COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches
Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus wa...
Saved in:
Published in: | Computers in biology and medicine Vol. 121; p. 103805 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Ltd
01-06-2020
Elsevier Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease.
[Display omitted]
•Chest data obtained from patients infected with the new Coronavirus (COVID-19) were used.•It was detected with deep learning models using COVID-19, normal, and pneumonia chest data.•The original dataset was restructured with the Fuzzy Color technique and two datasets were stacked.•Efficient features were selected by applying Social Mimic optimization to feature sets extracted from CNN models.•The efficient features obtained were combined, and classified with a success rate of 99.27% with SVM method. |
---|---|
AbstractList | Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease. Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease. Image 1 • Chest data obtained from patients infected with the new Coronavirus (COVID-19) were used. • It was detected with deep learning models using COVID-19, normal, and pneumonia chest data. • The original dataset was restructured with the Fuzzy Color technique and two datasets were stacked. • Efficient features were selected by applying Social Mimic optimization to feature sets extracted from CNN models. • The efficient features obtained were combined, and classified with a success rate of 99.27% with SVM method. Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes pneumonia in humans. Artificial intelligence models have been helpful for successful analyses in the biomedical field. In this study, Coronavirus was detected using a deep learning model, which is a sub-branch of artificial intelligence. Our dataset consists of three classes namely: coronavirus, pneumonia, and normal X-ray imagery. In this study, the data classes were restructured using the Fuzzy Color technique as a preprocessing step and the images that were structured with the original images were stacked. In the next step, the stacked dataset was trained with deep learning models (MobileNetV2, SqueezeNet) and the feature sets obtained by the models were processed using the Social Mimic optimization method. Thereafter, efficient features were combined and classified using Support Vector Machines (SVM). The overall classification rate obtained with the proposed approach was 99.27%. With the proposed approach in this study, it is evident that the model can efficiently contribute to the detection of COVID-19 disease. [Display omitted] •Chest data obtained from patients infected with the new Coronavirus (COVID-19) were used.•It was detected with deep learning models using COVID-19, normal, and pneumonia chest data.•The original dataset was restructured with the Fuzzy Color technique and two datasets were stacked.•Efficient features were selected by applying Social Mimic optimization to feature sets extracted from CNN models.•The efficient features obtained were combined, and classified with a success rate of 99.27% with SVM method. |
ArticleNumber | 103805 |
Author | Cömert, Zafer Toğaçar, Mesut Ergen, Burhan |
Author_xml | – sequence: 1 givenname: Mesut orcidid: 0000-0002-8264-3899 surname: Toğaçar fullname: Toğaçar, Mesut email: mtogacar@firat.edu.tr organization: Department of Computer Technology, Vocational School of Technical Sciences, Fırat University Elazig, Turkey – sequence: 2 givenname: Burhan orcidid: 0000-0003-3244-2615 surname: Ergen fullname: Ergen, Burhan email: bergen@firat.edu.tr organization: Department of Computer Engineering, Faculty of Engineering, Fırat University Elazig, Turkey – sequence: 3 givenname: Zafer orcidid: 0000-0001-5256-7648 surname: Cömert fullname: Cömert, Zafer email: zcomert@samsun.edu.tr organization: Department of Software Engineering, Faculty of Engineering, Samsun UniversitySamsun, Turkey |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32568679$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUsmOEzEQtdAgJhP4BWSJC5cO3rrdviBB2EYalAOLuFmOu5Jx6LZ77O4RycfwrbhJGJYLp1JVvVfru0BnPnhACFOyoIRWz3YLG7p-7UIHzYIRNoV5Tcp7aEZrqQpScnGGZoRQUoialefoIqUdIUQQTh6gc87Kqq6kmqHvy9Xny1cFVbiBAezggsdjcn6bfehxCyb6yetCA23CQ8DwrW-DG_CHYJ1p8XvXOYtX_ZDtwfzkG9_gNMTRDmOEBttrSAP-UkSzx64zW0inDpvxcNhjG9oQTxxjv04J0_cxmIn3EN3fmDbBo5Odo09vXn9cviuuVm8vly-uCltKPhScV0Iysa5UzRQRwhooBTV1RYHT0hplqgaUFIySTWOoZFRWnCjJVU0pV5zP0fNj3X5c55ta8EM0re5jHjjudTBO_53x7lpvw62W-fp1nmGOnp4KxHAz5oV155KFtjUewpg0E7RiNZFEZeiTf6C7MEaf18uo6TFMlSSj6iPKxpBShM3dMJToSQR6p3-LQE8i0EcRZOrjP5e5I_76ega8PALyS-HWQdTJOvAWGhezBnQT3P-7_ACcBsth |
CitedBy_id | crossref_primary_10_1080_0952813X_2021_2021300 crossref_primary_10_1520_JTE20200574 crossref_primary_10_1016_j_bspc_2022_104392 crossref_primary_10_1088_1742_6596_1963_1_012048 crossref_primary_10_1007_s12553_021_00520_2 crossref_primary_10_32604_iasc_2021_018350 crossref_primary_10_1016_j_clinimag_2021_07_004 crossref_primary_10_1007_s40747_021_00424_8 crossref_primary_10_1109_ACCESS_2024_3396728 crossref_primary_10_1155_2022_5998042 crossref_primary_10_1016_j_eswa_2022_119475 crossref_primary_10_1007_s00530_024_01275_2 crossref_primary_10_1016_j_bspc_2021_103455 crossref_primary_10_1016_j_compbiomed_2021_104210 crossref_primary_10_1016_j_heliyon_2021_e07211 crossref_primary_10_1016_j_compbiomed_2023_106877 crossref_primary_10_16984_saufenbilder_774435 crossref_primary_10_3390_computation9010003 crossref_primary_10_1016_j_asoc_2020_106580 