Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range
Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light–dark cycle. Vertebrates possess multiple, functionally over...
Saved in:
Published in: | Journal of the Royal Society interface Vol. 10; no. 84; p. 20130221 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
The Royal Society
06-07-2013
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light–dark cycle. Vertebrates possess multiple, functionally overlapping homologues of the core clock genes. Furthermore, vertebrate clocks entrain to a range of periods three times as narrow as that of other organisms. We asked whether genetic redundancies play a role in governing entrainment properties and analysed locomotor activity rhythms of genetically modified mice lacking one set of clock homologues. Exposing them to non-24 h light–dark cycles, we found that the mutant mice have a wider entrainment range than the wild types. Spectral analysis furthermore revealed nonlinear phenomena of periodically forced self-sustained oscillators for which the entrainment range relates inversely to oscillator amplitude. Using the forced oscillator model to explain the observed differences in entrainment range between mutant and wild-type mice, we sought to quantify the overall oscillator amplitude of their clocks from the activity rhythms and found that mutant mice have weaker circadian clocks than wild types. Our results suggest that genetic redundancy strengthens the circadian clock leading to a narrow entrainment range in vertebrates. |
---|---|
AbstractList | Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate self-sustained oscillations that entrain to periodic external signals such as the 24 h light–dark cycle. Vertebrates possess multiple, functionally overlapping homologues of the core clock genes. Furthermore, vertebrate clocks entrain to a range of periods three times as narrow as that of other organisms. We asked whether genetic redundancies play a role in governing entrainment properties and analysed locomotor activity rhythms of genetically modified mice lacking one set of clock homologues. Exposing them to non-24 h light–dark cycles, we found that the mutant mice have a wider entrainment range than the wild types. Spectral analysis furthermore revealed nonlinear phenomena of periodically forced self-sustained oscillators for which the entrainment range relates inversely to oscillator amplitude. Using the forced oscillator model to explain the observed differences in entrainment range between mutant and wild-type mice, we sought to quantify the overall oscillator amplitude of their clocks from the activity rhythms and found that mutant mice have weaker circadian clocks than wild types. Our results suggest that genetic redundancy strengthens the circadian clock leading to a narrow entrainment range in vertebrates. |
Author | Erzberger, A. Hampp, G. Albrecht, U. Granada, A. E. Herzel, H. |
AuthorAffiliation | 1 Department of Biological Physics , Max Planck Institute for the Physics of Complex Systems , 01187 Dresden , Germany 3 Department of Biology, Unit of Biochemistry , University of Fribourg , 1700 Fribourg , Switzerland 2 Institute for Theoretical Biology , Humboldt University Berlin , 10115 Berlin , Germany 4 Department of Systems Biology , Harvard Medical School , Boston, MA 02115 , USA |
AuthorAffiliation_xml | – name: 2 Institute for Theoretical Biology , Humboldt University Berlin , 10115 Berlin , Germany – name: 3 Department of Biology, Unit of Biochemistry , University of Fribourg , 1700 Fribourg , Switzerland – name: 1 Department of Biological Physics , Max Planck Institute for the Physics of Complex Systems , 01187 Dresden , Germany – name: 4 Department of Systems Biology , Harvard Medical School , Boston, MA 02115 , USA |
Author_xml | – sequence: 1 givenname: A. surname: Erzberger fullname: Erzberger, A. email: erzberg@pks.mpg.de organization: Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany – sequence: 2 givenname: G. surname: Hampp fullname: Hampp, G. organization: Department of Biology, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 3 givenname: A. E. surname: Granada fullname: Granada, A. E. organization: Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany – sequence: 4 givenname: U. surname: Albrecht fullname: Albrecht, U. organization: Department of Biology, Unit of Biochemistry, University of Fribourg, 1700 Fribourg, Switzerland – sequence: 5 givenname: H. surname: Herzel fullname: Herzel, H. organization: Institute for Theoretical Biology, Humboldt University Berlin, 10115 Berlin, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23676895$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUU1v1DAUtKqifixce6x85JLF30kuSG2hBbGoF0DcLMd52brN2q3tQPff4-2WFRwQFz8_e97ozcwx2vfBA0InlMwpaZs3Mblhzgjlc8IY3UNHtBaskkqx_d29aQ_RcUq3hPCaS3mADhlXdXmWR-j7FXjIzuII_eR74-0apxzBL_MN-ITLia2L1vTOeGzHYO_wCKXzS5wDNtibGMNPDD5H4_yqVByNX8JL9GIwY4JXz3WGvl6-_3LxoVpcX328OFtUVtY0V51kwhpJO2lBUK4opaIXramFEgw6ptqhqbvaEto3ig9GwWBEzyyjRrJ2sHyG3m5576duBb19WmTU99GtTFzrYJz--8e7G70MP3SxgFPZFILXzwQxPEyQsl65ZGEcjYcwJU1VU7xStHj3XyiXnPCWFyEzNN9CbQwpRRh2G1GiN8npTXJ6k5zeJFcGTv_UsYP_jqoA-BYQw7oYGqyDvNa3YYq-tP-mrbZTLmV43LGaeKeL_lrqb43Q581C8Xfis_7EfwErerhb |
CitedBy_id | crossref_primary_10_1016_j_biopsych_2017_03_011 crossref_primary_10_1016_j_chaos_2016_02_035 crossref_primary_10_1063_5_0079198 crossref_primary_10_1098_rsif_2014_0318 crossref_primary_10_1016_j_jmb_2020_01_014 crossref_primary_10_1038_ncomms8056 crossref_primary_10_1063_5_0122744 crossref_primary_10_1063_1_5037012 crossref_primary_10_3389_fspas_2021_796943 crossref_primary_10_1371_journal_pcbi_1003523 crossref_primary_10_1098_rsif_2015_0282 crossref_primary_10_1038_s41598_022_05624_x crossref_primary_10_3390_clockssleep1030025 crossref_primary_10_1098_rsif_2013_1018 