Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range

Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light–dark cycle. Vertebrates possess multiple, functionally over...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the Royal Society interface Vol. 10; no. 84; p. 20130221
Main Authors: Erzberger, A., Hampp, G., Granada, A. E., Albrecht, U., Herzel, H.
Format: Journal Article
Language:English
Published: England The Royal Society 06-07-2013
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light–dark cycle. Vertebrates possess multiple, functionally overlapping homologues of the core clock genes. Furthermore, vertebrate clocks entrain to a range of periods three times as narrow as that of other organisms. We asked whether genetic redundancies play a role in governing entrainment properties and analysed locomotor activity rhythms of genetically modified mice lacking one set of clock homologues. Exposing them to non-24 h light–dark cycles, we found that the mutant mice have a wider entrainment range than the wild types. Spectral analysis furthermore revealed nonlinear phenomena of periodically forced self-sustained oscillators for which the entrainment range relates inversely to oscillator amplitude. Using the forced oscillator model to explain the observed differences in entrainment range between mutant and wild-type mice, we sought to quantify the overall oscillator amplitude of their clocks from the activity rhythms and found that mutant mice have weaker circadian clocks than wild types. Our results suggest that genetic redundancy strengthens the circadian clock leading to a narrow entrainment range in vertebrates.
AbstractList Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light–dark cycle. Vertebrates possess multiple, functionally overlapping homologues of the core clock genes. Furthermore, vertebrate clocks entrain to a range of periods three times as narrow as that of other organisms. We asked whether genetic redundancies play a role in governing entrainment properties and analysed locomotor activity rhythms of genetically modified mice lacking one set of clock homologues. Exposing them to non-24 h light–dark cycles, we found that the mutant mice have a wider entrainment range than the wild types. Spectral analysis furthermore revealed nonlinear phenomena of periodically forced self-sustained oscillators for which the entrainment range relates inversely to oscillator amplitude. Using the forced oscillator model to explain the observed differences in entrainment range between mutant and wild-type mice, we sought to quantify the overall oscillator amplitude of their clocks from the activity rhythms and found that mutant mice have weaker circadian clocks than wild types. Our results suggest that genetic redundancy strengthens the circadian clock leading to a narrow entrainment range in vertebrates.
Author Erzberger, A.
Hampp, G.
Albrecht, U.
Granada, A. E.
Herzel, H.
AuthorAffiliation 1 Department of Biological Physics , Max Planck Institute for the Physics of Complex Systems , 01187 Dresden , Germany
3 Department of Biology, Unit of Biochemistry , University of Fribourg , 1700 Fribourg , Switzerland
2 Institute for Theoretical Biology , Humboldt University Berlin , 10115 Berlin , Germany
4 Department of Systems Biology , Harvard Medical School , Boston, MA 02115 , USA
AuthorAffiliation_xml – name: 2 Institute for Theoretical Biology , Humboldt University Berlin , 10115 Berlin , Germany
– name: 3 Department of Biology, Unit of Biochemistry , University of Fribourg , 1700 Fribourg , Switzerland
– name: 1 Department of Biological Physics , Max Planck Institute for the Physics of Complex Systems , 01187 Dresden , Germany
– name: 4 Department of Systems Biology , Harvard Medical School , Boston, MA 02115 , USA
Author_xml – sequence: 1
  givenname: A.
  surname: Erzberger
  fullname: Erzberger, A.
  email: erzberg@pks.mpg.de
  organization: Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
– sequence: 2
  givenname: G.
  surname: Hampp
  fullname: Hampp, G.
  organization: Department of Biology, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 3
  givenname: A. E.
  surname: Granada
  fullname: Granada, A. E.
  organization: Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany
– sequence: 4
  givenname: U.
  surname: Albrecht
  fullname: Albrecht, U.
  organization: Department of Biology, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland
– sequence: 5
  givenname: H.
  surname: Herzel
  fullname: Herzel, H.
