto-Hidalgo
– volume: 134
  start-page: 178
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib34
  article-title: Social mimic optimization algorithm and engineering applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.05.035
  contributor:
    fullname: Balochian
– year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib14
  contributor:
    fullname: Rahman
– volume: vol. 800
  start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib3
  contributor:
    fullname: Razai
– volume: 121
  start-page: 397
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib21
  article-title: A deep-learning-based approach for fast and robust steel surface defects classification
  publication-title: Optic Laser. Eng.
  doi: 10.1016/j.optlaseng.2019.05.005
  contributor:
    fullname: Fu
– volume: 395
  start-page: 755
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib2
  article-title: Editorial COVID-19 : too little , too late ?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30522-5
  contributor:
    fullname: Lancet
– volume: 20
  start-page: 979
  year: 2017
  ident: 10.1016/j.compbiomed.2020.103805_bib28
  article-title: Prediction of wood density by using red-green-blue (RGB) color and fuzzy logic techniques
  publication-title: J. Polytech.
  doi: 10.2339/politeknik.369132
  contributor:
    fullname: Bardak
– ident: 10.1016/j.compbiomed.2020.103805_bib13
  contributor:
    fullname: Cohen
– year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib16
  contributor:
    fullname: Ahmed
– start-page: 1
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib15
  article-title: Radiology perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute respiratory syndrome and Middle East respiratory syndrome
  publication-title: Am. J. Roentgenol.
  contributor:
    fullname: Hosseiny
– volume: 99
  start-page: 201
  year: 2019
  ident: 10.1016/j.compbiomed.2020.103805_bib25
  article-title: Stochastic gradient descent and its variants in machine learning
  publication-title: J. Indian Inst. Sci.
  doi: 10.1007/s41745-019-0098-4
  contributor:
    fullname: Netrapalli
– start-page: 109503
  year: 2020
  ident: 10.1016/j.compbiomed.2020.103805_bib5
  article-title: Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders
  publication-title: Med. Hypotheses
  doi: 10.1016/j.mehy.2019.109503
  contributor:
    fullname: Toğaçar
SSID ssj0004030
Score 2.707599
Snippet Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 103805
SubjectTerms 2019-nCoV
Animal species
Artificial Intelligence
Betacoronavirus
Color
Computational Biology
Coronavirus Infections - diagnosis
Coronavirus Infections - diagnostic imaging
Coronaviruses
COVID-19
Databases, Factual
Datasets
Deep Learning
Fuzzy color technique
Fuzzy Logic
Humans
Image processing
Lung - diagnostic imaging
Medical research
Optimization
Pandemics
Pneumonia
Pneumonia - diagnostic imaging
Pneumonia, Viral - diagnosis
Pneumonia, Viral - diagnostic imaging
Radiographic Image Interpretation, Computer-Assisted
Ribonucleic acid
RNA
RNA viruses
SARS-CoV-2
Social discrimination learning
Social mimic
Stacking technique
Support Vector Machine
Support vector machines
Viral diseases
Viruses
X ray imagery
Title COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches
URI https://dx.doi.org/10.1016/j.compbiomed.2020.103805
https://www.ncbi.nlm.nih.gov/pubmed/32568679
https://www.proquest.com/docview/2425682950
https://search.proquest.com/docview/2416280709
https://pubmed.ncbi.nlm.nih.gov/PMC7202857
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpB2MvY_dl7YYGewsuvkiyTZ-2NKV76AprNkpfjGLJbTpyIYkf2h-z37pzdLGTdoOOsRcTLCuSOZ-Pbt_5DiEfpM5DVvI40CphAVOqDPK0VEEWScHyWMoRx2jko9P0y1l2MGCDTsenlmzv_VdLwz2wNUbO_oW1mz-FG_AbbA5XsDpc72X3_sn3zwdBlPeUXmmbB7w2-wFK67lPEnFhM-AYdQeNLLzxqucDdcfIlj8BTzJxIZrmfMHqzNbIVjcptnpnwUJe98YTiSIRtoWqvrm57qEM9sLVkeUPEwTphMsdX9ELI7iEEoaRuy4Gdfu8fzjDKW9-KM2pfmop4cd6WTeUnQGGkBqo1ovLFu99rPBJTFxc0rmsHBfZbXPEYUvHsntvPv6mJTsZfw6jCMts6PSeti48S_MAXAvb8PE2DPvOeGG3Lq7Q3nOrd7CHjRvZ-JC3Y2TDXDw1gkbQYoxryTQRW-RBDD4O2aTn_GsbkhsmNvrJddCRyCy18Pet_WlmdHflc5vAuzYjGj4hj91Shn60GHxKOnr6jDw8dsZ7Tn56KNIGitQAhSIUqYcitVCkqxl1UKQWitRAka5DkQI8aAtFaqBIDRSphaJrwUCRGii6OhaKtIXiC_LtcDDsHwUuHUhQ8jRZBYlJdcBGIsfDf8ZKqTmLZCYinUS8lLkUSsPyOI7CSknc2oCxE9Wo8iyCdU6SvCTb09lUvyY0q3TMhEpUripWZnxUSqjHBdOSx1xWXRJ5UxRzq_pSeDrkVdGar0DzFdZ8XbLvbVa42audlRYAtnvU3vVmLpw3WRa4HSDgZXnYJe-bYvD_eKgnp3pW4zORQEWrMO-SVxYVTZcTrC5SKEk38NI8gNrymyXT8aXRmE-hbxlP3_zTS-2QR-2nvEu2AR76Ldlaqvqd-Vp-AeCg9_I
link.rule.ids 230,315,782,786,887,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+detection+using+deep+learning+models+to+exploit+Social+Mimic+Optimization+and+structured+chest+X-ray+images+using+fuzzy+color+and+stacking+approaches&rft.jtitle=Computers+in+biology+and+medicine&rft.au=To%C4%9Fa%C3%A7ar%2C+Mesut&rft.au=Ergen%2C+Burhan&rft.au=C%C3%B6mert%2C+Zafer&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=121&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.103805&rft.externalDocID=S0010482520301736
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon