On and Off Retinal Circuit Assembly by Divergent Molecular Mechanisms
Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and norm...
Saved in:
Published in: | Science (American Association for the Advancement of Science) Vol. 342; no. 6158; p. 590 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington, DC
American Association for the Advancement of Science
01-11-2013
The American Association for the Advancement of Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A(-/-) mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs. |
---|---|
AbstractList | Wiring the RetinaStarburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. (10.1126/science.1241974) analyzed how the cellular circuits develop in the mouse retina to form the basis of motion detection. Expression patterns of semaphorin 6A and its receptor plexin A2 defined the shape and reactivity of the starburst amacrine cells. Semaphorin 6A expression was restricted to particular cells, generating two classes of starburst amacrine cells with distinct morphologies and opposing functions. Starburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. ( 10.1126/science.1241974 ) analyzed how the cellular circuits develop in the mouse retina to form the basis of motion detection. Expression patterns of semaphorin 6A and its receptor plexin A2 defined the shape and reactivity of the starburst amacrine cells. Semaphorin 6A expression was restricted to particular cells, generating two classes of starburst amacrine cells with distinct morphologies and opposing functions. Work in mice reveals how motion-detection circuitry is established during visual system development. Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A −/− mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs. Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A −/− mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs. Introduction; Direction-selective responses to visual cues depend upon precise connectivity between inhibitory starburst amacrine cells (SACs) and direction-selective ganglion cells (DSGCs). Motion is detected by SAC responses to illumination onset (On) or cessation (Off). On and Off SACs costratify in the inner plexiform layer of the vertebrate retina with distinct DSGC dendritic arborizations that mediate On or Off directional responses. Here, we study the molecular mechanisms that specify On versus Off SACs and the signaling pathways governing the functional assembly of murine retinal direction-selective circuitry. We show that signaling between the transmembrane guidance cue semaphorin 6A (Sema6A) and its receptor plexinA2 (PlexA2) regulates dendritic morphology of On but not Off SACs, thereby controlling direction-selective responses to visual stimuli.; Development of direction-selective circuitry. On and Off mouse SACs normally stratify in discrete layers (top left) and exhibit radial dendrite morphology (top right). Sema6A and its PlexA2 receptor are expressed in On SACs, but only PlexA2 is expressed in Off SACs. In Sema6A mutants, SACs fail to stratify (bottom left) and On SACs are misshapen (bottom right), compromising responses to "light on" directional cues.; Methods; We analyzed SAC stratification in the inner plexiform layer, and dendritic morphology of individual On and Off SACs, throughout retinal development in Sema6A and PlexA2 mutant mice. We used dissociated retinal cultures to determine how neurites from genetically labeled SACs respond to exogenous Sema6A. We determined the light-evoked excitatory and inhibitory responses of Sema6A-/- On SACs. Finally, we analyzed direction-selective responses in isolated retinas by On-Off direction-selective ganglion cells.; Results; Sema6A is expressed in On, but not Off, SACs, whereas PlexA2 is expressed in all SACs. In vitro, exogenous Sema6A repels neurites only from PlexA2+, Sema6A- SACs, the in vivoexpression profile of Off SACs.In PlexA2-/- or Sema6A-/-retinas, SAC dendritic stratifications fail to completely segregate from each other; therefore, in vitro and in vivo observations suggest that repulsive interactions between Sema6A and PlexA2 mediate SAC dendritic stratification. Analysis of dendritic morphology in individual SACs in the x-y plane reveals that On SACs in PlexA2-/- and Sema6A-/- mutants are missing extensive portions of their dendritic fields, have asymmetric dendritic arbors, and exhibit self-avoidance defects; Off SACs in these mutants have normal x-y plane dendritic arbors. Specific On-Off bistratified direction-selective ganglion cells in Sema6A-/-mutant retinas exhibit decreased tuning of On-directional motion responses, whereas Off responses in these same cells are unaffected, correlating the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion.; Discussion; Our findings show that, in addition to contributing to the separation between On and Off SAC dendritic stratifications into distinct inner plexiform layer laminae, Sema6A-PlexA2 signaling selectively regulates the elaboration of symmetric On SAC dendritic fields. Disruption of Sema6A-PlexA2 signaling ultimately results in compromised On, but not Off, directional tuning in a subclass of On-Off direction-selective ganglion cells. Our elucidation of molecular events critical for functional assembly of retinal direction-selective circuitry may have general implications for understanding the establishment of circuitry in which individual neurons participate in multiple distinct pathways. [PUBLICATION ABSTRACT] Starburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. (10.1126/science.1241974) analyzed how the cellular circuits develop in the mouse retina to form the basis of motion detection. Expression patterns of semaphorin 6A and its receptor plexin A2 defined the shape and reactivity of the starburst amacrine cells. Semaphorin 6A expression was restricted to particular cells, generating two classes of starburst amacrine cells with distinct morphologies and opposing functions. [PUBLICATION ABSTRACT] Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A-/- mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs. [PUBLICATION ABSTRACT] Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A and its receptor plexin A2 are critical for achieving radially symmetric arborization of On starburst amacrine cell (SAC) dendrites and normal SAC stratification in the mouse retina. Plexin A2 is expressed in both On and Off SACs; however, semaphorin 6A is expressed in On SACs. Specific On-Off bistratified direction-selective ganglion cells in semaphorin 6A(-/-) mutants exhibit decreased tuning of On directional motion responses. These results correlate the elaboration of symmetric SAC dendritic morphology and asymmetric responses to motion, shedding light on the development of visual pathways that use the same cell types for divergent outputs. |