crossref_primary_10_1007_s42979_024_02695_7 crossref_primary_10_1155_2022_1306664 crossref_primary_10_1007_s12206_023_1022_4 crossref_primary_10_1007_s10278_022_00667_y crossref_primary_10_1111_exsy_13427 crossref_primary_10_1002_int_22686 crossref_primary_10_1016_j_knosys_2022_108207 crossref_primary_10_3390_app11156917 crossref_primary_10_21923_jesd_955916 crossref_primary_10_3390_diagnostics12123171 crossref_primary_10_1007_s42600_021_00182_z crossref_primary_10_1016_j_jbi_2021_103791 crossref_primary_10_2196_25181 crossref_primary_10_3389_fpubh_2022_875971 crossref_primary_10_7759_cureus_38373 crossref_primary_10_1186_s12911_021_01521_x crossref_primary_10_7717_peerj_cs_358 crossref_primary_10_5937_afmnai39_38354 crossref_primary_10_1007_s13198_021_01272_y crossref_primary_10_3390_s20236764 crossref_primary_10_1016_j_asoc_2021_107160 crossref_primary_10_30794_pausbed_745767 crossref_primary_10_3390_s22051890 crossref_primary_10_1007_s00371_022_02489_z crossref_primary_10_3390_a15020071 crossref_primary_10_1016_j_bbe_2022_07_009 crossref_primary_10_1016_j_chaos_2020_110338 crossref_primary_10_1016_j_chaos_2020_110337 crossref_primary_10_2174_0115680266282179240124072121 crossref_primary_10_1016_j_procs_2024_04_122 crossref_primary_10_1016_j_iswa_2023_200315 crossref_primary_10_1007_s00521_023_08867_5 crossref_primary_10_1088_1757_899X_993_1_012046 crossref_primary_10_1111_exsy_12904 crossref_primary_10_1136_bmjinnov_2020_000648 crossref_primary_10_1007_s00500_022_07798_y crossref_primary_10_1007_s11042_021_11580_x crossref_primary_10_3389_fams_2023_1303714 crossref_primary_10_1155_2021_9437538 crossref_primary_10_1007_s10489_020_02102_7 crossref_primary_10_3390_diagnostics13020260 crossref_primary_10_31590_ejosat_1009611 crossref_primary_10_3389_fdgth_2021_637944 crossref_primary_10_1002_cpe_6958 crossref_primary_10_3390_app10217514 crossref_primary_10_3390_diagnostics11050855 crossref_primary_10_1007_s00354_021_00152_0 crossref_primary_10_1109_JSEN_2021_3062442 crossref_primary_10_1007_s10278_021_00434_5 crossref_primary_10_3390_s21113579 crossref_primary_10_1134_S1054661821020140 crossref_primary_10_1007_s42979_022_01326_3 crossref_primary_10_3390_s21062215 crossref_primary_10_1002_ima_22747 crossref_primary_10_1002_hsr2_1244 crossref_primary_10_1016_j_heliyon_2024_e33108 crossref_primary_10_1016_j_ins_2022_01_062 crossref_primary_10_1016_j_bspc_2021_102812 crossref_primary_10_2196_21394 crossref_primary_10_1007_s11831_023_10006_1 crossref_primary_10_1142_S1793005722500211 crossref_primary_10_1016_j_compbiomed_2022_106483 crossref_primary_10_32604_cmc_2022_020820 crossref_primary_10_1016_j_asoc_2020_106810 crossref_primary_10_1016_j_imu_2022_100929 crossref_primary_10_1007_s10489_022_04446_8 crossref_primary_10_1063_5_0059829 crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_7717_peerj_cs_313 crossref_primary_10_1007_s00521_023_08997_w crossref_primary_10_2196_21980 crossref_primary_10_1016_j_eswa_2022_118628 crossref_primary_10_1007_s10489_021_02945_8 crossref_primary_10_1002_int_22504 crossref_primary_10_1007_s12539_021_00431_w crossref_primary_10_32604_csse_2023_034449 crossref_primary_10_1016_j_jbi_2021_103751 crossref_primary_10_3390_math9091002 crossref_primary_10_1016_j_patcog_2021_108081 crossref_primary_10_3390_app11094306 crossref_primary_10_1007_s00138_020_01101_5 crossref_primary_10_1016_j_bea_2023_100076 crossref_primary_10_1016_j_bspc_2022_104241 crossref_primary_10_1155_2021_8829829 crossref_primary_10_1016_j_eswa_2021_116330 crossref_primary_10_1002_ima_22965 crossref_primary_10_3390_math11061489 crossref_primary_10_32604_cmes_2021_016981 crossref_primary_10_1007_s12559_021_09926_6 crossref_primary_10_3389_fimmu_2022_977443 crossref_primary_10_1016_j_jiph_2021_11_013 crossref_primary_10_1007_s12652_022_04329_3 crossref_primary_10_1007_s13246_021_01075_2 crossref_primary_10_1007_s42979_023_02573_8 crossref_primary_10_21015_vtse_v11i2_1460 crossref_primary_10_1016_j_jksuci_2023_101754 crossref_primary_10_1016_j_chaos_2021_110714 crossref_primary_10_3390_diagnostics11081317 crossref_primary_10_3390_ijerph20032035 crossref_primary_10_31590_ejosat_1082297 crossref_primary_10_1007_s13369_021_05956_2 crossref_primary_10_1186_s43055_021_00524_y crossref_primary_10_1109_MITP_2020_3036820 crossref_primary_10_3390_diagnostics13010131 crossref_primary_10_1007_s11760_021_02094_y crossref_primary_10_1016_j_asoc_2020_106912 crossref_primary_10_2196_36660 crossref_primary_10_1155_2021_9973277 crossref_primary_10_1016_j_imu_2022_100945 crossref_primary_10_1007_s00521_023_08344_z crossref_primary_10_1007_s41066_021_00254_6 crossref_primary_10_3233_XST_200784 crossref_primary_10_1109_ACCESS_2023_3236812 crossref_primary_10_1002_ima_22715 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_46632_psr_1_1_2 crossref_primary_10_1007_s00521_021_06810_0 crossref_primary_10_34248_bsengineering_1247962 crossref_primary_10_1016_j_compbiomed_2021_104927 crossref_primary_10_3389_fpubh_2021_768278 crossref_primary_10_3390_app11167174 crossref_primary_10_1155_2021_6919483 crossref_primary_10_1002_cpe_7314 crossref_primary_10_35414_akufemubid_1114346 crossref_primary_10_1016_j_chaos_2020_110190 crossref_primary_10_2478_acss_2023_0005 crossref_primary_10_1016_j_bspc_2021_102582 crossref_primary_10_35234_fumbd_863118 crossref_primary_10_1007_s11042_022_13154_x crossref_primary_10_7717_peerj_cs_345 crossref_primary_10_1142_S0218001423570033 crossref_primary_10_1016_j_eswa_2020_113909 crossref_primary_10_2196_23811 crossref_primary_10_1016_j_compbiomed_2020_104181 crossref_primary_10_1016_j_asoc_2021_107669 crossref_primary_10_1007_s11042_023_15903_y crossref_primary_10_1038_s41598_023_30941_0 crossref_primary_10_1371_journal_pone_0295599 crossref_primary_10_1016_j_asoc_2020_106859 crossref_primary_10_3389_frai_2021_612914 crossref_primary_10_1007_s11036_023_02161_3 crossref_primary_10_1016_j_eswa_2020_114054 crossref_primary_10_1016_j_bspc_2020_102365 crossref_primary_10_1016_j_image_2021_116359 crossref_primary_10_2174_1573405618666220928145344 crossref_primary_10_1016_j_compbiomed_2021_105143 crossref_primary_10_1007_s13735_021_00218_1 crossref_primary_10_1007_s00034_022_02035_1 crossref_primary_10_1177_01423312221147335 crossref_primary_10_1109_ACCESS_2022_3208138 crossref_primary_10_1080_0954898X_2022_2147231 crossref_primary_10_1007_s13246_022_01110_w crossref_primary_10_1007_s41870_022_01149_8 crossref_primary_10_1016_j_chaos_2020_110059 crossref_primary_10_1016_j_asoc_2022_109319 crossref_primary_10_1007_s42979_022_01493_3 crossref_primary_10_1016_j_engappai_2023_107743 crossref_primary_10_3390_s22197303 crossref_primary_10_1007_s44163_024_00110_x crossref_primary_10_1109_ACCESS_2023_3279402 crossref_primary_10_3390_electronics12214544 crossref_primary_10_1016_j_bspc_2020_102257 crossref_primary_10_3390_a16090430 crossref_primary_10_1016_j_bspc_2022_103595 crossref_primary_10_1007_s00530_022_00917_7 crossref_primary_10_1007_s11042_023_15029_1 crossref_primary_10_1007_s11042_023_14642_4 crossref_primary_10_1111_exsy_13141 crossref_primary_10_1007_s12539_020_00403_6 crossref_primary_10_1007_s00521_021_06044_0 crossref_primary_10_3390_mi13081349 crossref_primary_10_36548_jismac_2021_2_006 crossref_primary_10_3233_JIFS_222749 crossref_primary_10_1002_cpe_6767 crossref_primary_10_3390_jpm11121276 crossref_primary_10_3389_fphys_2021_652799 crossref_primary_10_1155_2021_7804540 crossref_primary_10_1016_j_jbi_2021_103920 crossref_primary_10_1007_s10489_020_01941_8 crossref_primary_10_3390_biomedinformatics3030045 crossref_primary_10_1590_1678_4324_2023230609 crossref_primary_10_1016_j_eswa_2021_115401 crossref_primary_10_3390_su151914401 crossref_primary_10_7717_peerj_cs_405 crossref_primary_10_2174_1573405617666210713113439 crossref_primary_10_1002_ima_22911 crossref_primary_10_1145_3571728 crossref_primary_10_1007_s13755_021_00166_4 crossref_primary_10_1016_j_compbiomed_2021_105127 crossref_primary_10_1016_j_neuri_2022_100069 crossref_primary_10_1007_s12559_021_09848_3 crossref_primary_10_1016_j_robot_2021_103902 crossref_primary_10_1016_j_inffus_2020_10_004 crossref_primary_10_1016_j_compbiomed_2022_106092 crossref_primary_10_1186_s12880_021_00628_x crossref_primary_10_1111_exsy_12759 crossref_primary_10_1016_j_compbiomed_2021_104729 crossref_primary_10_15302_J_QB_021_0274 crossref_primary_10_1016_j_ijmedinf_2021_104599 crossref_primary_10_55529_jipirs_36_37_50 crossref_primary_10_1007_s12553_021_00598_8 crossref_primary_10_15302_J_QB_021_0278 crossref_primary_10_1016_j_compbiomed_2021_104605 crossref_primary_10_3390_electronics11193113 crossref_primary_10_1002_int_22262 crossref_primary_10_1007_s42600_021_00135_6 crossref_primary_10_1088_1742_6596_1751_1_012072 crossref_primary_10_1080_13682199_2023_2210402 crossref_primary_10_1016_j_asoc_2021_107540 crossref_primary_10_3389_fcvm_2021_638011 crossref_primary_10_1016_j_eswa_2023_121300 crossref_primary_10_18185_erzifbed_1090984 crossref_primary_10_1007_s00354_021_00143_1 crossref_primary_10_1007_s11760_021_02098_8 crossref_primary_10_3389_fmed_2021_704256 crossref_primary_10_36222_ejt_1035007 crossref_primary_10_4108_eetpht_10_5174 crossref_primary_10_1016_j_bspc_2022_104197 crossref_primary_10_1016_j_compbiomed_2021_104771 crossref_primary_10_1080_21681163_2021_1889404 crossref_primary_10_1109_ACCESS_2022_3210543 crossref_primary_10_1109_JIOT_2021_3098158 crossref_primary_10_1016_j_compbiomed_2022_105342 crossref_primary_10_3390_app11114878 crossref_primary_10_1155_2021_9942873 crossref_primary_10_1155_2022_3836498 crossref_primary_10_1007_s11042_022_13183_6 crossref_primary_10_1016_j_eswa_2022_117812 crossref_primary_10_1016_j_bspc_2021_102605 crossref_primary_10_1007_s42044_024_00190_z crossref_primary_10_1063_5_0076314 crossref_primary_10_1007_s10462_021_10106_z crossref_primary_10_1016_j_health_2023_100278 crossref_primary_10_1186_s12880_021_00629_w crossref_primary_10_1002_spy2_434 crossref_primary_10_3390_app112311423 crossref_primary_10_1007_s11227_022_04755_2 crossref_primary_10_1088_1742_6596_1963_1_012099 crossref_primary_10_2174_1573405617666210806123720 crossref_primary_10_1007_s11831_021_09641_3 crossref_primary_10_1016_j_patcog_2021_108242 crossref_primary_10_1109_JSAC_2023_3310096 crossref_primary_10_1186_s12911_024_02576_2 crossref_primary_10_3390_sym14071310 crossref_primary_10_1016_j_compbiomed_2022_105335 crossref_primary_10_3390_healthcare9010071 crossref_primary_10_1016_j_bspc_2021_103128 crossref_primary_10_1145_3453170 crossref_primary_10_1007_s10278_023_00791_3 crossref_primary_10_1007_s10479_021_04006_2 crossref_primary_10_32604_cmes_2021_017679 crossref_primary_10_1007_s10278_022_00754_0 crossref_primary_10_1016_j_scs_2022_103713 crossref_primary_10_3390_sym12091530 crossref_primary_10_1016_j_inffus_2020_11_005 crossref_primary_10_12998_wjcc_v10_i26_9207 crossref_primary_10_1007_s12652_020_02669_6 crossref_primary_10_1016_j_chaos_2020_110121 crossref_primary_10_32604_cmc_2022_019809 crossref_primary_10_1007_s42979_023_02467_9 crossref_primary_10_1016_j_imu_2021_100709 