On and Off Retinal Circuit Assembly by Divergent Molecular Mechanisms

Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and norm...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) Vol. 342; no. 6158; p. 590
Main Authors: Sun, Lu O., Jiang, Zheng, Rivlin-Etzion, Michal, Hand, Randal, Brady, Colleen M., Matsuoka, Ryota L., Yau, King-Wai, Feller, Maria B., Kolodkin, Alex L.
Format: Journal Article
Language:English
Published: Washington, DC American Association for the Advancement of Science 01-11-2013
The American Association for the Advancement of Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A(-/-) mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs.
AbstractList Wiring the RetinaStarburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. (10.1126/science.1241974) analyzed how the cellular circuits develop in the mouse retina to form the basis of motion detection. Expression patterns of semaphorin 6A and its receptor plexin A2 defined the shape and reactivity of the starburst amacrine cells. Semaphorin 6A expression was restricted to particular cells, generating two classes of starburst amacrine cells with distinct morphologies and opposing functions.
Starburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. ( 10.1126/science.1241974 ) analyzed how the cellular circuits develop in the mouse retina to form the basis of motion detection. Expression patterns of semaphorin 6A and its receptor plexin A2 defined the shape and reactivity of the starburst amacrine cells. Semaphorin 6A expression was restricted to particular cells, generating two classes of starburst amacrine cells with distinct morphologies and opposing functions. Work in mice reveals how motion-detection circuitry is established during visual system development. Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A −/− mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs.
Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A −/− mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs.
Introduction; Direction-selective responses to visual cues depend upon precise connectivity between inhibitory starburst amacrine cells (SACs) and direction-selective ganglion cells (DSGCs). Motion is detected by SAC responses to illumination onset (On) or cessation (Off). On and Off SACs costratify in the inner plexiform layer of the vertebrate retina with distinct DSGC dendritic arborizations that mediate On or Off directional responses. Here, we study the molecular mechanisms that specify On versus Off SACs and the signaling pathways governing the functional assembly of murine retinal direction-selective circuitry. We show that signaling between the transmembrane guidance cue semaphorin 6A (Sema6A) and its receptor plexinA2 (PlexA2) regulates dendritic morphology of On but not Off SACs, thereby controlling direction-selective responses to visual stimuli.; Development of direction-selective circuitry. On and Off mouse SACs normally stratify in discrete layers (top left) and exhibit radial dendrite morphology (top right). Sema6A and its PlexA2 receptor are expressed in On SACs, but only PlexA2 is expressed in Off SACs. In Sema6A mutants, SACs fail to stratify (bottom left) and On SACs are misshapen (bottom right), compromising responses to "light on" directional cues.; Methods; We analyzed SAC stratification in the inner plexiform layer, and dendritic morphology of individual On and Off SACs, throughout retinal development in Sema6A and PlexA2 mutant mice. We used dissociated retinal cultures to determine how neurites from genetically labeled SACs respond to exogenous Sema6A. We determined the light-evoked excitatory and inhibitory responses of Sema6A-/- On SACs. Finally, we analyzed direction-selective responses in isolated retinas by On-Off direction-selective ganglion cells.; Results; Sema6A is expressed in On, but not Off, SACs, whereas PlexA2 is expressed in all SACs. In vitro, exogenous Sema6A repels neurites only from PlexA2+, Sema6A- SACs, the in vivoexpression profile of Off SACs.In PlexA2-/- or Sema6A-/-retinas, SAC dendritic stratifications fail to completely segregate from each other; therefore, in vitro and in vivo observations suggest that repulsive interactions between Sema6A and PlexA2 mediate SAC dendritic stratification. Analysis of dendritic morphology in individual SACs in the x-y plane reveals that On SACs in PlexA2-/- and Sema6A-/- mutants are missing extensive portions of their dendritic fields, have asymmetric dendritic arbors, and exhibit self-avoidance defects; Off SACs in these mutants have normal x-y plane dendritic arbors. Specific On-Off bistratified direction-selective ganglion cells in Sema6A-/-mutant retinas exhibit decreased tuning of On-directional motion responses, whereas Off responses in these same cells are unaffected, correlating the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion.; Discussion; Our findings show that, in addition to contributing to the separation between On and Off SAC dendritic stratifications into distinct inner plexiform layer laminae, Sema6A-PlexA2 signaling selectively regulates the elaboration of symmetric On SAC dendritic fields. Disruption of Sema6A-PlexA2 signaling ultimately results in compromised On, but not Off, directional tuning in a subclass of On-Off direction-selective ganglion cells. Our elucidation of molecular events critical for functional assembly of retinal direction-selective circuitry may have general implications for understanding the establishment of circuitry in which individual neurons participate in multiple distinct pathways. [PUBLICATION ABSTRACT] Starburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. (10.1126/science.1241974) analyzed how the cellular circuits develop in the mouse retina to form the basis of motion detection. Expression patterns of semaphorin 6A and its receptor plexin A2 defined the shape and reactivity of the starburst amacrine cells. Semaphorin 6A expression was restricted to particular cells, generating two classes of starburst amacrine cells with distinct morphologies and opposing functions. [PUBLICATION ABSTRACT] Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A-/- mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs. [PUBLICATION ABSTRACT]
Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A(-/-) mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs.