Author | Matsuoka, Ryota L. Kolodkin, Alex L. Yau, King-Wai Hand, Randal Rivlin-Etzion, Michal Brady, Colleen M. Feller, Maria B. Sun, Lu O. Jiang, Zheng |
AuthorAffiliation | 1 Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA 3 Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA 2 Howard Hughes Medical Institute, Baltimore, MD 21205, USA |
AuthorAffiliation_xml | – name: 3 Department of Molecular and Cell Biology and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA – name: 1 Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – name: 2 Howard Hughes Medical Institute, Baltimore, MD 21205, USA |
Author_xml | – sequence: 1 givenname: Lu O. surname: Sun fullname: Sun, Lu O. – sequence: 2 givenname: Zheng surname: Jiang fullname: Jiang, Zheng – sequence: 3 givenname: Michal surname: Rivlin-Etzion fullname: Rivlin-Etzion, Michal – sequence: 4 givenname: Randal surname: Hand fullname: Hand, Randal – sequence: 5 givenname: Colleen M. surname: Brady fullname: Brady, Colleen M. – sequence: 6 givenname: Ryota L. surname: Matsuoka fullname: Matsuoka, Ryota L. – sequence: 7 givenname: King-Wai surname: Yau fullname: Yau, King-Wai – sequence: 8 givenname: Maria B. surname: Feller fullname: Feller, Maria B. – sequence: 9 givenname: Alex L. surname: Kolodkin fullname: Kolodkin, Alex L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27975267$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/24179230$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0c1rFDEYBvAgFbutnj0pA1Lwsm2-Py5CWVsVWhZEzyGTvtNmyWRqMlPY_94sO64fFy_J4f3Ny5N5TtBRGhIg9Jrgc0KovCg-QPJwTignRvFnaEGwEUtDMTtCC4yZXGqsxDE6KWWDcZ0Z9gIdV60MZXiBrtapcemuWXdd8xXGkFxsViH7KYzNZSnQt3HbtNvmY3iCfA9pbG6HCH6KLje34B9cCqUvL9HzzsUCr-b7FH2_vvq2-ry8WX_6srq8WXqh6Lg7tVQAWlCtpFCcmk44xoBqA4pRplrd8Zqaa-kdAdq2jhMpOu0ExkSwU_Rhv_dxanu48zVPdtE-5tC7vLWDC_bvSQoP9n54skxLxgWuC97PC_LwY4Iy2j4UDzG6BMNULNFYY0GkEf-nnGtKheGq0nf_0M0w5ford0oYSggjpqqLvfJ5KCVDd8hNsN21aec27dxm_eLtn889-F_1VXA2A1e8i112yYfy2ymjBJW7gG_2blPGIR_mnEpijNHsJ5yGsko |
CODEN | SCIEAS |
CitedBy_id | crossref_primary_10_1016_j_conb_2014_02_005 crossref_primary_10_1371_journal_pone_0158686 crossref_primary_10_7554_eLife_70870 crossref_primary_10_1016_j_conb_2018_10_001 crossref_primary_10_1016_j_tins_2015_05_003 crossref_primary_10_3389_fncel_2015_00513 crossref_primary_10_1101_gad_262592_115 crossref_primary_10_1242_dev_202237 crossref_primary_10_1002_wdev_379 crossref_primary_10_1016_j_cell_2020_04_008 crossref_primary_10_1002_adma_202301986 crossref_primary_10_1186_s12861_014_0034_9 crossref_primary_10_1016_j_conb_2016_12_006 crossref_primary_10_1016_j_neuron_2017_07_019 crossref_primary_10_1016_j_tins_2014_07_009 crossref_primary_10_3389_fncir_2020_00044 crossref_primary_10_1523_JNEUROSCI_2098_17_2017 crossref_primary_10_1523_JNEUROSCI_2202_14_2015 crossref_primary_10_1016_j_stemcr_2020_12_001 crossref_primary_10_1038_s41593_018_0127_z crossref_primary_10_3389_fncel_2020_622808 crossref_primary_10_1016_j_celrep_2018_08_029 crossref_primary_10_1038_nrn_2015_3 crossref_primary_10_1152_jn_00322_2018 crossref_primary_10_3389_fncel_2023_1173579 crossref_primary_10_1016_j_celrep_2019_09_085 crossref_primary_10_1016_j_gep_2017_10_007 crossref_primary_10_3389_fnmol_2016_00105 crossref_primary_10_1016_j_neuron_2016_01_020 crossref_primary_10_1146_annurev_cellbio_100913_013020 crossref_primary_10_1016_j_celrep_2020_108382 