crossref_primary_10_1038_s41598_019_47605_7 crossref_primary_10_1080_07853890_2018_1530449 crossref_primary_10_12688_f1000research_135533_1 crossref_primary_10_12688_f1000research_135533_2 crossref_primary_10_1016_j_isci_2021_103370 crossref_primary_10_1038_s41598_017_00454_8 crossref_primary_10_1038_srep32769 crossref_primary_10_1103_PhysRevE_97_032409 crossref_primary_10_3390_ijms24043392 crossref_primary_10_1093_bioinformatics_btu332 crossref_primary_10_1007_s00359_023_01669_z crossref_primary_10_1371_journal_pgen_1009097 crossref_primary_10_3389_fphys_2020_00334 crossref_primary_10_3389_fphys_2020_00272 crossref_primary_10_1038_s41598_021_93913_2 crossref_primary_10_1177_0748730420957504 crossref_primary_10_1007_s41105_016_0050_1 crossref_primary_10_1098_rsif_2020_0556 crossref_primary_10_3390_cells11101613 crossref_primary_10_1371_journal_pcbi_1005266 crossref_primary_10_1038_s41598_019_56323_z crossref_primary_10_1016_j_cell_2015_01_013 crossref_primary_10_1038_srep45158 |
Cites_doi | 10.2741/1196 10.1016/j.febslet.2011.02.027 10.1371/journal.pbio.1000052 10.1371/journal.pcbi.1002309 10.1371/journal.pone.0059464 10.1523/JNEUROSCI.3559-12.2012 10.1007/s00239-005-0185-1 10.1016/S0092-8674(00)80566-8 10.1007/s00441-002-0570-7 10.1177/0748730411419782 10.1177/0748730412461246 10.1038/msb.2010.92 10.1007/BF01939893 10.1251/bpo109 10.1016/j.tig.2004.11.012 10.1098/rsfs.2010.0002 10.1371/journal.pcbi.0030068 10.1073/pnas.0406506102 10.1038/nature00965 10.1016/S0031-9384(97)00416-2 10.1146/annurev-neuro-060909-153128 10.1074/jbc.M112.368001 10.1038/35065745 10.1073/pnas.0603601103 10.1007/BF00440545 10.1515/9780691221793 10.1016/S0168-9525(00)02122-3 10.1007/BF01417859 10.1016/S0168-9525(97)01367-X 10.1016/j.molcel.2009.10.012 10.1002/bies.950190312 10.1038/nrd1633 10.1081/CBI-120022408 10.1007/s00359-007-0301-3 10.1126/science.1223710 10.1371/journal.pone.0033334 10.1016/j.febslet.2011.04.048 10.1073/pnas.95.15.8660 10.1016/S0169-328X(00)00091-7 10.1073/pnas.0707772105 10.1126/science.276.5313.753 10.1529/biophysj.104.058388 10.1371/journal.pcbi.1002787 10.1529/biophysj.104.053975 10.1063/1.1345727 10.1101/gad.256103 10.1073/pnas.0702835104 10.1098/rsif.2012.1020 10.1093/hmg/ddp252 10.1017/CBO9780511755743 10.1101/gad.233702.GENES |
ContentType | Journal Article |
Copyright | 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013 |
Copyright_xml | – notice: 2013 The Author(s) Published by the Royal Society. All rights reserved. – notice: 2013 The Author(s) Published by the Royal Society. All rights reserved. 2013 |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 8FD FR3 P64 RC3 5PM |
DOI | 10.1098/rsif.2013.0221 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range |
EISSN | 1742-5662 |
EndPage | 20130221 |