crossref_primary_10_1016_j_patrec_2021_06_021 crossref_primary_10_1615_CritRevBiomedEng_2022042286 crossref_primary_10_1007_s13246_022_01102_w crossref_primary_10_1038_s41598_022_27266_9 crossref_primary_10_1007_s10796_021_10140_w crossref_primary_10_1016_j_bspc_2024_106515 crossref_primary_10_1109_ACCESS_2022_3159025 crossref_primary_10_1007_s13198_022_01788_x crossref_primary_10_1016_j_cmpb_2020_105740 crossref_primary_10_1177_01423312231160819 crossref_primary_10_1155_2021_8340779 crossref_primary_10_1007_s13246_020_00957_1 crossref_primary_10_1002_ima_22558 crossref_primary_10_1016_j_compbiomed_2021_105047 crossref_primary_10_1152_physiolgenomics_00084_2020 crossref_primary_10_1007_s11042_024_19549_2 crossref_primary_10_1016_j_compbiomed_2021_104994 crossref_primary_10_1007_s42979_024_02941_y crossref_primary_10_1016_j_asoc_2020_107052 crossref_primary_10_3934_mbe_2023409 crossref_primary_10_3390_mti7080075 crossref_primary_10_3233_JIFS_212160 crossref_primary_10_1007_s11063_022_11060_9 crossref_primary_10_1080_15368378_2022_2065679 crossref_primary_10_1002_cpe_7157 crossref_primary_10_1016_j_ipemt_2022_100008 crossref_primary_10_1109_TETCI_2022_3174868 crossref_primary_10_1016_j_inffus_2022_09_023 crossref_primary_10_21923_jesd_870263 crossref_primary_10_1007_s11517_022_02758_y crossref_primary_10_12688_f1000research_126197_1 crossref_primary_10_1016_j_ijleo_2021_167572 crossref_primary_10_1016_j_compbiomed_2022_105233 crossref_primary_10_1109_ACCESS_2022_3153059 crossref_primary_10_1155_2021_6677314 crossref_primary_10_56977_jicce_2022_20_3_219 crossref_primary_10_1016_j_compbiomed_2022_105350 crossref_primary_10_1016_j_irbm_2021_07_002 crossref_primary_10_46810_tdfd_948098 |
Cites_doi | 10.1016/j.bbe.2019.11.001 10.3390/ijgi8120582 10.1155/2019/4180949 10.3906/elk-1801-157 10.1016/j.measurement.2019.05.076 10.1155/2018/4168538 10.1016/j.mehy.2019.109531 10.1186/s40537-019-0276-2 10.1007/s10462-018-9641-3 10.1038/s41598-019-42294-8 10.3390/app10020559 10.1056/NEJMc2001468 10.1016/j.eswa.2019.05.035 10.1016/j.optlaseng.2019.05.005 10.1016/S0140-6736(20)30522-5 10.2339/politeknik.369132 10.1007/s41745-019-0098-4 10.1016/j.mehy.2019.109503 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. 2020. Elsevier Ltd 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. – notice: 2020. Elsevier Ltd – notice: 2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7RV 7X7 7XB 88E 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ JQ2 K7- K9. KB0 LK8 M0N M0S M1P M2O M7P M7Z MBDVC NAPCQ P5Z P62 P64 PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1016/j.compbiomed.2020.103805 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Nursing & Allied Health Database (ProQuest) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Computing Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest research library Biological Science Database Biochemistry Abstracts 1 Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Biological Science Collection ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Biochemistry Abstracts 1 ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Research Library Prep |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-0534 |
EndPage | 103805 |
ExternalDocumentID | 10_1016_j_compbiomed_2020_103805 32568679 S0010482520301736 |
Genre | Journal Article |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- --K --M --Z -~X .1- .55 .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 3V. 4.4 457 4G. 53G 5GY 5VS 7-5 71M 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABLVK ABMAC ABMZM ABOCM ABUWG ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AEVXI AFKRA AFKWA AFRAH AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AHMBA AHPSJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ARAPS ASPBG AVWKF AXJTR AZFZN AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN FYUFA G-2 G-Q GBLVA GBOLZ GNUQQ GUQSH HCIFZ HLZ HMCUK HMK HMO HVGLF HZ~ IHE J1W K6V K7- KOM LCYCR LK8 LX9 M0N M1P M29 M2O M41 M7P MO0 N9A NAPCQ O-L O9- OAUVE OZT P-8 P-9 P2P P62 PC. PQQKQ PROAC PSQYO Q38 R2- RIG ROL RPZ RXW SAE SBC SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSV SSZ SV3 T5K TAE UAP UKHRP WOW WUQ X7M XPP Z5R ZGI ~G- AAXKI AFCTW AFJKZ AKRWK ALIPV CGR CUY CVF ECM EIF NPM AAYXX CITATION 7XB 8AL 8FD 8FK FR3 JQ2 K9. M7Z MBDVC P64 PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c573t-3364724b69829044cae541a861e315ca9a6de974210fda1721763097398113933 |
ISSN | 0010-4825 |
IngestDate | Tue Sep 17 21:23:43 EDT 2024 Fri Oct 25 04:32:51 EDT 2024 Thu Oct 10 22:41:45 EDT 2024 Thu Sep 26 18:28:59 EDT 2024 Sat Sep 28 08:30:59 EDT 2024 Fri Feb 23 02:42:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 Deep learning Social mimic 2019-nCoV Fuzzy color technique Stacking technique |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c573t-3364724b69829044cae541a861e315ca9a6de974210fda1721763097398113933 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3244-2615 0000-0001-5256-7648 0000-0002-8264-3899 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7202857 |
PMID | 32568679 |
PQID | 2425682950 |
PQPubID | 1226355 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7202857 proquest_miscellaneous_2416280709 proquest_journals_2425682950 crossref_primary_10_1016_j_compbiomed_2020_103805 pubmed_primary_32568679 elsevier_sciencedirect_doi_10_1016_j_compbiomed_2020_103805 |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Oxford |
PublicationTitle | Computers in biology and medicine |