crossref_primary_10_1093_hmg_ddae088 crossref_primary_10_1016_j_conb_2018_07_007 crossref_primary_10_7554_eLife_91532_3 crossref_primary_10_7554_eLife_08149 crossref_primary_10_1016_j_cell_2014_06_047 crossref_primary_10_1016_j_cub_2018_03_001 crossref_primary_10_1016_j_celrep_2015_06_026 crossref_primary_10_1007_s00018_016_2137_x crossref_primary_10_1016_j_neuron_2015_11_032 crossref_primary_10_1016_j_conb_2020_12_014 crossref_primary_10_1371_journal_pgen_1008228 crossref_primary_10_1134_S1062359022700017 crossref_primary_10_1016_j_conb_2016_06_009 crossref_primary_10_1038_ncomms7315 crossref_primary_10_1016_j_neuron_2015_03_064 crossref_primary_10_7554_eLife_34241 crossref_primary_10_1016_j_conb_2020_12_004 crossref_primary_10_1016_j_celrep_2018_06_013 crossref_primary_10_1016_j_neuron_2014_08_054 crossref_primary_10_1038_s41467_024_46725_7 crossref_primary_10_1242_dmm_021972 crossref_primary_10_1016_j_celrep_2017_12_044 crossref_primary_10_1146_annurev_cellbio_100913_012953 crossref_primary_10_1016_j_cub_2016_05_035 crossref_primary_10_1146_annurev_vision_091517_034048 crossref_primary_10_7554_eLife_08964 crossref_primary_10_1016_j_semcdb_2022_02_015 crossref_primary_10_1073_pnas_1512683112 crossref_primary_10_1186_s13064_017_0083_4 crossref_primary_10_3390_ijms24032992 crossref_primary_10_7554_eLife_91532 crossref_primary_10_1016_j_neuron_2016_06_018 crossref_primary_10_1073_pnas_1713548114 crossref_primary_10_1038_srep03843 crossref_primary_10_1146_annurev_neuro_072116_031335 crossref_primary_10_15252_embj_2019102926 crossref_primary_10_1016_j_celrep_2020_107844 crossref_primary_10_3389_fnmol_2018_00485 crossref_primary_10_1515_mr_2022_0011 crossref_primary_10_1111_brv_12139 crossref_primary_10_1016_j_preteyeres_2022_101131 crossref_primary_10_1111_dgd_12298 crossref_primary_10_1242_dev_105544 crossref_primary_10_1101_gad_248245_114 crossref_primary_10_1101_cshperspect_a029165 crossref_primary_10_1093_hmg_ddv199 crossref_primary_10_1146_annurev_neuro_072116_031607 crossref_primary_10_3389_fnins_2018_00946 crossref_primary_10_1016_j_celrep_2021_110225 crossref_primary_10_7554_eLife_04390 crossref_primary_10_1523_ENEURO_0261_21_2021 crossref_primary_10_1016_j_knosys_2024_111816 crossref_primary_10_1016_j_ydbio_2021_06_004 crossref_primary_10_3390_ijms22116111 crossref_primary_10_1016_j_devcel_2023_07_011 crossref_primary_10_1016_j_preteyeres_2014_06_003 crossref_primary_10_1152_jn_00044_2018 crossref_primary_10_1002_cne_24507 crossref_primary_10_1016_j_celrep_2018_07_090 crossref_primary_10_1016_j_neuro_2018_07_009 crossref_primary_10_1007_s12035_017_0554_y crossref_primary_10_1016_j_neuron_2018_08_019 crossref_primary_10_1523_ENEURO_0053_21_2021 crossref_primary_10_1016_j_cub_2023_02_048 crossref_primary_10_1007_s12311_018_0984_8 crossref_primary_10_1016_j_celrep_2018_07_092 |
Cites_doi | 10.1016/S0896-6273(01)00316-6 10.1113/jphysiol.2004.076695 10.1242/dev.027912 10.1016/j.tins.2011.08.002 10.1017/S0952523811000216 10.1002/cne.10509 10.1038/nature09711 10.1038/nn2064 10.1523/JNEUROSCI.0564-11.2011 10.1038/nrn3165 10.1038/nature00931 10.1152/jn.1996.75.1.469 10.1523/JNEUROSCI.22-10-04025.2002 10.1523/JNEUROSCI.0267-12.2012 10.1038/nature10877 10.1038/nature09600 10.1038/nature11305 10.1038/nature10163 10.1016/j.neuron.2012.10.002 10.1038/nprot.2010.106 10.1002/cne.902870203 10.1038/nature09675 10.1371/journal.pone.0063207 10.1371/journal.pone.0007859 10.1016/j.preteyeres.2003.10.001 10.1016/j.neuron.2007.01.028 10.1038/emboj.2010.147 10.1016/S1534-5807(03)00169-2 10.1016/j.neuron.2012.11.028 10.1016/j.neuron.2009.04.014 10.1016/j.neuron.2011.06.009 10.1523/JNEUROSCI.0907-11.2011 10.1016/j.neuron.2007.07.001 10.1016/j.cell.2012.05.018 10.1038/nature09818 |