Author Matsuoka, Ryota L.
Kolodkin, Alex L.
Yau, King-Wai
Hand, Randal
Rivlin-Etzion, Michal
Brady, Colleen M.
Feller, Maria B.
Sun, Lu O.
Jiang, Zheng
AuthorAffiliation 1 Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
3 Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
2 Howard Hughes Medical Institute, Baltimore, MD 21205, USA
AuthorAffiliation_xml – name: 3 Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
– name: 1 Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– name: 2 Howard Hughes Medical Institute, Baltimore, MD 21205, USA
Author_xml – sequence: 1
  givenname: Lu O.
  surname: Sun
  fullname: Sun, Lu O.
– sequence: 2
  givenname: Zheng
  surname: Jiang
  fullname: Jiang, Zheng
– sequence: 3
  givenname: Michal
  surname: Rivlin-Etzion
  fullname: Rivlin-Etzion, Michal
– sequence: 4
  givenname: Randal
  surname: Hand
  fullname: Hand, Randal
– sequence: 5
  givenname: Colleen M.
  surname: Brady
  fullname: Brady, Colleen M.
– sequence: 6
  givenname: Ryota L.
  surname: Matsuoka
  fullname: Matsuoka, Ryota L.
– sequence: 7
  givenname: King-Wai
  surname: Yau
  fullname: Yau, King-Wai
– sequence: 8
  givenname: Maria B.
  surname: Feller
  fullname: Feller, Maria B.
– sequence: 9
  givenname: Alex L.
  surname: Kolodkin
  fullname: Kolodkin, Alex L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27975267$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/24179230$$D View this record in MEDLINE/PubMed
BookMark eNqF0c1rFDEYBvAgFbutnj0pA1Lwsm2-Py5CWVsVWhZEzyGTvtNmyWRqMlPY_94sO64fFy_J4f3Ny5N5TtBRGhIg9Jrgc0KovCg-QPJwTignRvFnaEGwEUtDMTtCC4yZXGqsxDE6KWWDcZ0Z9gIdV60MZXiBrtapcemuWXdd8xXGkFxsViH7KYzNZSnQt3HbtNvmY3iCfA9pbG6HCH6KLje34B9cCqUvL9HzzsUCr-b7FH2_vvq2-ry8WX_6srq8WXqh6Lg7tVQAWlCtpFCcmk44xoBqA4pRplrd8Zqaa-kdAdq2jhMpOu0ExkSwU_Rhv_dxanu48zVPdtE-5tC7vLWDC_bvSQoP9n54skxLxgWuC97PC_LwY4Iy2j4UDzG6BMNULNFYY0GkEf-nnGtKheGq0nf_0M0w5ford0oYSggjpqqLvfJ5KCVDd8hNsN21aec27dxm_eLtn889-F_1VXA2A1e8i112yYfy2ymjBJW7gG_2blPGIR_mnEpijNHsJ5yGsko
CODEN SCIEAS
CitedBy_id crossref_primary_10_1016_j_conb_2014_02_005
crossref_primary_10_1371_journal_pone_0158686
crossref_primary_10_7554_eLife_70870
crossref_primary_10_1016_j_conb_2018_10_001
crossref_primary_10_1016_j_tins_2015_05_003
crossref_primary_10_3389_fncel_2015_00513
crossref_primary_10_1101_gad_262592_115
crossref_primary_10_1242_dev_202237
crossref_primary_10_1002_wdev_379
crossref_primary_10_1016_j_cell_2020_04_008
crossref_primary_10_1002_adma_202301986
crossref_primary_10_1186_s12861_014_0034_9
crossref_primary_10_1016_j_conb_2016_12_006
crossref_primary_10_1016_j_neuron_2017_07_019
crossref_primary_10_1016_j_tins_2014_07_009
crossref_primary_10_3389_fncir_2020_00044
crossref_primary_10_1523_JNEUROSCI_2098_17_2017
crossref_primary_10_1523_JNEUROSCI_2202_14_2015
crossref_primary_10_1016_j_stemcr_2020_12_001
crossref_primary_10_1038_s41593_018_0127_z
crossref_primary_10_3389_fncel_2020_622808
crossref_primary_10_1016_j_celrep_2018_08_029
crossref_primary_10_1038_nrn_2015_3
crossref_primary_10_1152_jn_00322_2018
crossref_primary_10_3389_fncel_2023_1173579
crossref_primary_10_1016_j_celrep_2019_09_085