  organization: Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23676895$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1v1DAUtKqifixce6x85JLF30kuSG2hBbGoF0DcLMd52brN2q3tQPff4-2WFRwQFz8_e97ozcwx2vfBA0InlMwpaZs3Mblhzgjlc8IY3UNHtBaskkqx_d29aQ_RcUq3hPCaS3mADhlXdXmWR-j7FXjIzuII_eR74-0apxzBL_MN-ITLia2L1vTOeGzHYO_wCKXzS5wDNtibGMNPDD5H4_yqVByNX8JL9GIwY4JXz3WGvl6-_3LxoVpcX328OFtUVtY0V51kwhpJO2lBUK4opaIXramFEgw6ptqhqbvaEto3ig9GwWBEzyyjRrJ2sHyG3m5576duBb19WmTU99GtTFzrYJz--8e7G70MP3SxgFPZFILXzwQxPEyQsl65ZGEcjYcwJU1VU7xStHj3XyiXnPCWFyEzNN9CbQwpRRh2G1GiN8npTXJ6k5zeJFcGTv_UsYP_jqoA-BYQw7oYGqyDvNa3YYq-tP-mrbZTLmV43LGaeKeL_lrqb43Q581C8Xfis_7EfwErerhb
CitedBy_id crossref_primary_10_1016_j_biopsych_2017_03_011
crossref_primary_10_1016_j_chaos_2016_02_035
crossref_primary_10_1063_5_0079198
crossref_primary_10_1098_rsif_2014_0318
crossref_primary_10_1016_j_jmb_2020_01_014
crossref_primary_10_1038_ncomms8056
crossref_primary_10_1063_5_0122744
crossref_primary_10_1063_1_5037012
crossref_primary_10_3389_fspas_2021_796943
crossref_primary_10_1371_journal_pcbi_1003523
crossref_primary_10_1098_rsif_2015_0282
crossref_primary_10_1038_s41598_022_05624_x
crossref_primary_10_3390_clockssleep1030025
crossref_primary_10_1098_rsif_2013_1018
crossref_primary_10_1038_s41598_019_47605_7
crossref_primary_10_1080_07853890_2018_1530449
crossref_primary_10_12688_f1000research_135533_1
crossref_primary_10_12688_f1000research_135533_2
crossref_primary_10_1016_j_isci_2021_103370
crossref_primary_10_1038_s41598_017_00454_8
crossref_primary_10_1038_srep32769
crossref_primary_10_1103_PhysRevE_97_032409
crossref_primary_10_3390_ijms24043392
crossref_primary_10_1093_bioinformatics_btu332
crossref_primary_10_1007_s00359_023_01669_z
crossref_primary_10_1371_journal_pgen_1009097
crossref_primary_10_3389_fphys_2020_00334
crossref_primary_10_3389_fphys_2020_00272
crossref_primary_10_1038_s41598_021_93913_2
crossref_primary_10_1177_0748730420957504
crossref_primary_10_1007_s41105_016_0050_1
crossref_primary_10_1098_rsif_2020_0556
crossref_primary_10_3390_cells11101613
crossref_primary_10_1371_journal_pcbi_1005266
crossref_primary_10_1038_s41598_019_56323_z
crossref_primary_10_1016_j_cell_2015_01_013
crossref_primary_10_1038_srep45158
Cites_doi 10.2741/1196
10.1016/j.febslet.2011.02.027
10.1371/journal.pbio.1000052
10.1371/journal.pcbi.1002309
10.1371/journal.pone.0059464
10.1523/JNEUROSCI.3559-12.2012
10.1007/s00239-005-0185-1
10.1016/S0092-8674(00)80566-8
10.1007/s00441-002-0570-7
10.1177/0748730411419782
10.1177/0748730412461246
10.1038/msb.2010.92
10.1007/BF01939893
10.1251/bpo109
10.1016/j.tig.2004.11.012
10.1098/rsfs.2010.0002