ContentType | Journal Article |
Copyright | Copyright © 2013 American Association for the Advancement of Science 2015 INIST-CNRS Copyright © 2013, American Association for the Advancement of Science |
Copyright_xml | – notice: Copyright © 2013 American Association for the Advancement of Science – notice: 2015 INIST-CNRS – notice: Copyright © 2013, American Association for the Advancement of Science |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
DOI | 10.1126/science.1241974 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aluminium Industry Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Solid State and Superconductivity Abstracts Virology and AIDS Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library AIDS and Cancer Research Abstracts Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Nucleic Acids Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Materials Business File Environmental Sciences and Pollution Management Aerospace Database Copper Technical Reference Library Engineered Materials Abstracts Genetics Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Virology and AIDS Abstracts Electronics & Communications Abstracts Ceramic Abstracts Ecology Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Entomology Abstracts Animal Behavior Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Technology Research Database CrossRef Materials Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Biology |
EISSN | 1095-9203 |
EndPage | 590 |
ExternalDocumentID | 3129235701 10_1126_science_1241974 24179230 27975267 42619998 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R56 NS035165 – fundername: NINDS NIH HHS grantid: R37 NS035165 – fundername: NEI NIH HHS grantid: EY013528 – fundername: Howard Hughes Medical Institute – fundername: NEI NIH HHS grantid: R01 EY019498 – fundername: NEI NIH HHS grantid: EY019498 – fundername: NINDS NIH HHS grantid: P30 NS050274 – fundername: NINDS NIH HHS grantid: NS35165 – fundername: NEI NIH HHS grantid: R01 EY006837 – fundername: NEI NIH HHS grantid: F32 EY006837 – fundername: Howard Hughes Medical Institute : grantid: || HHMI_ – fundername: National Institute of Neurological Disorders and Stroke : NINDS grantid: R01 NS035165 || NS |
GroupedDBID | --- --Z -DZ -ET -~X .-4 ..I .55 .DC .HR 08G 0B8 0R~ 0WA 123 18M 2FS 2KS 2WC 34G 36B 39C 3R3 4.4 4R4 53G 5RE 66. 68V 6OB 6TJ 7X2 7~K 85S 8F7 AABCJ AACGO AAIKC AAJYS AAMNW AANCE AAWTO AAYJJ ABBHK ABCQX ABDBF ABDEX ABEFU ABIVO ABOCM ABPLY ABPMR ABPPZ ABQIJ ABTLG ABWJO ABXSQ ABZEH ACBEA ACBEC ACGFO ACGFS ACGOD ACIWK ACMJI ACNCT ACPRK ACQOY ADACV ADDRP ADMHC ADUKH ADULT AEGBM AENEX AEUPB AEXZC AFCHL AFFDN AFFNX AFHKK AFQFN AFRAH AGFXO AGNAY AGSOS AHMBA AIDAL AIDUJ AJGZS ALIPV ALMA_UNASSIGNED_HOLDINGS AQVQM ASPBG AVWKF B-7 BKF BLC C45 C51 CS3 DB2 DCCCD DOOOF DU5 EBS EJD EMOBN ESX F5P FA8 FEDTE GX1 HZ~ I.T IAO IEA IGG IGS IH2 IHR INH INR IOF IOV IPO IPSME IPY ISE J9C JAAYA JBMMH JCF JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST K-O KCC L7B LSO LU7 M0P MQT MVM N9A NEJ NHB O9- OCB OFXIZ OGEVE OK1 OMK OVD P-O