crossref_primary_10_1016_j_gep_2017_10_007
crossref_primary_10_3389_fnmol_2016_00105
crossref_primary_10_1016_j_neuron_2016_01_020
crossref_primary_10_1146_annurev_cellbio_100913_013020
crossref_primary_10_1016_j_celrep_2020_108382
crossref_primary_10_1093_hmg_ddae088
crossref_primary_10_1016_j_conb_2018_07_007
crossref_primary_10_7554_eLife_91532_3
crossref_primary_10_7554_eLife_08149
crossref_primary_10_1016_j_cell_2014_06_047
crossref_primary_10_1016_j_cub_2018_03_001
crossref_primary_10_1016_j_celrep_2015_06_026
crossref_primary_10_1007_s00018_016_2137_x
crossref_primary_10_1016_j_neuron_2015_11_032
crossref_primary_10_1016_j_conb_2020_12_014
crossref_primary_10_1371_journal_pgen_1008228
crossref_primary_10_1134_S1062359022700017
crossref_primary_10_1016_j_conb_2016_06_009
crossref_primary_10_1038_ncomms7315
crossref_primary_10_1016_j_neuron_2015_03_064
crossref_primary_10_7554_eLife_34241
crossref_primary_10_1016_j_conb_2020_12_004
crossref_primary_10_1016_j_celrep_2018_06_013
crossref_primary_10_1016_j_neuron_2014_08_054
crossref_primary_10_1038_s41467_024_46725_7
crossref_primary_10_1242_dmm_021972
crossref_primary_10_1016_j_celrep_2017_12_044
crossref_primary_10_1146_annurev_cellbio_100913_012953
crossref_primary_10_1016_j_cub_2016_05_035
crossref_primary_10_1146_annurev_vision_091517_034048
crossref_primary_10_7554_eLife_08964
crossref_primary_10_1016_j_semcdb_2022_02_015
crossref_primary_10_1073_pnas_1512683112
crossref_primary_10_1186_s13064_017_0083_4
crossref_primary_10_3390_ijms24032992
crossref_primary_10_7554_eLife_91532
crossref_primary_10_1016_j_neuron_2016_06_018
crossref_primary_10_1073_pnas_1713548114
crossref_primary_10_1038_srep03843
crossref_primary_10_1146_annurev_neuro_072116_031335
crossref_primary_10_15252_embj_2019102926
crossref_primary_10_1016_j_celrep_2020_107844
crossref_primary_10_3389_fnmol_2018_00485
crossref_primary_10_1515_mr_2022_0011
crossref_primary_10_1111_brv_12139
crossref_primary_10_1016_j_preteyeres_2022_101131
crossref_primary_10_1111_dgd_12298
crossref_primary_10_1242_dev_105544
crossref_primary_10_1101_gad_248245_114
crossref_primary_10_1101_cshperspect_a029165
crossref_primary_10_1093_hmg_ddv199
crossref_primary_10_1146_annurev_neuro_072116_031607
crossref_primary_10_3389_fnins_2018_00946
crossref_primary_10_1016_j_celrep_2021_110225
crossref_primary_10_7554_eLife_04390
crossref_primary_10_1523_ENEURO_0261_21_2021
crossref_primary_10_1016_j_knosys_2024_111816
crossref_primary_10_1016_j_ydbio_2021_06_004
crossref_primary_10_3390_ijms22116111
crossref_primary_10_1016_j_devcel_2023_07_011
crossref_primary_10_1016_j_preteyeres_2014_06_003
crossref_primary_10_1152_jn_00044_2018
crossref_primary_10_1002_cne_24507
crossref_primary_10_1016_j_celrep_2018_07_090
crossref_primary_10_1016_j_neuro_2018_07_009
crossref_primary_10_1007_s12035_017_0554_y
crossref_primary_10_1016_j_neuron_2018_08_019
crossref_primary_10_1523_ENEURO_0053_21_2021
crossref_primary_10_1016_j_cub_2023_02_048
crossref_primary_10_1007_s12311_018_0984_8
crossref_primary_10_1016_j_celrep_2018_07_092
Cites_doi 10.1016/S0896-6273(01)00316-6