10.1371/journal.pcbi.0030068
10.1073/pnas.0406506102
10.1038/nature00965
10.1016/S0031-9384(97)00416-2
10.1146/annurev-neuro-060909-153128
10.1074/jbc.M112.368001
10.1038/35065745
10.1073/pnas.0603601103
10.1007/BF00440545
10.1515/9780691221793
10.1016/S0168-9525(00)02122-3
10.1007/BF01417859
10.1016/S0168-9525(97)01367-X
10.1016/j.molcel.2009.10.012
10.1002/bies.950190312
10.1038/nrd1633
10.1081/CBI-120022408
10.1007/s00359-007-0301-3
10.1126/science.1223710
10.1371/journal.pone.0033334
10.1016/j.febslet.2011.04.048
10.1073/pnas.95.15.8660
10.1016/S0169-328X(00)00091-7
10.1073/pnas.0707772105
10.1126/science.276.5313.753
10.1529/biophysj.104.058388
10.1371/journal.pcbi.1002787
10.1529/biophysj.104.053975
10.1063/1.1345727
10.1101/gad.256103
10.1073/pnas.0702835104
10.1098/rsif.2012.1020
10.1093/hmg/ddp252
10.1017/CBO9780511755743
10.1101/gad.233702.GENES
ContentType Journal Article
Copyright 2013 The Author(s) Published by the Royal Society. All rights reserved.
2013 The Author(s) Published by the Royal Society. All rights reserved. 2013
Copyright_xml – notice: 2013 The Author(s) Published by the Royal Society. All rights reserved.
– notice: 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
8FD
FR3
P64
RC3
5PM
DOI 10.1098/rsif.2013.0221
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList
Genetics Abstracts

CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range
EISSN 1742-5662
EndPage 20130221
ExternalDocumentID 10_1098_rsif_2013_0221
23676895
ark_67375_V84_B8L63D4M_K
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
18M
29L
2WC
4.4
53G
5GY
5VS
ACGFO
ACQIA
ADBBV
ADDVE
AENEX
AJZGM
ALMA_UNASSIGNED_HOLDINGS
ALMYZ
AOIJS
BAWUL
BGBPD
BSCLL
BTFSW
CS3
DIK
DU5
EBS
EJD
GX1
H13
HH5
HYE
HZ~
KQ8
MRS
MV1
NSAHA
O9-
OK1
OP1
P2P
RHF
RPM
RRY
TR2
V1E
W8F
XSW
ABXXB
ICLEN
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
8FD
FR3
P64
RC3
5PM
ID FETCH-LOGICAL-c571t-b524ca51b5ce41361114d49a74642eb269f87b7c01d863fa6efa4d2c21a529fc3
IEDL.DBID RPM
ISSN 1742-5689
IngestDate Tue Sep 17 21:24:16 EDT 2024
Fri Oct 25 21:33:04 EDT 2024
Sat Oct 26 00:32:02 EDT 2024
Thu Nov 21 20:52:25 EST 2024
Sat Sep 28 08:08:12 EDT 2024
Wed Jan 17 02:37:33 EST 2024
Wed Oct 30 09:21:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 84
Keywords oscillator theory
amplitude
actogram
circadian rhythm
time-series analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c571t-b524ca51b5ce41361114d49a74642eb269f87b7c01d863fa6efa4d2c21a529fc3
Notes ArticleID:rsif20130221
href:rsif20130221.pdf
istex:51A551A021607ADA7480F5781A592974DB8A1820
ark:/67375/V84-B8L63D4M-K
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2013.0221