PublicationTitleAlternate | Comput Biol Med |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Lee, Ullah, Wan, Gao, Fang (bib22) 2019; 19 Rothe, Schunk, Sothmann, Bretzel, Froeschl, Wallrauch, Zimmer, Thiel, Janke, Guggemos, Seilmaier, Drosten, Vollmar, Zwirglmaier, Zange, Wölfel, Hoelscher (bib1) 2020; 382 Wang, Yu, Fang (bib24) 2020; 12 Liu, Deng, Yang (bib6) 2019; 52 Ahmed (bib16) 2019 Toğaçar, Ergen, Cömert (bib19) 2020; 134 Arnal, Súcar (bib29) 2020; 10 Rahman, Chowdhury, Khandakar (bib14) 2020 Abiyev, Ma’aitah (bib10) 2018; 2018 Sandler, Howard, Zhu, Zhmoginov, Chen (bib17) 2018 Jaiswal, Tiwari, Kumar, Gupta, Khanna, Rodrigues (bib7) 2019; 145 Gingold (bib33) 2019 Soto-Hidalgo, Sánchez, Chamorro-Martínez, Martínez-Jiménez (bib30) 2019 Cengil, Çınar (bib35) 2016; 6 Bardak, Bardak (bib28) 2017; 20 Zhang, Lei, Cui, Jiang (bib20) 2019; 8 Awad, Khanna (bib26) 2015 Elleboudy, Ezz Eldin, Azab (bib32) 2016; 6 Balochian, Baloochian (bib34) 2019; 134 Cömert (bib36) 2020; 40 Patrascu (bib31) 2019 Fu, Sun, Zhu, Yang, Cao, Yang, Cao (bib21) 2019; 121 Sharif, Chaudhuri (bib23) 2019; 27 Netrapalli (bib25) 2019; 99 Stephen, Sain, Maduh, Jeong (bib11) 2019; 2019 Doǧan, Glasmachers, Igel (bib27) 2016; 17 Ai Blog (bib18) Lancet (bib2) 2020; 395 Yadav, Jadhav (bib9) 2019; 6 Hosseiny, Kooraki, Gholamrezanezhad, Reddy, Myers (bib15) 2020 Peng, Xu, Li, Cheng, Zhou, Ren (bib4) 2020 Chouhan, Singh, Khamparia, Gupta, Tiwari, Moreira, Damaševičius, de Albuquerque (bib12) 2020; 10 Razai, Doerholt, Ladhani, Oakeshott (bib3) 2020; vol. 800 (bib37) 2019 Baltruschat, Nickisch, Grass, Knopp, Saalbach (bib8) 2019; 9 Toğaçar, Ergen, Cömert (bib5) 2020 Cohen (bib13) 2020 Peng (10.1016/j.compbiomed.2020.103805_bib4) 2020 Toğaçar (10.1016/j.compbiomed.2020.103805_bib5) 2020 Cömert (10.1016/j.compbiomed.2020.103805_bib36) 2020; 40 Netrapalli (10.1016/j.compbiomed.2020.103805_bib25) 2019; 99 Doǧan (10.1016/j.compbiomed.2020.103805_bib27) 2016; 17 Patrascu (10.1016/j.compbiomed.2020.103805_bib31) 2019 Arnal (10.1016/j.compbiomed.2020.103805_bib29) 2020; 10 Lee (10.1016/j.compbiomed.2020.103805_bib22) 2019; 19 Fu (10.1016/j.compbiomed.2020.103805_bib21) 2019; 121 Ahmed (10.1016/j.compbiomed.2020.103805_bib16) 2019 Wang (10.1016/j.compbiomed.2020.103805_bib24) 2020; 12 Gingold (10.1016/j.compbiomed.2020.103805_bib33) Rahman (10.1016/j.compbiomed.2020.103805_bib14) 2020 Sandler (10.1016/j.compbiomed.2020.103805_bib17) 2018 Abiyev (10.1016/j.compbiomed.2020.103805_bib10) 2018; 2018 Balochian (10.1016/j.compbiomed.2020.103805_bib34) 2019; 134 Rothe (10.1016/j.compbiomed.2020.103805_bib1) 2020; 382 Chouhan (10.1016/j.compbiomed.2020.103805_bib12) 2020; 10 Cohen (10.1016/j.compbiomed.2020.103805_bib13) Liu (10.1016/j.compbiomed.2020.103805_bib6) 2019; 52 Stephen (10.1016/j.compbiomed.2020.103805_bib11) 2019; 2019 Razai (10.1016/j.compbiomed.2020.103805_bib3) 2020; vol. 800 Sharif (10.1016/j.compbiomed.2020.103805_bib23) 2019; 27 Yadav (10.1016/j.compbiomed.2020.103805_bib9) 2019; 6 Elleboudy (10.1016/j.compbiomed.2020.103805_bib32) 2016; 6 Cengil (10.1016/j.compbiomed.2020.103805_bib35) 2016; 6 Hosseiny (10.1016/j.compbiomed.2020.103805_bib15) 2020 Jaiswal (10.1016/j.compbiomed.2020.103805_bib7) 2019; 145 Soto-Hidalgo (10.1016/j.compbiomed.2020.103805_bib30) 2019 Bardak (10.1016/j.compbiomed.2020.103805_bib28) 2017; 20 Baltruschat (10.1016/j.compbiomed.2020.103805_bib8) 2019; 9 Zhang (10.1016/j.compbiomed.2020.103805_bib20) 2019; 8 Ai Blog (10.1016/j.compbiomed.2020.103805_bib18) Awad (10.1016/j.compbiomed.2020.103805_bib26) 2015 Lancet (10.1016/j.compbiomed.2020.103805_bib2) 2020; 395 Toğaçar (10.1016/j.compbiomed.2020.103805_bib19) 2020; 134 |
References_xml | – volume: vol. 800 start-page: 1 year: 2020 end-page: 5 ident: bib3 publication-title: Coronavirus Disease 2019 (Covid-19): a Guide for UK GPs contributor: fullname: Oakeshott – start-page: 1 year: 2020 end-page: 6 ident: bib4 article-title: Transmission routes of 2019-nCoV and controls in dental practice publication-title: Int. J. Oral Sci. contributor: fullname: Ren – year: 2019 ident: bib33 article-title: Image stack: simple code to load and process image stacks contributor: fullname: Gingold – volume: 9 start-page: 6381 year: 2019 ident: bib8 article-title: Comparison of deep learning approaches for multi-label chest X-ray classification publication-title: Sci. Rep. contributor: fullname: Saalbach – volume: 395 start-page: 755 year: 2020 ident: bib2 article-title: Editorial COVID-19 : too little , too late ? publication-title: Lancet contributor: fullname: Lancet – volume: 99 start-page: 201 year: 2019 end-page: 213 ident: bib25 article-title: Stochastic gradient descent and its variants in machine learning publication-title: J. Indian Inst. Sci. contributor: fullname: Netrapalli – volume: 52 start-page: 1089 year: 2019 end-page: 1106 ident: bib6 article-title: Recent progress in semantic image segmentation publication-title: Artif. Intell. Rev. contributor: fullname: Yang – volume: 10 year: 2020 ident: bib12 article-title: A novel transfer learning based approach for pneumonia detection in chest X-ray images publication-title: Appl. Sci. contributor: fullname: de Albuquerque – volume: 121 start-page: 397 year: 2019 end-page: 405 ident: bib21 article-title: A deep-learning-based approach for fast and robust steel surface defects classification publication-title: Optic Laser. Eng. contributor: fullname: Cao – volume: 6 start-page: 235 year: 2016 end-page: 239 ident: bib32 article-title: Focus stacking technique in identification