ExternalDocumentID | 10_1098_rsif_2013_0221 23676895 ark_67375_V84_B8L63D4M_K |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 18M 29L 2WC 4.4 53G 5GY 5VS ACGFO ACQIA ADBBV ADDVE AENEX AJZGM ALMA_UNASSIGNED_HOLDINGS ALMYZ AOIJS BAWUL BGBPD BSCLL BTFSW CS3 DIK DU5 EBS EJD GX1 H13 HH5 HYE HZ~ KQ8 MRS MV1 NSAHA O9- OK1 OP1 P2P RHF RPM RRY TR2 V1E W8F XSW ABXXB ICLEN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 8FD FR3 P64 RC3 5PM |
ID | FETCH-LOGICAL-c571t-b524ca51b5ce41361114d49a74642eb269f87b7c01d863fa6efa4d2c21a529fc3 |
IEDL.DBID | RPM |
ISSN | 1742-5689 |
IngestDate | Tue Sep 17 21:24:16 EDT 2024 Fri Oct 25 21:33:04 EDT 2024 Sat Oct 26 00:32:02 EDT 2024 Thu Nov 21 20:52:25 EST 2024 Sat Sep 28 08:08:12 EDT 2024 Wed Jan 17 02:37:33 EST 2024 Wed Oct 30 09:21:21 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 84 |
Keywords | oscillator theory amplitude actogram circadian rhythm time-series analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c571t-b524ca51b5ce41361114d49a74642eb269f87b7c01d863fa6efa4d2c21a529fc3 |
Notes | ArticleID:rsif20130221 href:rsif20130221.pdf istex:51A551A021607ADA7480F5781A592974DB8A1820 ark:/67375/V84-B8L63D4M-K ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rsif.2013.0221 |
PMID | 23676895 |
PQID | 1353039341 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_1353039341 proquest_miscellaneous_1687686137 pubmed_primary_23676895 crossref_primary_10_1098_rsif_2013_0221 istex_primary_ark_67375_V84_B8L63D4M_K pubmedcentral_primary_oai_pubmedcentral_nih_gov_3673158 royalsociety_journals_10_1098_rsif_2013_0221 |
PublicationCentury | 2000 |
PublicationDate | 2013-07-06 20130706 2013-Jul-06 |
PublicationDateYYYYMMDD | 2013-07-06 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-06 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of the Royal Society interface |
PublicationTitleAbbrev | J. R. Soc. Interface |
PublicationTitleAlternate | J. R. Soc. Interface |
PublicationYear | 2013 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | 10891604 - Brain Res Mol Brain Res. 2000 May 31;78(1-2):207-15 9671734 - Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8660-4 19917250 - Mol Cell. 2009 Nov 13;36(3):417-30 23223370 - J Biol Rhythms. 2012 Dec;27(6):443-52 12381662 - Genes Dev. 2002 Oct 15;16(20):2633-8 22215611 - J Biol Rhythms. 2011 Dec;26(6):530-40 23209395 - PLoS Comput Biol. 2012;8(11):e1002787 12782655 - Genes Dev. 2003 Jun 1;17(11):1366-79 23152603 - J Neurosci. 2012 Nov 14;32(46):16193-202 22419981 - Interface Focus. 2011 Feb 6;1(1):153-66 11074285 - Trends Genet. 2000 Nov;16(11):477-81 16136228 - Biol Proced Online. 2005;7:101-16 9988221 - Cell. 1999 Jan 22;96(2):271-90 21354419 - FEBS Lett. 2011 May 20;585(10):1384-92 15849258 - Biophys J. 2005 Jul;89(1):120-9 22483041 - Annu Rev Neurosci. 2012;35:445-62 14766343 - Front Biosci. 2004 Jan 1;9:48-55 16752210 - J Mol Evol. 2006 Jun;62(6):701-7 22798407 - Science. 2012 Aug 31;337(6098):1094-7 19278294 - PLoS Biol. 2009 Mar 10;7(3):e52 17432930 - PLoS Comput Biol. 2007 Apr 13;3(4):e68 15677317 - Proc Natl Acad Sci U S A. 2005 Feb 8;102(6):2210-5 15680514 - Trends Genet. 