PMID 23676895
PQID 1353039341
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_1353039341
proquest_miscellaneous_1687686137
pubmed_primary_23676895
crossref_primary_10_1098_rsif_2013_0221
istex_primary_ark_67375_V84_B8L63D4M_K
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3673158
royalsociety_journals_10_1098_rsif_2013_0221
PublicationCentury 2000
PublicationDate 2013-07-06
20130706
2013-Jul-06
PublicationDateYYYYMMDD 2013-07-06
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-06
  day: 06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the Royal Society interface
PublicationTitleAbbrev J. R. Soc. Interface
PublicationTitleAlternate J. R. Soc. Interface
PublicationYear 2013
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References 10891604 - Brain Res Mol Brain Res. 2000 May 31;78(1-2):207-15
9671734 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8660-4
19917250 - Mol Cell. 2009 Nov 13;36(3):417-30
23223370 - J Biol Rhythms. 2012 Dec;27(6):443-52
12381662 - Genes Dev. 2002 Oct 15;16(20):2633-8
22215611 - J Biol Rhythms. 2011 Dec;26(6):530-40
23209395 - PLoS Comput Biol. 2012;8(11):e1002787
12782655 - Genes Dev. 2003 Jun 1;17(11):1366-79
23152603 - J Neurosci. 2012 Nov 14;32(46):16193-202
22419981 - Interface Focus. 2011 Feb 6;1(1):153-66
11074285 - Trends Genet. 2000 Nov;16(11):477-81
16136228 - Biol Proced Online. 2005;7:101-16
9988221 - Cell. 1999 Jan 22;96(2):271-90
21354419 - FEBS Lett. 2011 May 20;585(10):1384-92
15849258 - Biophys J. 2005 Jul;89(1):120-9
22483041 - Annu Rev Neurosci. 2012;35:445-62
14766343 - Front Biosci. 2004 Jan 1;9:48-55
16752210 - J Mol Evol. 2006 Jun;62(6):701-7
22798407 - Science. 2012 Aug 31;337(6098):1094-7
19278294 - PLoS Biol. 2009 Mar 10;7(3):e52
17432930 - PLoS Comput Biol. 2007 Apr 13;3(4):e68
15677317 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2210-5
15680514 - Trends Genet. 2005 Jan;21(1):46-53
17502598 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9081-6
19477955 - Hum Mol Genet. 2009 Aug 15;18(16):3110-24
9157552 - Science. 1997 May 2;276(5313):753-4
3197809 - Experientia. 1988 Dec 1;44(11-12):981-3
12779458 - Chaos. 2001 Mar;11(1):247-260
19216921 - Methods Enzymol. 2009;454:1-27
22194677 - PLoS Comput Biol. 2011 Dec;7(12):e1002309
9080776 - Bioessays. 1997 Mar;19(3):257-62
12198538 - Nature. 2002 Aug 29;418(6901):935-41
18057941 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Mar;194(3):235-42
345129 - Naturwissenschaften. 1978 Feb;65(2):80-4
23389900 - J R Soc Interface. 2013 Apr 6;10(81):20121020
9423955 - Physiol Behav. 1998 Jan;63(2):171-6
21536033 - FEBS Lett. 2011 May 20;585(10):1427-34