of forensically important Chrysomya species (Diptera: calliphoridae), Egypt publication-title: J. Forensic Sci. contributor: fullname: Azab – volume: 8 year: 2019 ident: bib20 article-title: A dual-path and lightweight convolutional neural network for high-resolution aerial image segmentation publication-title: ISPRS Int. J. Geo-Inf. contributor: fullname: Jiang – start-page: 1 year: 2020 end-page: 5 ident: bib15 article-title: Radiology perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute respiratory syndrome and Middle East respiratory syndrome publication-title: Am. J. Roentgenol. contributor: fullname: Myers – ident: bib18 article-title: MobileNetV2: the next generation of on-device computer vision networks contributor: fullname: Ai Blog – year: 2019 ident: bib16 article-title: Pneumonia Sample X-Rays contributor: fullname: Ahmed – year: 2020 ident: bib13 article-title: COVID-19 Chest X-Ray dataset or CT dataset, GitHub contributor: fullname: Cohen – start-page: 109503 year: 2020 ident: bib5 article-title: Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders publication-title: Med. Hypotheses contributor: fullname: Cömert – volume: 382 start-page: 970 year: 2020 end-page: 971 ident: bib1 article-title: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany publication-title: N. Engl. J. Med. contributor: fullname: Hoelscher – volume: 19 year: 2019 ident: bib22 article-title: Real-time vehicle make and model recognition with the residual SqueezeNet architecture publication-title: Sensors (Basel) contributor: fullname: Fang – volume: 6 start-page: 96 year: 2016 end-page: 103 ident: bib35 article-title: A new approach for image classification: convolutional neural network publication-title: Eur. J. Teach. Educ. contributor: fullname: Çınar – year: 2020 ident: bib14 article-title: COVID-19 Radiography Database contributor: fullname: Khandakar – volume: 2018 start-page: 4168538 year: 2018 ident: bib10 article-title: Deep convolutional neural networks for chest diseases detection publication-title: J. Healthc. Eng. contributor: fullname: Ma’aitah – volume: 2019 start-page: 4180949 year: 2019 ident: bib11 article-title: An efficient deep learning approach to pneumonia classification in healthcare publication-title: J. Healthc. Eng. contributor: fullname: Jeong – volume: 145 start-page: 511 year: 2019 end-page: 518 ident: bib7 article-title: Identifying pneumonia in chest X-rays: a deep learning approach publication-title: Measurement contributor: fullname: Rodrigues – volume: 10 year: 2020 ident: bib29 article-title: Hybrid filter based on fuzzy techniques for mixed noise reduction in color images publication-title: Appl. Sci. contributor: fullname: Súcar – year: 2019 ident: bib37 article-title: Coronavirus disease – start-page: 39 year: 2015 end-page: 66 ident: bib26 publication-title: Support Vector Machines for Classification BT - Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers contributor: fullname: Khanna – volume: 27 start-page: 595 year: 2019 end-page: 604 ident: bib23 article-title: A multiseed-based SVM classification technique for training sample reduction publication-title: Turk. J. Electr. Eng. Comput. Sci. contributor: fullname: Chaudhuri – volume: 20 start-page: 979 year: 2017 end-page: 984 ident: bib28 article-title: Prediction of wood density by using red-green-blue (RGB) color and fuzzy logic techniques publication-title: J. Polytech. contributor: fullname: Bardak – volume: 134 start-page: 109531 year: 2020 ident: bib19 article-title: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model publication-title: Med. Hypotheses contributor: fullname: Cömert – volume: 6 start-page: 113 year: 2019 ident: bib9 article-title: Deep convolutional neural network based medical image classification for disease diagnosis publication-title: J. Big Data contributor: fullname: Jadhav – volume: 40 start-page: 40 year: 2020 end-page: 51 ident: bib36 article-title: Fusing fine-tuned deep features for recognizing different tympanic membranes publication-title: Biocybern. Biomed. Eng. contributor: fullname: Cömert – year: 2019 ident: bib30 article-title: Color comparison in fuzzy color spaces publication-title: Fuzzy Set Syst. contributor: fullname: Martínez-Jiménez – start-page: 4510 year: 2018 end-page: 4520 ident: bib17 article-title: MobileNetV2: inverted residuals and linear bottlenecks publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. contributor: fullname: Chen – volume: 17 start-page: 1 year: 2016 end-page: 32 ident: bib27 article-title: A unified view on multi-class support vector classification publication-title: J. Mach. Learn. Res. contributor: fullname: Igel – year: 2019 ident: bib31 article-title: Fuzzy color image enhancement algorithm publication-title: Github contributor: fullname: Patrascu – volume: 12 year: 2020 ident: bib24 article-title: Multiple kernel-based SVM classification of hyperspectral images by combining spectral, spatial, and semantic information publication-title: Rem. Sens. contributor: fullname: Fang – volume: 134 start-page: 178 year: 2019 end-page: 191 ident: bib34 article-title: Social mimic optimization algorithm and engineering applications publication-title: Expert Syst. Appl. contributor: fullname: Baloochian – ident: 10.1016/j.compbiomed.2020.103805_bib18 contributor: fullname: Ai Blog – volume: 40 start-page: 40 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib36 article-title: Fusing fine-tuned deep features for recognizing different tympanic membranes publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.11.001 contributor: fullname: Cömert – volume: 8 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib20 article-title: A dual-path and lightweight convolutional neural network for high-resolution aerial image segmentation publication-title: ISPRS Int. J. Geo-Inf. doi: 10.3390/ijgi8120582 contributor: fullname: Zhang – volume: 12 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib24 article-title: Multiple kernel-based SVM classification of hyperspectral images by combining spectral, spatial, and semantic information publication-title: Rem. Sens. contributor: fullname: Wang – volume: 2019 start-page: 4180949 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib11 article-title: An efficient deep learning approach to pneumonia classification in healthcare publication-title: J. Healthc. Eng. doi: 10.1155/2019/4180949 contributor: fullname: Stephen – volume: 27 start-page: 595 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib23 article-title: A multiseed-based SVM classification technique for training sample reduction publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-1801-157 contributor: fullname: Sharif – volume: 6 start-page: 96 year: 2016 ident: 10.1016/j.compbiomed.2020.103805_bib35 article-title: A new approach for image classification: convolutional neural network publication-title: Eur. J. Teach. Educ. contributor: fullname: Cengil – start-page: 4510 year: 2018 ident: 10.1016/j.compbiomed.2020.103805_bib17 article-title: MobileNetV2: inverted residuals and linear bottlenecks publication-title: IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. contributor: fullname: Sandler – volume: 145 start-page: 511 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib7 article-title: Identifying pneumonia in chest X-rays: a deep learning approach publication-title: Measurement doi: 10.1016/j.measurement.2019.05.076 contributor: fullname: Jaiswal – year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib31 article-title: Fuzzy color image enhancement algorithm publication-title: Github contributor: fullname: Patrascu – volume: 2018 start-page: 4168538 year: 2018 ident: 10.1016/j.compbiomed.2020.103805_bib10 article-title: Deep convolutional neural networks for chest diseases detection publication-title: J. Healthc. Eng. doi: 10.1155/2018/4168538 contributor: fullname: Abiyev – volume: 134 start-page: 109531 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib19 article-title: BrainMRNet: brain tumor detection using magnetic resonance images with a novel convolutional neural network model publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2019.109531 contributor: fullname: Toğaçar – volume: 19 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib22 article-title: Real-time vehicle make and model recognition with the residual SqueezeNet architecture publication-title: Sensors (Basel) contributor: fullname: Lee – volume: 6 start-page: 113 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib9 article-title: Deep convolutional neural network based medical image classification for disease diagnosis publication-title: J. Big Data doi: 10.1186/s40537-019-0276-2 contributor: fullname: Yadav – volume: 52 start-page: 1089 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib6 article-title: Recent progress in semantic image segmentation publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9641-3 contributor: fullname: Liu – volume: 10 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib29 article-title: Hybrid filter based on fuzzy techniques for mixed noise reduction in color images publication-title: Appl. Sci. contributor: fullname: Arnal – volume: 9 start-page: 6381 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib8 article-title: Comparison of deep learning approaches for multi-label chest X-ray classification publication-title: Sci. Rep. doi: 10.1038/s41598-019-42294-8 contributor: fullname: Baltruschat – volume: 6 start-page: 235 year: 2016 ident: 10.1016/j.compbiomed.2020.103805_bib32 article-title: Focus stacking technique in identification of forensically important Chrysomya species (Diptera: calliphoridae), Egypt publication-title: J. Forensic Sci. contributor: fullname: Elleboudy – volume: 10 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib12 article-title: A novel transfer learning based approach for pneumonia detection in chest X-ray images publication-title: Appl. Sci. doi: 10.3390/app10020559 contributor: fullname: Chouhan – volume: 17 start-page: 1 year: 2016 ident: 10.1016/j.compbiomed.2020.103805_bib27 article-title: A unified view on multi-class support vector classification publication-title: J. Mach. Learn. Res. contributor: fullname: Doǧan – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib4 article-title: Transmission routes of 2019-nCoV and controls in dental practice publication-title: Int. J. Oral Sci. contributor: fullname: Peng – ident: 10.1016/j.compbiomed.2020.103805_bib33 contributor: fullname: Gingold – volume: 382 start-page: 970 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib1 article-title: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2001468 contributor: fullname: Rothe – start-page: 39 year: 2015 ident: 10.1016/j.compbiomed.2020.103805_bib26 contributor: fullname: Awad – year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib30 article-title: Color comparison in fuzzy color spaces publication-title: Fuzzy Set Syst. contributor: fullname: Soto-Hidalgo – volume: 134 start-page: 178 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib34 article-title: Social mimic optimization algorithm and engineering applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.05.035 contributor: fullname: Balochian – year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib14 contributor: fullname: Rahman – volume: vol. 800 start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib3 contributor: fullname: Razai – volume: 121 start-page: 397 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib21 article-title: A deep-learning-based approach for fast and robust steel surface defects classification publication-title: Optic Laser. Eng. doi: 10.1016/j.optlaseng.2019.05.005 contributor: fullname: Fu – volume: 395 start-page: 755 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib2 article-title: Editorial COVID-19 : too little , too late ? publication-title: Lancet doi: 10.1016/S0140-6736(20)30522-5 contributor: fullname: Lancet – volume: 20 start-page: 979 year: 2017 ident: 10.1016/j.compbiomed.2020.103805_bib28 article-title: Prediction of wood density by using red-green-blue (RGB) color and fuzzy logic techniques publication-title: J. Polytech. doi: 10.2339/politeknik.369132 contributor: fullname: Bardak – ident: 10.1016/j.compbiomed.2020.103805_bib13 contributor: fullname: Cohen – year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib16 contributor: fullname: Ahmed – start-page: 1 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib15 article-title: Radiology perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute respiratory syndrome and Middle East respiratory syndrome publication-title: Am. J. Roentgenol. contributor: fullname: Hosseiny – volume: 99 start-page: 201 year: 2019 ident: 10.1016/j.compbiomed.2020.103805_bib25 article-title: Stochastic gradient descent and its variants in machine learning publication-title: J. Indian Inst. Sci. doi: 10.1007/s41745-019-0098-4 contributor: fullname: Netrapalli – start-page: 109503 year: 2020 ident: 10.1016/j.compbiomed.2020.103805_bib5 article-title: Application of breast cancer diagnosis based on a combination of convolutional neural networks, ridge regression and linear discriminant analysis using invasive breast cancer images processed with autoencoders publication-title: Med. Hypotheses doi: 10.1016/j.mehy.2019.109503 contributor: fullname: Toğaçar |
SSID | ssj0004030 |
Score | 2.707599 |
Snippet | Coronavirus causes a wide variety of respiratory infections and it is an RNA-type virus that can infect both humans and animal species. It often causes... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 103805 |
SubjectTerms | 2019-nCoV Animal species Artificial Intelligence Betacoronavirus Color Computational Biology Coronavirus Infections - diagnosis Coronavirus Infections - diagnostic imaging Coronaviruses COVID-19 Databases, Factual Datasets Deep Learning Fuzzy color technique Fuzzy Logic Humans Image processing Lung - diagnostic imaging Medical research Optimization Pandemics Pneumonia Pneumonia - diagnostic imaging Pneumonia, Viral - diagnosis Pneumonia, Viral - diagnostic imaging Radiographic Image Interpretation, Computer-Assisted Ribonucleic acid RNA RNA viruses SARS-CoV-2 Social discrimination learning Social mimic Stacking technique Support Vector Machine Support vector machines Viral diseases Viruses X ray imagery |
Title | COVID-19 detection using deep learning models to exploit Social Mimic Optimization and structured chest X-ray images using fuzzy color and stacking approaches |
URI | https://dx.doi.org/10.1016/j.compbiomed.2020.103805 https://www.ncbi.nlm.nih.gov/pubmed/32568679 https://www.proquest.com/docview/2425682950 https://search.proquest.com/docview/2416280709 https://pubmed.ncbi.nlm.nih.gov/PMC7202857 |
Volume | 121 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpB2MvY_dl7YYGewsuvkiyTZ-2NKV76AprNkpfjGLJbTpyIYkf2h-z37pzdLGTdoOOsRcTLCuSOZ-Pbt_5DiEfpM5DVvI40CphAVOqDPK0VEEWScHyWMoRx2jko9P0y1l2MGCDTsenlmzv_VdLwz2wNUbO_oW1mz-FG_AbbA5XsDpc72X3_sn3zwdBlPeUXmmbB7w2-wFK67lPEnFhM-AYdQeNLLzxqucDdcfIlj8BTzJxIZrmfMHqzNbIVjcptnpnwUJe98YTiSIRtoWqvrm57qEM9sLVkeUPEwTphMsdX9ELI7iEEoaRuy4Gdfu8fzjDKW9-KM2pfmop4cd6WTeUnQGGkBqo1ovLFu99rPBJTFxc0rmsHBfZbXPEYUvHsntvPv6mJTsZfw6jCMts6PSeti48S_MAXAvb8PE2DPvOeGG3Lq7Q3nOrd7CHjRvZ-JC3Y2TDXDw1gkbQYoxryTQRW-RBDD4O2aTn_GsbkhsmNvrJddCRyCy18Pet_WlmdHflc5vAuzYjGj4hj91Shn60GHxKOnr6jDw8dsZ7Tn56KNIGitQAhSIUqYcitVCkqxl1UKQWitRAka5DkQI8aAtFaqBIDRSphaJrwUCRGii6OhaKtIXiC_LtcDDsHwUuHUhQ8jRZBYlJdcBGIsfDf8ZKqTmLZCYinUS8lLkUSsPyOI7CSknc2oCxE9Wo8iyCdU6SvCTb09lUvyY0q3TMhEpUripWZnxUSqjHBdOSx1xWXRJ5UxRzq_pSeDrkVdGar0DzFdZ8XbLvbVa42audlRYAtnvU3vVmLpw3WRa4HSDgZXnYJe-bYvD_eKgnp3pW4zORQEWrMO-SVxYVTZcTrC5SKEk38NI8gNrymyXT8aXRmE-hbxlP3_zTS-2QR-2nvEu2AR76Ldlaqvqd-Vp-AeCg9_I |
link.rule.ids | 230,315,782,786,887,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19+detection+using+deep+learning+models+to+exploit+Social+Mimic+Optimization+and+structured+chest+X-ray+images+using+fuzzy+color+and+stacking+approaches&rft.jtitle=Computers+in+biology+and+medicine&rft.au=To%C4%9Fa%C3%A7ar%2C+Mesut&rft.au=Ergen%2C+Burhan&rft.au=C%C3%B6mert%2C+Zafer&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.eissn=1879-0534&rft.volume=121&rft_id=info:doi/10.1016%2Fj.compbiomed.2020.103805&rft.externalDocID=S0010482520301736 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-4825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-4825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-4825&client=summon |