2005 Jan;21(1):46-53 17502598 - Proc Natl Acad Sci U S A. 2007 May 22;104(21):9081-6 19477955 - Hum Mol Genet. 2009 Aug 15;18(16):3110-24 9157552 - Science. 1997 May 2;276(5313):753-4 3197809 - Experientia. 1988 Dec 1;44(11-12):981-3 12779458 - Chaos. 2001 Mar;11(1):247-260 19216921 - Methods Enzymol. 2009;454:1-27 22194677 - PLoS Comput Biol. 2011 Dec;7(12):e1002309 9080776 - Bioessays. 1997 Mar;19(3):257-62 12198538 - Nature. 2002 Aug 29;418(6901):935-41 18057941 - J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008 Mar;194(3):235-42 345129 - Naturwissenschaften. 1978 Feb;65(2):80-4 23389900 - J R Soc Interface. 2013 Apr 6;10(81):20121020 9423955 - Physiol Behav. 1998 Jan;63(2):171-6 21536033 - FEBS Lett. 2011 May 20;585(10):1427-34 16754844 - Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9327-32 18227513 - Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1602-7 22692217 - J Biol Chem. 2012 Jul 27;287(31):25917-26 9520595 - Trends Genet. 1998 Feb;14(2):46-9; discussion 49-50 12916720 - Chronobiol Int. 2003 Jul;20(4):683-95 15653726 - Biophys J. 2005 Apr;88(4):2369-83 22479387 - PLoS One. 2012;7(3):e33334 23544070 - PLoS One. 2013;8(3):e59464 15951747 - Nat Rev Genet. 2005 Jul;6(7):544-56 12111534 - Cell Tissue Res. 2002 Jul;309(1):27-34 11258383 - Nature. 2001 Mar 8;410(6825):277-84 21119632 - Mol Syst Biol. 2010 Nov 30;6:438 e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_37_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 Granada A (e_1_3_2_35_2) 2009 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 Balanov A (e_1_3_2_30_2) 2009 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 Glass L (e_1_3_2_36_2) 1988 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_2_2 |
References_xml | – ident: e_1_3_2_6_2 doi: 10.2741/1196 – ident: e_1_3_2_24_2 doi: 10.1016/j.febslet.2011.02.027 – ident: e_1_3_2_23_2 doi: 10.1371/journal.pbio.1000052 – ident: e_1_3_2_7_2 doi: 10.1371/journal.pcbi.1002309 – ident: e_1_3_2_48_2 doi: 10.1371/journal.pone.0059464 – ident: e_1_3_2_41_2 doi: 10.1523/JNEUROSCI.3559-12.2012 – ident: e_1_3_2_13_2 doi: 10.1007/s00239-005-0185-1 – ident: e_1_3_2_2_2 doi: 10.1016/S0092-8674(00)80566-8 – ident: e_1_3_2_11_2 doi: 10.1007/s00441-002-0570-7 – ident: e_1_3_2_54_2 doi: 10.1177/0748730411419782 – ident: e_1_3_2_21_2 doi: 10.1177/0748730412461246 – ident: e_1_3_2_34_2 doi: 10.1038/msb.2010.92 – ident: e_1_3_2_47_2 doi: 10.1007/BF01939893 – ident: e_1_3_2_53_2 doi: 10.1251/bpo109 – ident: e_1_3_2_12_2 doi: 10.1016/j.tig.2004.11.012 – ident: e_1_3_2_46_2 doi: 10.1098/rsfs.2010.0002 – ident: e_1_3_2_52_2 doi: 10.1371/journal.pcbi.0030068 – ident: e_1_3_2_38_2 doi: 10.1073/pnas.0406506102 – ident: e_1_3_2_8_2 doi: 10.1038/nature00965 – ident: e_1_3_2_45_2 doi: 10.1016/S0031-9384(97)00416-2 – ident: e_1_3_2_15_2 doi: 10.1146/annurev-neuro-060909-153128 – ident: e_1_3_2_20_2 doi: 10.1074/jbc.M112.368001 – ident: e_1_3_2_31_2 doi: 10.1038/35065745 – ident: e_1_3_2_40_2 doi: 10.1073/pnas.0603601103 – ident: e_1_3_2_29_2 doi: 10.1007/BF00440545 – volume-title: From clocks to chaos: the rhythms of life year: 1988 ident: e_1_3_2_36_2 doi: 10.1515/9780691221793 contributor: fullname: Glass L – ident: e_1_3_2_10_2 doi: 10.1016/S0168-9525(00)02122-3 – ident: e_1_3_2_37_2 doi: 10.1007/BF01417859 – ident: e_1_3_2_16_2 doi: 10.1016/S0168-9525(97)01367-X – ident: e_1_3_2_17_2 doi: 10.1016/j.molcel.2009.10.012 – ident: e_1_3_2_25_2 doi: 10.1002/bies.950190312 – ident: e_1_3_2_5_2 doi: 10.1038/nrd1633 – volume-title: Phase response curves elucidating the dynamics of coupled oscillators year: 2009 ident: e_1_3_2_35_2 contributor: fullname: Granada A – ident: e_1_3_2_27_2 doi: 10.1081/CBI-120022408 – ident: e_1_3_2_39_2 doi: 10.1007/s00359-007-0301-3 – ident: e_1_3_2_22_2 doi: 10.1126/science.1223710 – ident: e_1_3_2_43_2 doi: 10.1371/journal.pone.0033334 – ident: e_1_3_2_19_2 doi: 10.1016/j.febslet.2011.04.048 – ident: e_1_3_2_3_2 doi: 10.1073/pnas.95.15.8660 – ident: e_1_3_2_14_2 doi: 10.1016/S0169-328X(00)00091-7 – ident: e_1_3_2_49_2 doi: 10.1073/pnas.0707772105 – ident: e_1_3_2_4_2 doi: 10.1126/science.276.5313.753 – ident: e_1_3_2_33_2 doi: 10.1529/biophysj.104.058388 – ident: e_1_3_2_50_2 doi: 10.1371/journal.pcbi.1002787 – ident: e_1_3_2_9_2 doi: 10.1529/biophysj.104.053975 – ident: e_1_3_2_44_2 doi: 10.1063/1.1345727 – ident: e_1_3_2_28_2 doi: 10.1101/gad.256103 – ident: e_1_3_2_42_2 doi: 10.1073/pnas.0702835104 – volume-title: Synchronization: from simple to complex year: 2009 ident: e_1_3_2_30_2 contributor: fullname: Balanov A – ident: e_1_3_2_51_2 doi: 10.1098/rsif.2012.1020 – ident: e_1_3_2_18_2 doi: 10.1093/hmg/ddp252 – ident: e_1_3_2_32_2 doi: 10.1017/CBO9780511755743 – ident: e_1_3_2_26_2 doi: 10.1101/gad.233702.GENES |
SSID | ssj0037355 |
Score | 2.3028798 |
Snippet | Circadian clocks are internal timekeepers present in almost all organisms. Driven by a genetic network of highly conserved structure, they generate... |
SourceID | pubmedcentral proquest crossref pubmed royalsociety istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 20130221 |
SubjectTerms | Actogram Adaptation, Biological - genetics Adaptation, Biological - physiology Amplitude Animals Circadian Clocks - genetics Circadian Rhythm Cryptochromes - genetics Fourier Analysis Locomotion - genetics Locomotion - physiology Mice Mice, Transgenic Motor Activity - physiology Mutation - genetics Oscillator Theory Photoperiod Signal-To-Noise Ratio Time-Series Analysis |
Title | Genetic redundancy strengthens the circadian clock leading to a narrow entrainment range |
URI | https://api.istex.fr/ark:/67375/V84-B8L63D4M-K/fulltext.pdf https://royalsocietypublishing.org/doi/full/10.1098/rsif.2013.0221 https://www.ncbi.nlm.nih.gov/pubmed/23676895 https://search.proquest.com/docview/1353039341 https://search.proquest.com/docview/1687686137 https://pubmed.ncbi.nlm.nih.gov/PMC3673158 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6x5cIFUZ6hBRkJ8ZDI7iZ-5gh9qBIUIfFQb5bjOLBqm62SXYmfz4yTrLpS4cAlSpRR7Hhsz4z8zTcALzPhMq_qeaqpUJiouEjLUlVpoQOa-yDk3FGi8MlX_fnMHB4RTY4cc2EiaN-Xi2lzcTltFr8itvLq0s9GnNjsy-kBV5pn0swmMEHfcAzR--2Xax5LnaKnjVGWMsWGqdHMMPyOrJ18ipaLasQQfRmKyC2jdJvG9_dNHucNwMmWgvyuB1heM0zH9-Du4FGy933Pd-FWaO7D7rBmO_ZmIJZ--wDO6BalWBsod4z2VUa5Is1PokDoGF6ZX7Q-0hUwj2bunF30IHu2WjLHmsjYyGK3ehgBayk54SF8Pz76dnCSDpUVUi91tkpLmQvvZFZKH9CKKdzwRCUKpwWGIxhrq6I2utR-nlVG8dqpUDtR5T7PnMyL2vNHsNMsm_AEmJFSOvxCMXdOyKALL_I6c_gsA4ZLdQKvx6G1Vz2Bhu0Pvo0lfVjShyV9JPAqjvxGzLXnBDvT0v4wwn4wnxQ_FKf2YwIvRtVYXAx0wuGasFx3lop4ULKxyP4ho9AAGPRidAKPe3VuWhznQwJ6S9EbASLj3n6DczSScg9zMoF316eEHXaE7i___PS_G9qDO3mszEHoxX3YWbXr8AwmXbV-HtfDHwj4DzA |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6a5NBe2qZP96lC6QPqXT8kSz62ebAlu6HQtOQmZFlulyTeYO9Cf35nZHvJQtpDLsZGg408MxoN-uYbgLcxN7HNqiiU1CiMlykPiyIrw1w6DPeOi8hQofDkuzw-VfsHRJMjhloYD9q3xXxUn1-M6vlvj628vLDjASc2_jbbSzOZxkKNt2AH_TWKhiS9W4BTmfpmp7jXxjwrU_maq1GNMQH3vJ3pCGMXdYkhAjMUERthaYf-8J_r9pzXQCcbSvPbDmJ5JTQd3rvhpO7D3X4vyj53w7twy9UPYLf39pZ96CmpPz6EU7pFKdY4qjqjFZlRlUn9i8gTWoZXZueN9UQHzGKAPGPnHTyfLRfMsNpzPTI_nQ6AwBoqa3gEPw4PTvYmYd-TIbRCxsuwEAm3RsSFsA7jX4ZLJS95biTHRAaz9CyvlCykjeJSZWllMlcZXiY2iY1I8sqmj2G7XtTuKTAlhDD4hjwyhgsnc8uTKjb4LBwmWlUA7weV6MuOekN3R-ZKkx416VGTHgN45zW2FjPNGQHWpNA_Fddf1DRL9_lMHwXwZlCpRjeisxFTu8Wq1dT-g8qUefwfmQxDh8L9jwzgSWcG6y8OdhSA3DCQtQDReG-OoCF4Ou9e8QF8umpKul9L2n_M-dmNP_Qabk9OZlM9_Xp89BzuJL6_B2EgX8D2slm5l7DVlqtX3qf-Aq02JLk |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Za9wwEBZNAqUvbdPTPVUoPaBeX7r82GazpOQg0IO8CVmW2yWJd7F3oT-_M_JBFtI-tC_GxoOFPDMaDfrmG0JeJ8wkVlRxKLFRGCszFhaFKMNcOgj3jvHYYKHwwRd5cqam-0iTM7b68qB9W8wn9cXlpJ7_9NjK5aWNBpxYdHq8lwmZJVxFy7KKtsgO-GycDol6twhnMvMNT2G_DbmWUPnI16giSMI9d2c2gfiFnWKQxAxE-EZo2sG__Ou6fec18MkGU_22g1leCU-zO_8xsbvkdr8npR87kV1yw9X3yG7v9S1911NTv79PzvAWpGjjsPoMV2aK1Sb1DyRRaClcqZ031hMeUAuB8pxedDB9ulpQQ2vP-Uj9lDogAm2wvOEB-Tbb_7p3EPa9GULLZbIKC54ya3hScOsgDgpYMlnJciMZJDSQrYu8UrKQNk5KJbLKCFcZVqY2TQxP88pmD8l2vajdY0IV59zAF_LYGMadzC1Lq8TAM3eQcFUBeTuoRS87Cg7dHZ0rjbrUqEuNugzIG6-1Ucw05whck1x_V0x_Ukcim7JjfRiQV4NaNbgTnpGY2i3WrcY2IFiuzJK_yAgIIQr2QTIgjzpTGEccbCkgcsNIRgGk8958A8bgab175Qfkw1Vz0v2a0v5hzk_-eaCX5ObpdKaPPp8cPiW3Ut_mA6GQz8j2qlm752SrLdcvvFv9BtxmJzk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+redundancy+strengthens+the+circadian+clock+leading+to+a+narrow+entrainment+range&rft.jtitle=Journal+of+the+Royal+Society+interface&rft.au=Erzberger%2C+A&rft.au=Hampp%2C+G&rft.au=Granada%2C+A+E&rft.au=Albrecht%2C+U&rft.date=2013-07-06&rft.issn=1742-5689&rft.volume=10&rft.issue=84&rft.spage=20130221&rft.epage=20130221&rft_id=info:doi/10.1098%2Frsif.2013.0221&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-5689&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-5689&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-5689&client=summon |