10.1113/jphysiol.2004.076695
10.1242/dev.027912
10.1016/j.tins.2011.08.002
10.1017/S0952523811000216
10.1002/cne.10509
10.1038/nature09711
10.1038/nn2064
10.1523/JNEUROSCI.0564-11.2011
10.1038/nrn3165
10.1038/nature00931
10.1152/jn.1996.75.1.469
10.1523/JNEUROSCI.22-10-04025.2002
10.1523/JNEUROSCI.0267-12.2012
10.1038/nature10877
10.1038/nature09600
10.1038/nature11305
10.1038/nature10163
10.1016/j.neuron.2012.10.002
10.1038/nprot.2010.106
10.1002/cne.902870203
10.1038/nature09675
10.1371/journal.pone.0063207
10.1371/journal.pone.0007859
10.1016/j.preteyeres.2003.10.001
10.1016/j.neuron.2007.01.028
10.1038/emboj.2010.147
10.1016/S1534-5807(03)00169-2
10.1016/j.neuron.2012.11.028
10.1016/j.neuron.2009.04.014
10.1016/j.neuron.2011.06.009
10.1523/JNEUROSCI.0907-11.2011
10.1016/j.neuron.2007.07.001
10.1016/j.cell.2012.05.018
10.1038/nature09818
ContentType Journal Article
Copyright Copyright © 2013 American Association for the Advancement of Science
2015 INIST-CNRS
Copyright © 2013, American Association for the Advancement of Science
Copyright_xml – notice: Copyright © 2013 American Association for the Advancement of Science
– notice: 2015 INIST-CNRS
– notice: Copyright © 2013, American Association for the Advancement of Science
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
DOI 10.1126/science.1241974
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Aluminium Industry Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Solid State and Superconductivity Abstracts
Virology and AIDS Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
AIDS and Cancer Research Abstracts
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Nucleic Acids Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Materials Business File
Environmental Sciences and Pollution Management
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Virology and AIDS Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Ecology Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Entomology Abstracts
Animal Behavior Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList Technology Research Database
CrossRef

Materials Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Biology
EISSN 1095-9203
EndPage 590
ExternalDocumentID 3129235701
10_1126_science_1241974
24179230
27975267
42619998
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R56 NS035165
– fundername: NINDS NIH HHS
  grantid: R37 NS035165
– fundername: NEI NIH HHS
  grantid: EY013528
– fundername: Howard Hughes Medical Institute
– fundername: NEI NIH HHS
  grantid: R01 EY019498
– fundername: NEI NIH HHS
  grantid: EY019498
– fundername: NINDS NIH HHS
  grantid: P30 NS050274
– fundername: NINDS NIH HHS
  grantid: NS35165
– fundername: NEI NIH HHS
  grantid: R01 EY006837
– fundername: NEI NIH HHS
  grantid: F32 EY006837
– fundername: Howard Hughes Medical Institute :
  grantid: || HHMI_
– fundername: National Institute of Neurological Disorders and Stroke : NINDS
  grantid: R01 NS035165 || NS
GroupedDBID ---
--Z
-DZ
-ET
-~X
.-4
..I
.55
.DC
.HR
08G
0B8
0R~
0WA
123
18M
2FS
2KS
2WC
34G
36B
39C
3R3
4.4
4R4
53G
5RE
66.
68V
6OB
6TJ
7X2
7~K
85S
8F7
AABCJ
AACGO
AAIKC
AAJYS
AAMNW
AANCE
AAWTO
AAYJJ
ABBHK
ABCQX
ABDBF
ABDEX
ABEFU
ABIVO
ABOCM
ABPLY
ABPMR
ABPPZ
ABQIJ
ABTLG
ABWJO
ABXSQ
ABZEH
ACBEA
ACBEC
ACGFO
ACGFS
ACGOD
ACIWK
ACMJI
ACNCT
ACPRK
ACQOY
ADACV
ADDRP
ADMHC
ADUKH
ADULT
AEGBM
AENEX
AEUPB
AEXZC
AFCHL
AFFDN
AFFNX
AFHKK
AFQFN
AFRAH
AGFXO
AGNAY
AGSOS
AHMBA
AIDAL
AIDUJ
AJGZS
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASPBG
AVWKF
B-7
BKF
BLC
C45
C51
CS3
DB2
DCCCD
DOOOF
DU5
EBS
EJD
EMOBN
ESX
F5P
FA8
FEDTE
GX1
HZ~
I.T
IAO
IEA
IGG
IGS
IH2
IHR
INH
INR
IOF
IOV
IPO
IPSME
IPY
ISE
J9C
JAAYA
JBMMH
JCF
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
K-O
KCC
L7B
LSO
LU7
M0P
MQT
MVM
N9A
NEJ
NHB
O9-
OCB
OFXIZ
OGEVE
OK1
OMK
OVD
P-O
P2P
PQQKQ
PZZ
QJJ
RHF
RHI
RXW
SA0
SC5
SJN
TAE
TEORI
TN5
TWZ
UBW
UCV
UHB
UIG
UKR
UMD
UNMZH
UQL
USG
VQA
VVN
WH7
WI4
X7M
XJF
XZL
Y6R
YCJ
YK4
YKV
YNT
YOJ
YR2
YRY
YSQ
YV5
YWH
YYP
YYQ
YZZ
ZCA
ZE2
~02
~KM
~ZZ
.GJ
.GO
0-V
08R
186
2XV
3EH
3V.
41~
42X
63O
692
6XO
79B
7X7
7XC
88A
88E
88I
8AF
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8GL
8W4
8WZ
97F
A6W
AADHG
AAFWJ
AAKAS
AALRV
AAYOK
ABFLS
ABJCF
ABPTK
ABQIS
ABTAH
ABUWG
ACQAM
ACTDY
ADBBV
ADGIM
ADZCM
ADZLD
AETEA
AFDAS
AFKRA
AGCDD
AJUXI
ALSLI
ANJGP
ARALO
ARAPS
ATCPS
AZQEC
B4K
BBAFP
BBNVY
BBWZM
BCU
BEC
BENPR
BGLVJ
BHPHI
BKNYI
BKSAR
BPHCQ
BVXVI
C2-
CJNVE
D0S
D1I
D1J
D1K
DNJUQ
DWIUU
DWQXO
D~A
EAU
EGS
ESL
EWM
EX3
F20
FYUFA
G8K
GICCO
GNUQQ
GUQSH
HCIFZ
HGD
HQ3
HTVGU
HVGLF
IAG
IBG
IEP
IER
IPC
IQODW
ISN
ISR
ITC
J5H
K6-
K9-
KB.