16754844 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9327-32
18227513 - Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1602-7
22692217 - J Biol Chem. 2012 Jul 27;287(31):25917-26
9520595 - Trends Genet. 1998 Feb;14(2):46-9; discussion 49-50
12916720 - Chronobiol Int. 2003 Jul;20(4):683-95
15653726 - Biophys J. 2005 Apr;88(4):2369-83
22479387 - PLoS One. 2012;7(3):e33334
23544070 - PLoS One. 2013;8(3):e59464
15951747 - Nat Rev Genet. 2005 Jul;6(7):544-56
12111534 - Cell Tissue Res. 2002 Jul;309(1):27-34
11258383 - Nature. 2001 Mar 8;410(6825):277-84
21119632 - Mol Syst Biol. 2010 Nov 30;6:438
e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
Granada A (e_1_3_2_35_2) 2009
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
Balanov A (e_1_3_2_30_2) 2009
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
Glass L (e_1_3_2_36_2) 1988
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_2_2
References_xml – ident: e_1_3_2_6_2
  doi: 10.2741/1196
– ident: e_1_3_2_24_2
  doi: 10.1016/j.febslet.2011.02.027
– ident: e_1_3_2_23_2
  doi: 10.1371/journal.pbio.1000052
– ident: e_1_3_2_7_2
  doi: 10.1371/journal.pcbi.1002309
– ident: e_1_3_2_48_2
  doi: 10.1371/journal.pone.0059464
– ident: e_1_3_2_41_2
  doi: 10.1523/JNEUROSCI.3559-12.2012
– ident: e_1_3_2_13_2
  doi: 10.1007/s00239-005-0185-1
– ident: e_1_3_2_2_2
  doi: 10.1016/S0092-8674(00)80566-8
– ident: e_1_3_2_11_2
  doi: 10.1007/s00441-002-0570-7
– ident: e_1_3_2_54_2
  doi: 10.1177/0748730411419782
– ident: e_1_3_2_21_2
  doi: 10.1177/0748730412461246
– ident: e_1_3_2_34_2
  doi: 10.1038/msb.2010.92
– ident: e_1_3_2_47_2
  doi: 10.1007/BF01939893
– ident: e_1_3_2_53_2
  doi: 10.1251/bpo109
– ident: e_1_3_2_12_2
  doi: 10.1016/j.tig.2004.11.012
– ident: e_1_3_2_46_2
  doi: 10.1098/rsfs.2010.0002
– ident: e_1_3_2_52_2
  doi: 10.1371/journal.pcbi.0030068
– ident: e_1_3_2_38_2
  doi: 10.1073/pnas.0406506102
– ident: e_1_3_2_8_2
  doi: 10.1038/nature00965
– ident: e_1_3_2_45_2
  doi: 10.1016/S0031-9384(97)00416-2
– ident: e_1_3_2_15_2
  doi: 10.1146/annurev-neuro-060909-153128
– ident: e_1_3_2_20_2
  doi: 10.1074/jbc.M112.368001
– ident: e_1_3_2_31_2
  doi: 10.1038/35065745
– ident: e_1_3_2_40_2
  doi: 10.1073/pnas.0603601103
– ident: e_1_3_2_29_2
  doi: 10.1007/BF00440545
– volume-title: From clocks to chaos: the rhythms of life
  year: 1988
  ident: e_1_3_2_36_2
  doi: 10.1515/9780691221793
  contributor:
    fullname: Glass L
– ident: e_1_3_2_10_2
  doi: 10.1016/S0168-9525(00)02122-3
– ident: e_1_3_2_37_2
  doi: 10.1007/BF01417859
– ident: e_1_3_2_16_2
  doi: 10.1016/S0168-9525(97)01367-X
– ident: e_1_3_2_17_2