P2P PQQKQ PZZ QJJ RHF RHI RXW SA0 SC5 SJN TAE TEORI TN5 TWZ UBW UCV UHB UIG UKR UMD UNMZH UQL USG VQA VVN WH7 WI4 X7M XJF XZL Y6R YCJ YK4 YKV YNT YOJ YR2 YRY YSQ YV5 YWH YYP YYQ YZZ ZCA ZE2 ~02 ~KM ~ZZ .GJ .GO 0-V 08R 186 2XV 3EH 3V. 41~ 42X 63O 692 6XO 79B 7X7 7XC 88A 88E 88I 8AF 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8GL 8W4 8WZ 97F A6W AADHG AAFWJ AAKAS AALRV AAYOK ABFLS ABJCF ABPTK ABQIS ABTAH ABUWG ACQAM ACTDY ADBBV ADGIM ADZCM ADZLD AETEA AFDAS AFKRA AGCDD AJUXI ALSLI ANJGP ARALO ARAPS ATCPS AZQEC B4K BBAFP BBNVY BBWZM BCU BEC BENPR BGLVJ BHPHI BKNYI BKSAR BPHCQ BVXVI C2- CJNVE D0S D1I D1J D1K DNJUQ DWIUU DWQXO D~A EAU EGS ESL EWM EX3 F20 FYUFA G8K GICCO GNUQQ GUQSH HCIFZ HGD HQ3 HTVGU HVGLF IAG IBG IEP IER IPC IQODW ISN ISR ITC J5H K6- K9- KB. KQ8 L6V LK5 LK8 M0K M0L M0R M1P M2O M2P M2Q M7P M7R M7S N4W P62 PATMY PCBAR PDBOC PK8 PQEST PQUKI PROAC PSQYO PTHSS PV9 PYCSY QS- R05 RNS RZL SJFOW SKT UBY UHU UKHRP UMP VOH WOQ WOW X7L XFK XKJ XOL YJ6 YXB ZA5 ZCF ZCG ZGI ZKG ZVL ZVM ZXP ZY4 ~G0 ~H1 AFRQD CGR CUY CVF ECM EIF NPM AAYXX ABDPE CCPQU CITATION HMCUK LPU PQEDU XIH 7QF 7QG 7QL 7QP 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7SS 7T7 7TA 7TB 7TK 7TM 7U5 7U9 8BQ 8FD C1K F28 FR3 H8D H8G H94 JG9 JQ2 K9. KR7 L7M L~C L~D M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c572t-c57867ee85287657429f5a33e289e73237b8f4003486ca1e2bba4165f8a500153 |
IEDL.DBID | JSG |
ISSN | 0036-8075 |
IngestDate | Tue Sep 17 21:09:52 EDT 2024 Thu Oct 24 23:27:39 EDT 2024 Sat Oct 05 05:17:02 EDT 2024 Tue Nov 19 07:01:10 EST 2024 Fri Nov 22 00:34:39 EST 2024 Sat Sep 28 08:29:12 EDT 2024 Fri Nov 25 16:31:20 EST 2022 Mon Nov 25 04:42:07 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6158 |
Keywords | Eye Visual system Retina Molecular assembly |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c572t-c57867ee85287657429f5a33e289e73237b8f4003486ca1e2bba4165f8a500153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally to this work Present address: Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel. Present address: Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany. |
OpenAccessLink | https://europepmc.org/articles/pmc3863450?pdf=render |
PMID | 24179230 |
PQID | 1459211319 |
PQPubID | 1256 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3863450 proquest_miscellaneous_1808051695 proquest_miscellaneous_1448225947 proquest_journals_1459211319 crossref_primary_10_1126_science_1241974 pubmed_primary_24179230 pascalfrancis_primary_27975267 jstor_primary_42619998 |
PublicationCentury | 2000 |
PublicationDate | 2013-11-01 |
PublicationDateYYYYMMDD | 2013-11-01 |
PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: Washington |
PublicationTitle | Science (American Association for the Advancement of Science) |
PublicationTitleAlternate | Science |
PublicationYear | 2013 |
Publisher | American Association for the Advancement of Science The American Association for the Advancement of Science |
Publisher_xml | – name: American Association for the Advancement of Science – name: The American Association for the Advancement of Science |
References | e_1_3_2_26_2 e_1_3_2_27_2 e_1_3_2_28_2 e_1_3_2_29_2 e_1_3_2_20_2 e_1_3_2_21_2 e_1_3_2_22_2 e_1_3_2_23_2 e_1_3_2_24_2 e_1_3_2_25_2 e_1_3_2_9_2 e_1_3_2_15_2 e_1_3_2_8_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_18_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_32_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_5_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_2_2 e_1_3_2_14_2 e_1_3_2_35_2 |
References_xml | – ident: e_1_3_2_24_2 doi: 10.1016/S0896-6273(01)00316-6 – ident: e_1_3_2_36_2 doi: 10.1113/jphysiol.2004.076695 – ident: e_1_3_2_22_2 doi: 10.1242/dev.027912 – ident: e_1_3_2_3_2 doi: 10.1016/j.tins.2011.08.002 – ident: e_1_3_2_20_2 doi: 10.1017/S0952523811000216 – ident: e_1_3_2_7_2 doi: 10.1002/cne.10509 – ident: e_1_3_2_13_2 doi: 10.1038/nature09711 – ident: e_1_3_2_18_2 doi: 10.1038/nn2064 – ident: e_1_3_2_25_2 doi: 10.1523/JNEUROSCI.0564-11.2011 – ident: e_1_3_2_4_2 doi: 10.1038/nrn3165 – ident: e_1_3_2_10_2 doi: 10.1038/nature00931 – ident: e_1_3_2_23_2 doi: 10.1152/jn.1996.75.1.469 – ident: e_1_3_2_28_2 doi: 10.1523/JNEUROSCI.22-10-04025.2002 – ident: e_1_3_2_16_2 doi: 10.1523/JNEUROSCI.0267-12.2012 – ident: e_1_3_2_32_2 doi: 10.1038/nature10877 – ident: e_1_3_2_12_2 doi: 10.1038/nature09600 – ident: e_1_3_2_14_2 doi: 10.1038/nature11305 – ident: e_1_3_2_30_2 doi: 10.1038/nature10163 – ident: e_1_3_2_5_2 doi: 10.1016/j.neuron.2012.10.002 – ident: e_1_3_2_35_2 doi: 10.1038/nprot.2010.106 – ident: e_1_3_2_21_2 doi: 10.1002/cne.902870203 – ident: e_1_3_2_27_2 doi: 10.1038/nature09675 – ident: e_1_3_2_19_2 doi: 10.1371/journal.pone.0063207 – ident: e_1_3_2_34_2 doi: 10.1371/journal.pone.0007859 – ident: e_1_3_2_6_2 doi: 10.1016/j.preteyeres.2003.10.001 – ident: e_1_3_2_17_2 doi: 10.1016/j.neuron.2007.01.028 – ident: e_1_3_2_26_2 doi: 10.1038/emboj.2010.147 – ident: e_1_3_2_29_2 doi: 10.1016/S1534-5807(03)00169-2 – ident: e_1_3_2_33_2 doi: 10.1016/j.neuron.2012.11.028 – ident: e_1_3_2_8_2 doi: 10.1016/j.neuron.2009.04.014 – ident: e_1_3_2_15_2 doi: 10.1016/j.neuron.2011.06.009 – ident: e_1_3_2_9_2 doi: 10.1523/JNEUROSCI.0907-11.2011 – ident: e_1_3_2_2_2 doi: 10.1016/j.neuron.2007.07.001 – ident: e_1_3_2_31_2 doi: 10.1016/j.cell.2012.05.018 – ident: e_1_3_2_11_2 doi: 10.1038/nature09818 |
SSID | ssj0009593 |
Score | 2.5083284 |
Snippet | Direction-selective responses to motion can be to the onset (On) or cessation (Off) of illumination. Here, we show that the transmembrane protein semaphorin 6A... Starburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. ( 10.1126/science.1241974 ) analyzed how the... Introduction; Direction-selective responses to visual cues depend upon precise connectivity between inhibitory starburst amacrine cells (SACs) and... Wiring the RetinaStarburst amacrine cells in the retina detect motion by responding to light going on or off. L. O. Sun et al. (10.1126/science.1241974)... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 590 |
SubjectTerms | Amacrine cells Amacrine Cells - cytology Amacrine Cells - metabolism Amacrine Cells - physiology Animals Assembly Biological and medical sciences Cellular Circuits Dendrites - metabolism Dendrites - physiology Exhibits Eye and associated structures. Visual pathways and centers. Vision Fundamental and applied biological sciences. Psychology Ganglia Light Mice Mice, Mutant Strains Molecular biology Motion Motion Perception Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Neurons Receptors Receptors, Cell Surface - genetics Receptors, Cell Surface - metabolism RESEARCH ARTICLE SUMMARY Retina Retina - metabolism Retina - physiology Semaphorins - genetics Semaphorins - metabolism Signal Transduction Sun Vertebrates: nervous system and sense organs Visual Stimuli Wiring |