KQ8
L6V
LK5
LK8
M0K
M0L
M0R
M1P
M2O
M2P
M2Q
M7P
M7R
M7S
N4W
P62
PATMY
PCBAR
PDBOC
PK8
PQEST
PQUKI
PROAC
PSQYO
PTHSS
PV9
PYCSY
QS-
R05
RNS
RZL
SJFOW
SKT
UBY
UHU
UKHRP
UMP
VOH
WOQ
WOW
X7L
XFK
XKJ
XOL
YJ6
YXB
ZA5
ZCF
ZCG
ZGI
ZKG
ZVL
ZVM
ZXP
ZY4
~G0
~H1
AFRQD
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ABDPE
CCPQU
CITATION
HMCUK
LPU
PQEDU
XIH
7QF
7QG
7QL
7QP
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7SS
7T7
7TA
7TB
7TK
7TM
7U5
7U9
8BQ
8FD
C1K
F28
FR3
H8D
H8G
H94
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c572t-c57867ee85287657429f5a33e289e73237b8f4003486ca1e2bba4165f8a500153
IEDL.DBID JSG
ISSN 0036-8075
IngestDate Tue Sep 17 21:09:52 EDT 2024
Thu Oct 24 23:27:39 EDT 2024
Sat Oct 05 05:17:02 EDT 2024
Tue Nov 19 07:01:10 EST 2024
Fri Nov 22 00:34:39 EST 2024
Sat Sep 28 08:29:12 EDT 2024
Fri Nov 25 16:31:20 EST 2022
Mon Nov 25 04:42:07 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6158
Keywords Eye
Visual system
Retina
Molecular assembly
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c572t-c57867ee85287657429f5a33e289e73237b8f4003486ca1e2bba4165f8a500153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work
Present address: Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel.
Present address: Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany.
OpenAccessLink https://europepmc.org/articles/pmc3863450?pdf=render
PMID 24179230
PQID 1459211319
PQPubID 1256
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3863450
proquest_miscellaneous_1808051695
proquest_miscellaneous_1448225947
proquest_journals_1459211319
crossref_primary_10_1126_science_1241974
pubmed_primary_24179230
pascalfrancis_primary_27975267
jstor_primary_42619998
PublicationCentury 2000
PublicationDate 2013-11-01
PublicationDateYYYYMMDD 2013-11-01
PublicationDate_xml – month: 11
  year: 2013
  text: 2013-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
– name: United States
– name: Washington
PublicationTitle Science (American Association for the Advancement of Science)
PublicationTitleAlternate Science
PublicationYear 2013
Publisher American Association for the Advancement of Science
The American Association for the Advancement of Science
Publisher_xml – name: American Association for the Advancement of Science
– name: The American Association for the Advancement of Science
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_2_2
e_1_3_2_14_2
e_1_3_2_35_2
References_xml – ident: e_1_3_2_24_2
  doi: 10.1016/S0896-6273(01)00316-6
– ident: e_1_3_2_36_2
  doi: 10.1113/jphysiol.2004.076695
– ident: e_1_3_2_22_2
  doi: 10.1242/dev.027912
– ident: e_1_3_2_3_2
  doi: 10.1016/j.tins.2011.08.002
– ident: e_1_3_2_20_2
  doi: 10.1017/S0952523811000216
– ident: e_1_3_2_7_2
  doi: 10.1002/cne.10509
– ident: e_1_3_2_13_2
  doi: 10.1038/nature09711
– ident: e_1_3_2_18_2
  doi: 10.1038/nn2064
– ident: e_1_3_2_25_2
  doi: 10.1523/JNEUROSCI.0564-11.2011