  doi: 10.1016/j.molcel.2009.10.012
– ident: e_1_3_2_25_2
  doi: 10.1002/bies.950190312
– ident: e_1_3_2_5_2
  doi: 10.1038/nrd1633
– volume-title: Phase response curves elucidating the dynamics of coupled oscillators
  year: 2009
  ident: e_1_3_2_35_2
  contributor:
    fullname: Granada A
– ident: e_1_3_2_27_2
  doi: 10.1081/CBI-120022408
– ident: e_1_3_2_39_2
  doi: 10.1007/s00359-007-0301-3
– ident: e_1_3_2_22_2
  doi: 10.1126/science.1223710
– ident: e_1_3_2_43_2
  doi: 10.1371/journal.pone.0033334
– ident: e_1_3_2_19_2
  doi: 10.1016/j.febslet.2011.04.048
– ident: e_1_3_2_3_2
  doi: 10.1073/pnas.95.15.8660
– ident: e_1_3_2_14_2
  doi: 10.1016/S0169-328X(00)00091-7
– ident: e_1_3_2_49_2
  doi: 10.1073/pnas.0707772105
– ident: e_1_3_2_4_2
  doi: 10.1126/science.276.5313.753
– ident: e_1_3_2_33_2
  doi: 10.1529/biophysj.104.058388
– ident: e_1_3_2_50_2
  doi: 10.1371/journal.pcbi.1002787
– ident: e_1_3_2_9_2
  doi: 10.1529/biophysj.104.053975
– ident: e_1_3_2_44_2
  doi: 10.1063/1.1345727
– ident: e_1_3_2_28_2
  doi: 10.1101/gad.256103
– ident: e_1_3_2_42_2
  doi: 10.1073/pnas.0702835104
– volume-title: Synchronization: from simple to complex
  year: 2009
  ident: e_1_3_2_30_2
  contributor:
    fullname: Balanov A
– ident: e_1_3_2_51_2
  doi: 10.1098/rsif.2012.1020
– ident: e_1_3_2_18_2
  doi: 10.1093/hmg/ddp252
– ident: e_1_3_2_32_2
  doi: 10.1017/CBO9780511755743
– ident: e_1_3_2_26_2
  doi: 10.1101/gad.233702.GENES
SSID ssj0037355
Score 2.3028798
Snippet Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate...
SourceID pubmedcentral
proquest
crossref
pubmed
royalsociety
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 20130221
SubjectTerms Actogram
Adaptation, Biological - genetics
Adaptation, Biological - physiology
Amplitude
Animals
Circadian Clocks - genetics
Circadian Rhythm
Cryptochromes - genetics
Fourier Analysis
Locomotion - genetics
Locomotion - physiology
Mice
Mice, Transgenic
Motor Activity - physiology
Mutation - genetics
Oscillator Theory
Photoperiod
Signal-To-Noise Ratio
Time-Series Analysis
Title Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range
URI https://api.istex.fr/ark:/67375/V84-B8L63D4M-K/fulltext.pdf
https://royalsocietypublishing.org/doi/full/10.1098/rsif.2013.0221
https://www.ncbi.nlm.nih.gov/pubmed/23676895
https://search.proquest.com/docview/1353039341
https://search.proquest.com/docview/1687686137
https://pubmed.ncbi.nlm.nih.gov/PMC3673158
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6x5cIFUZ6hBRkJ8ZDI7iZ-5gh9qBIUIfFQb5bjOLBqm62SXYmfz4yTrLpS4cAlSpRR7Hhsz4z8zTcALzPhMq_qeaqpUJiouEjLUlVpoQOa-yDk3FGi8MlX_fnMHB4RTY4cc2EiaN-Xi2lzcTltFr8itvLq0s9GnNjsy-kBV5pn0swmMEHfcAzR--2Xax5LnaKnjVGWMsWGqdHMMPyOrJ18ipaLasQQfRmKyC2jdJvG9_dNHucNwMmWgvyuB1heM0zH9-Du4FGy933Pd-FWaO7D7rBmO_ZmIJZ--wDO6BalWBsod4z2VUa5Is1PokDoGF6ZX7Q-0hUwj2bunF30IHu2WjLHmsjYyGK3ehgBayk54SF8Pz76dnCSDpUVUi91tkpLmQvvZFZKH9CKKdzwRCUKpwWGIxhrq6I2utR-nlVG8dqpUDtR5T7PnMyL2vNHsNMsm_AEmJFSOvxCMXdOyKALL_I6c_gsA4ZLdQKvx6G1Vz2Bhu0Pvo0lfVjShyV9JPAqjvxGzLXnBDvT0v4wwn4wnxQ_FKf2YwIvRtVYXAx0wuGasFx3lop4ULKxyP4ho9AAGPRidAKPe3VuWhznQwJ6S9EbASLj3n6DczSScg9zMoF316eEHXaE7i___PS_G9qDO3mszEHoxX3YWbXr8AwmXbV-HtfDHwj4DzA
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6a5NBe2qZP96lC6QPqXT8kSz62ebAlu6HQtOQmZFlulyTeYO9Cf35nZHvJQtpDLsZGg408MxoN-uYbgLcxN7HNqiiU1CiMlykPiyIrw1w6DPeOi8hQofDkuzw-VfsHRJMjhloYD9q3xXxUn1-M6vlvj628vLDjASc2_jbbSzOZxkKNt2AH_TWKhiS9W4BTmfpmp7jXxjwrU_maq1GNMQH3vJ3pCGMXdYkhAjMUERthaYf-8J_r9pzXQCcbSvPbDmJ5JTQd3rvhpO7D3X4vyj53w7twy9UPYLf39pZ96CmpPz6EU7pFKdY4qjqjFZlRlUn9i8gTWoZXZueN9UQHzGKAPGPnHTyfLRfMsNpzPTI_nQ6AwBoqa3gEPw4PTvYmYd-TIbRCxsuwEAm3RsSFsA7jX4ZLJS95biTHRAaz9CyvlCykjeJSZWllMlcZXiY2iY1I8sqmj2G7XtTuKTAlhDD4hjwyhgsnc8uTKjb4LBwmWlUA7weV6MuOekN3R-ZKkx416VGTHgN45zW2FjPNGQHWpNA_Fddf1DRL9_lMHwXwZlCpRjeisxFTu8Wq1dT-g8qUefwfmQxDh8L9jwzgSWcG6y8OdhSA3DCQtQDReG-OoCF4Ou9e8QF8umpKul9L2n_M-dmNP_Qabk9OZlM9_Xp89BzuJL6_B2EgX8D2slm5l7DVlqtX3qf-Aq02JLk
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBZNAqUvbdPTPVUoPaBeX7r82GazpOQg0IO8CVmW2yWJd7F3oT-_M_JBFtI-tC_GxoOFPDMaDfrmG0JeJ8wkVlRxKLFRGCszFhaFKMNcOgj3jvHYYKHwwRd5cqam-0iTM7b68qB9W8wn9cXlpJ7_9NjK5aWNBpxYdHq8lwmZJVxFy7KKtsgO-GycDol6twhnMvMNT2G_DbmWUPnI16giSMI9d2c2gfiFnWKQxAxE-EZo2sG__Ou6fec18MkGU_22g1leCU-zO_8xsbvkdr8npR87kV1yw9X3yG7v9S1911NTv79PzvAWpGjjsPoMV2aK1Sb1DyRRaClcqZ031hMeUAuB8pxedDB9ulpQQ2vP-Uj9lDogAm2wvOEB-Tbb_7p3EPa9GULLZbIKC54ya3hScOsgDgpYMlnJciMZJDSQrYu8UrKQNk5KJbLKCFcZVqY2TQxP88pmD8l2vajdY0IV59zAF_LYGMadzC1Lq8TAM3eQcFUBeTuoRS87Cg7dHZ0rjbrUqEuNugzIG6-1Ucw05whck1x_V0x_Ukcim7JjfRiQV4NaNbgTnpGY2i3WrcY2IFiuzJK_yAgIIQr2QTIgjzpTGEccbCkgcsNIRgGk8958A8bgab175Qfkw1Vz0v2a0v5hzk_-eaCX5ObpdKaPPp8cPiW3Ut_mA6GQz8j2qlm752SrLdcvvFv9BtxmJzk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+redundancy+strengthens+the+circadian+clock+leading+to+a+narrow+entrainment+range&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Erzberger%2C+A&rft.au=Hampp%2C+G&rft.au=Granada%2C+A+E&rft.au=Albrecht%2C+U&rft.date=2013-07-06&rft.issn=1742-5689&rft.volume=10&rft.issue=84&rft.spage=20130221&rft.epage=20130221&rft_id=info:doi/10.1098%2Frsif.2013.0221&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5689&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5689&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5689&client=summon