Title | On and Off Retinal Circuit Assembly by Divergent Molecular Mechanisms |
URI | https://www.jstor.org/stable/42619998 https://www.ncbi.nlm.nih.gov/pubmed/24179230 https://www.proquest.com/docview/1459211319 https://search.proquest.com/docview/1448225947 https://search.proquest.com/docview/1808051695 https://pubmed.ncbi.nlm.nih.gov/PMC3863450 |
Volume | 342 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-tlSbxAoPxET4qI20SewiUOI7tRwRlFRJDGkPaW-QYW1SCgJr2of89d07StWhMe8mLT1Hi8_nup7v7HcAX9NhF4jIiH_QqxgvPx9pwERO1kvVaedOnRuHhrfzxW10MiCbna9sLQ2WVoS4wZPExQCoe3UkI8xEXdKCjgvVd3X5_l1m34e9Z6Iw5Rh92qmW65Hrq6kMqhTQV7oavx1j8Lc58Wy654H8u1_7zyz_BahNgsrP6RKzDB1duwMd65ORsA9YbY67YUcM4_e0zDG5KZsp7duM9-0k90PiC89HYTkcTRlnhp-JxxooZu6AiDurFYtftVF127ah3eFQ9VZtwdzn4dT6Mm_kKsRUymdBTZdI5JRA2ZUKSpoTh3CEIc5InXBbKp8RgozJrTl1SFAbjN-EVjVHAq3ILuuVz6XaAKSuddp6SuDa1iqvUFNr6vuZ9j3DdRnDUbn3-UtNo5AF-JFneaClvtBTBVtjGuVy7hxH0lnQ1F0ikliLJZAT7rfLyxhIrhDZCI8jFmyaCw_ky2hAlRkzpnqckk2KcJHQq_yFDBJyUVBQRbNfn4c8H0Bg3xHIRyKWTMhcgDu_llXL0ELi8ucp4Kvq77_30HqwkNIAjdD_uQ3cynroD6FT3014oX-0FY3gFJwMEQw |
link.rule.ids | 230,315,782,786,808,811,887,27933,27934,58025,58037,58258,58270 |
linkProvider | JSTOR |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7Bogou5VGg4elKrUQPgRDHsX1EsGhRWZBaKvUWOcYWK0G2IruH_fedyWNhK0BccvEoSjwez3yamW8AvqLHzmOXEvmgVyFeeD7UhouQqJWs18qbiBqFe7_k1R911iWanG9tLwyVVVZ1gVUWHwOk_N4dVWE-4oJ5WBAq4rKu3HuVW7dh8HnWG3OIXuxYy2TG-dT1h1QMaUrcD18Psngp0vy_YPKZBzpffue3r8DHJsRkJ_WZWIU5V6zBh3ro5GQNVhtzLtlBwzn9_RN0rwtmilt27T37SV3Q-ILTwaMdD0aM8sIP-f2E5RN2RmUc1I3F-u1cXdZ31D08KB_Kdfh93r057YXNhIXQChmP6KlS6ZwSCJxSIUlXwnDuEIY5yWMuc-UT4rBRqTXHLs5zgxGc8IoGKeBluQGdYli4z8CUlU47T2lcm1jFVWJybX2keeQRsNsADtqtz_7WRBpZBUDiNGu0lDVaCmCj2sapXLuHAezN6GoqEEstRZzKAHZa5WWNLZYIboRGmIt3TQBfpstoRZQaMYUbjkkmwUhJ6ES-IUMUnJRWFAFs1ufh6QNokBuiuQDkzEmZChCL9-xKMbir2Ly5Snkioq3XfnofFns3_cvs8uLqxzYsxTSOo-qF3IHO6HHsdmG-vB3vVSbxD_MuBpw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUFEvvMqWlJeROMAhsMRxbB8rdlcgXhW0Um-R47XFShAQ2T3sv-9MHlsWARKXXDyKEo_HM59m5huAPfTYWeQSIh_0KsQLz4facBEStZL1WnnTpkbh01t59Vd1ukSTc9D0wlBZZVkXWGbxMUDK7t3RU98flaE-YoNZmBeIalQ1HOBdft2axedFf8wherJjLeMpB1TVIFJBpClwT3w1zOKtaPN10eQLL9Rb-sT3L8NiHWqyn9XZWIEZl6_Cl2r45HgVVmqzLth-zT198A261zkzeZ9de89uqBsaX3AyeLajwZBRfvghux-zbMw6VM5BXVnsspmvyy4ddREPiodiDf70ur9PTsN60kJohYyG9FSJdE4JBFCJkKQzYTh3CMec5BGXmfIxcdmoxJpjF2WZwUhOeEUDFfDSbMFc_pi7dWDKSqedp3Suja3iKjaZtr6tedsjcLcB7Dfbnz5VhBppCUSiJK01ldaaCqBVbuVErtnDALan9DURiKSWIkpkAJuNAtPaJgsEOUIj3MU7J4DdyTJaE6VITO4eRyQTY8QkdCw_kCEqTkovigC-V2fi_wfQQDdEdQHIqdMyESA27-mVfHBXsnpzlfBYtH-899M7sPCr00svzq7ON-BrRFM5ypbITZgbPo_cFswW_dF2aRX_AGe7CRU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+and+Off+Retinal+Circuit+Assembly+by+Divergent+Molecular+Mechanisms&rft.jtitle=Science+%28American+Association+for+the+Advancement+of+Science%29&rft.au=Sun%2C+Lu+O.&rft.au=Jiang%2C+Zheng&rft.au=Rivlin-Etzion%2C+Michal&rft.au=Hand%2C+Randal&rft.date=2013-11-01&rft.pub=American+Association+for+the+Advancement+of+Science&rft.issn=0036-8075&rft.eissn=1095-9203&rft.volume=342&rft.issue=6158&rft.spage=590&rft.epage=590&rft_id=info:doi/10.1126%2Fscience.1241974&rft.externalDocID=42619998 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0036-8075&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0036-8075&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0036-8075&client=summon |