– ident: e_1_3_2_4_2
  doi: 10.1038/nrn3165
– ident: e_1_3_2_10_2
  doi: 10.1038/nature00931
– ident: e_1_3_2_23_2
  doi: 10.1152/jn.1996.75.1.469
– ident: e_1_3_2_28_2
  doi: 10.1523/JNEUROSCI.22-10-04025.2002
– ident: e_1_3_2_16_2
  doi: 10.1523/JNEUROSCI.0267-12.2012
– ident: e_1_3_2_32_2
  doi: 10.1038/nature10877
– ident: e_1_3_2_12_2
  doi: 10.1038/nature09600
– ident: e_1_3_2_14_2
  doi: 10.1038/nature11305
– ident: e_1_3_2_30_2
  doi: 10.1038/nature10163
– ident: e_1_3_2_5_2
  doi: 10.1016/j.neuron.2012.10.002
– ident: e_1_3_2_35_2
  doi: 10.1038/nprot.2010.106
– ident: e_1_3_2_21_2
  doi: 10.1002/cne.902870203
– ident: e_1_3_2_27_2
  doi: 10.1038/nature09675
– ident: e_1_3_2_19_2
  doi: 10.1371/journal.pone.0063207
– ident: e_1_3_2_34_2
  doi: 10.1371/journal.pone.0007859
– ident: e_1_3_2_6_2
  doi: 10.1016/j.preteyeres.2003.10.001
– ident: e_1_3_2_17_2
  doi: 10.1016/j.neuron.2007.01.028
– ident: e_1_3_2_26_2
  doi: 10.1038/emboj.2010.147
– ident: e_1_3_2_29_2
  doi: 10.1016/S1534-5807(03)00169-2
– ident: e_1_3_2_33_2
  doi: 10.1016/j.neuron.2012.11.028
– ident: e_1_3_2_8_2
  doi: 10.1016/j.neuron.2009.04.014
– ident: e_1_3_2_15_2
  doi: 10.1016/j.neuron.2011.06.009
– ident: e_1_3_2_9_2
  doi: 10.1523/JNEUROSCI.0907-11.2011
– ident: e_1_3_2_2_2
  doi: 10.1016/j.neuron.2007.07.001
– ident: e_1_3_2_31_2
  doi: 10.1016/j.cell.2012.05.018
– ident: e_1_3_2_11_2
  doi: 10.1038/nature09818
SSID ssj0009593
Score 2.5083284
Snippet Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A...
Starburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. ( 10.1126/science.1241974 ) analyzed how the...
Introduction; Direction-selective responses to visual cues depend upon precise connectivity between inhibitory starburst amacrine cells (SACs) and...
Wiring the RetinaStarburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. (10.1126/science.1241974)...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 590
SubjectTerms Amacrine cells
Amacrine Cells - cytology
Amacrine Cells - metabolism
Amacrine Cells - physiology
Animals
Assembly
Biological and medical sciences
Cellular
Circuits
Dendrites - metabolism
Dendrites - physiology
Exhibits
Eye and associated structures. Visual pathways and centers. Vision
Fundamental and applied biological sciences. Psychology
Ganglia
Light
Mice
Mice, Mutant Strains
Molecular biology
Motion
Motion Perception
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Neurons
Receptors
Receptors, Cell Surface - genetics
Receptors, Cell Surface - metabolism
RESEARCH ARTICLE SUMMARY
Retina
Retina - metabolism
Retina - physiology
Semaphorins - genetics
Semaphorins - metabolism
Signal Transduction
Sun
Vertebrates: nervous system and sense organs
Visual Stimuli
Wiring
Title On and Off Retinal Circuit Assembly by Divergent Molecular Mechanisms
URI https://www.jstor.org/stable/42619998
https://www.ncbi.nlm.nih.gov/pubmed/24179230
https://www.proquest.com/docview/1459211319
https://search.proquest.com/docview/1448225947
https://search.proquest.com/docview/1808051695
https://pubmed.ncbi.nlm.nih.gov/PMC3863450
Volume 342
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-tlSbxAoPxET4qI20SewiUOI7tRwRlFRJDGkPaW-QYW1SCgJr2of89d07StWhMe8mLT1Hi8_nup7v7HcAX9NhF4jIiH_QqxgvPx9pwERO1kvVaedOnRuHhrfzxW10MiCbna9sLQ2WVoS4wZPExQCoe3UkI8xEXdKCjgvVd3X5_l1m34e9Z6Iw5Rh92qmW65Hrq6kMqhTQV7oavx1j8Lc58Wy654H8u1_7zyz_BahNgsrP6RKzDB1duwMd65ORsA9YbY67YUcM4_e0zDG5KZsp7duM9-0k90PiC89HYTkcTRlnhp-JxxooZu6AiDurFYtftVF127ah3eFQ9VZtwdzn4dT6Mm_kKsRUymdBTZdI5JRA2ZUKSpoTh3CEIc5InXBbKp8RgozJrTl1SFAbjN-EVjVHAq3ILuuVz6XaAKSuddp6SuDa1iqvUFNr6vuZ9j3DdRnDUbn3-UtNo5AF-JFneaClvtBTBVtjGuVy7hxH0lnQ1F0ikliLJZAT7rfLyxhIrhDZCI8jFmyaCw_ky2hAlRkzpnqckk2KcJHQq_yFDBJyUVBQRbNfn4c8H0Bg3xHIRyKWTMhcgDu_llXL0ELi8ucp4Kvq77_30HqwkNIAjdD_uQ3cynroD6FT3014oX-0FY3gFJwMEQw
link.rule.ids 230,315,782,786,808,811,887,27933,27934,58025,58037,58258,58270
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7Bogou5VGg4elKrUQPgRDHsX1EsGhRWZBaKvUWOcYWK0G2IruH_fedyWNhK0BccvEoSjwez3yamW8AvqLHzmOXEvmgVyFeeD7UhouQqJWs18qbiBqFe7_k1R911iWanG9tLwyVVVZ1gVUWHwOk_N4dVWE-4oJ5WBAq4rKu3HuVW7dh8HnWG3OIXuxYy2TG-dT1h1QMaUrcD18Psngp0vy_YPKZBzpffue3r8DHJsRkJ_WZWIU5V6zBh3ro5GQNVhtzLtlBwzn9_RN0rwtmilt27T37SV3Q-ILTwaMdD0aM8sIP-f2E5RN2RmUc1I3F-u1cXdZ31D08KB_Kdfh93r057YXNhIXQChmP6KlS6ZwSCJxSIUlXwnDuEIY5yWMuc-UT4rBRqTXHLs5zgxGc8IoGKeBluQGdYli4z8CUlU47T2lcm1jFVWJybX2keeQRsNsADtqtz_7WRBpZBUDiNGu0lDVaCmCj2sapXLuHAezN6GoqEEstRZzKAHZa5WWNLZYIboRGmIt3TQBfpstoRZQaMYUbjkkmwUhJ6ES-IUMUnJRWFAFs1ufh6QNokBuiuQDkzEmZChCL9-xKMbir2Ly5Snkioq3XfnofFns3_cvs8uLqxzYsxTSOo-qF3IHO6HHsdmG-vB3vVSbxD_MuBpw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUFEvvMqWlJeROMAhsMRxbB8rdlcgXhW0Um-R47XFShAQ2T3sv-9MHlsWARKXXDyKEo_HM59m5huAPfTYWeQSIh_0KsQLz4facBEStZL1WnnTpkbh01t59Vd1ukSTc9D0wlBZZVkXWGbxMUDK7t3RU98flaE-YoNZmBeIalQ1HOBdft2axedFf8wherJjLeMpB1TVIFJBpClwT3w1zOKtaPN10eQLL9Rb-sT3L8NiHWqyn9XZWIEZl6_Cl2r45HgVVmqzLth-zT198A261zkzeZ9de89uqBsaX3AyeLajwZBRfvghux-zbMw6VM5BXVnsspmvyy4ddREPiodiDf70ur9PTsN60kJohYyG9FSJdE4JBFCJkKQzYTh3CMec5BGXmfIxcdmoxJpjF2WZwUhOeEUDFfDSbMFc_pi7dWDKSqedp3Suja3iKjaZtr6tedsjcLcB7Dfbnz5VhBppCUSiJK01ldaaCqBVbuVErtnDALan9DURiKSWIkpkAJuNAtPaJgsEOUIj3MU7J4DdyTJaE6VITO4eRyQTY8QkdCw_kCEqTkovigC-V2fi_wfQQDdEdQHIqdMyESA27-mVfHBXsnpzlfBYtH-899M7sPCr00svzq7ON-BrRFM5ypbITZgbPo_cFswW_dF2aRX_AGe7CRU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+and+Off+Retinal+Circuit+Assembly+by+Divergent+Molecular+Mechanisms&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Sun%2C+Lu+O.&rft.au=Jiang%2C+Zheng&rft.au=Rivlin-Etzion%2C+Michal&rft.au=Hand%2C+Randal&rft.date=2013-11-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=342&rft.issue=6158&rft.spage=590&rft.epage=590&rft_id=info:doi/10.1126%2Fscience.1241974&rft.externalDocID=42619998
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon