Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume

Abstract Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is...

Full description

Saved in:
Bibliographic Details
Published in:Bone (New York, N.Y.) Vol. 44; no. 1; pp. 17 - 23
Main Authors: Kellum, Ethan, Starr, Harlan, Arounleut, Phonepasong, Immel, David, Fulzele, Sadanand, Wenger, Karl, Hamrick, Mark W
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 01-01-2009
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/−), and mice homozygous for the disrupted myostatin sequence (−/−) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (−/−) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin −/− mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration.
AbstractList Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/-), and mice homozygous for the disrupted myostatin sequence (-/-) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (-/-) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin -/- mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration.
Abstract Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/−), and mice homozygous for the disrupted myostatin sequence (−/−) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (−/−) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin −/− mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration.
Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/−), and mice homozygous for the disrupted myostatin sequence (−/−) were included for study at two- and four-weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficent (−/−) mice compared to wild-type (+/+) mice at two-weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two- and four-weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin −/− mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration.
Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/−), and mice homozygous for the disrupted myostatin sequence (−/−) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (−/−) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin −/− mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration.
Author Fulzele, Sadanand
Wenger, Karl
Hamrick, Mark W
Immel, David
Kellum, Ethan
Starr, Harlan
Arounleut, Phonepasong
AuthorAffiliation 1 Department of Orthopaedic Surgery, Medical College of Georgia Augusta, GA USA
2 Institute of Molecular Medicine and Genetics, Medical College of Georgia Augusta, GA USA
4 Savannah River National Laboratory Aiken, SC USA
3 Department of Cellular Biology and Anatomy, Medical College of Georgia Augusta, GA USA
AuthorAffiliation_xml – name: 4 Savannah River National Laboratory Aiken, SC USA
– name: 2 Institute of Molecular Medicine and Genetics, Medical College of Georgia Augusta, GA USA
– name: 3 Department of Cellular Biology and Anatomy, Medical College of Georgia Augusta, GA USA
– name: 1 Department of Orthopaedic Surgery, Medical College of Georgia Augusta, GA USA
Author_xml – sequence: 1
  fullname: Kellum, Ethan
– sequence: 2
  fullname: Starr, Harlan
– sequence: 3
  fullname: Arounleut, Phonepasong
– sequence: 4
  fullname: Immel, David
– sequence: 5
  fullname: Fulzele, Sadanand
– sequence: 6
  fullname: Wenger, Karl
– sequence: 7
  fullname: Hamrick, Mark W
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21021667$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18852073$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1rFDEUhoNU7Lb6B7yQ3CgKnTUfM_kAKUhrq1DxonodspkzmnU2WZOZpeuvb8Zd68eFwoFA8pxz3pz3HKGDEAMg9JiSOSVUvFzOF-VizghR8xKUiXtoRpXkFZOCH6CZko2oOFPsEB3lvCSEcC3pA3RIlWoYkXyG4P025sEOPuDnl-cXlXqBW-i88xDcFvvgEtgMGXfJumFMgJ3t-zHj7L_DCb6ON1WD4WadIGcfwwm2of2JTOLwJvbjCh6i-53tMzzan8fo08Wbj2dvq6sPl-_OXl9VrhF6qGpG2YIJ3XSNtly1VNWt4NQqLWUtGoAFaZmWrdCgiaitBa2spZJ2fCEb2_FjdLqrux4XK2gdhCHZ3qyTX9m0NdF68-dL8F_M57gxTNSKaV4KPNsXSPHbCHkwK58d9L0NEMdshJB1LWv9X5ARVmtCJpDtQJdizgm6OzWUmMlGszTTpMxkoylRbCxJT37_x6-UvW8FeLoHbC7jLu4E5_MdxyhhtGgt3KsdB2XqGw_J5B_WQusTuMG00f9bx-lf6a73wZeOX2ELeRnHFIqfhprMDDHX08JN-0YUIVJSwm8Bii7SPw
CitedBy_id crossref_primary_10_1038_bonekey_2016_48
crossref_primary_10_1002_jor_21105
crossref_primary_10_1016_j_exger_2017_07_008
crossref_primary_10_1007_s00223_015_9956_x
crossref_primary_10_3389_fphys_2024_1349253
crossref_primary_10_1007_s12018_014_9156_7
crossref_primary_10_3389_fgene_2021_662908
crossref_primary_10_1007_s00393_016_0160_9
crossref_primary_10_1016_j_injury_2013_09_009
crossref_primary_10_1002_biof_1675
crossref_primary_10_1016_j_jor_2020_01_036
crossref_primary_10_1111_cei_12979
crossref_primary_10_1186_s13075_016_1187_7
crossref_primary_10_1369_0022155411425389
crossref_primary_10_1530_EC_21_0488
crossref_primary_10_1111_1440_1681_12651
crossref_primary_10_3389_fphar_2020_565163
crossref_primary_10_3390_cells10082070
crossref_primary_10_1016_j_exger_2013_06_004
crossref_primary_10_3390_jcm9041150
crossref_primary_10_3109_08977194_2011_599324
crossref_primary_10_1038_bonekey_2012_25
crossref_primary_10_1097_JES_0b013e318201f601
crossref_primary_10_1089_scd_2018_0155
crossref_primary_10_1007_s12018_018_9254_z
crossref_primary_10_1038_s41598_017_10404_z
crossref_primary_10_1138_20100423
crossref_primary_10_3892_mmr_2017_6155
crossref_primary_10_1111_jcmm_13438
crossref_primary_10_1111_j_1469_7580_2011_01351_x
crossref_primary_10_1530_JOE_11_0455
crossref_primary_10_3390_life11090899
crossref_primary_10_3389_fendo_2023_1146868
crossref_primary_10_1002_jor_24477
crossref_primary_10_1016_j_bbadis_2017_07_036
crossref_primary_10_1007_s11914_015_0264_1
crossref_primary_10_1038_boneres_2014_42
crossref_primary_10_1097_TA_0b013e3181c451f4
crossref_primary_10_1186_s13619_023_00169_4
crossref_primary_10_11005_jbm_2020_27_3_151
crossref_primary_10_1007_s12020_013_0026_8
crossref_primary_10_1007_s11914_014_0204_5
crossref_primary_10_1016_j_bone_2014_03_046
crossref_primary_10_1159_000507731
crossref_primary_10_1016_j_jot_2023_09_007
crossref_primary_10_1016_j_clinbiomech_2020_105244
crossref_primary_10_1016_j_gene_2013_12_027
crossref_primary_10_1016_j_injury_2020_06_023
crossref_primary_10_1017_S1751731110002405
crossref_primary_10_1002_jor_21112
crossref_primary_10_1002_jor_22686
crossref_primary_10_1016_j_bone_2013_12_002
crossref_primary_10_1111_nyas_14894
crossref_primary_10_29252_mlj_14_5_48
crossref_primary_10_1111_j_1474_9726_2009_00508_x
crossref_primary_10_1038_nm_3917
crossref_primary_10_1007_s10753_015_0149_6
crossref_primary_10_3390_ijms24032981
crossref_primary_10_3390_biology12101331
crossref_primary_10_1016_j_exger_2012_11_004
crossref_primary_10_1016_j_mce_2015_10_017
crossref_primary_10_1016_j_livsci_2013_12_002
crossref_primary_10_1016_j_bone_2020_115610
crossref_primary_10_1093_gerona_glt030
crossref_primary_10_1016_j_bone_2015_02_029
Cites_doi 10.1002/jor.1100160307
10.1016/j.bone.2007.02.012
10.1359/jbmr.2002.17.3.513
10.1210/en.143.1.74
10.1146/annurev.cellbio.20.012103.135836
10.1016/j.bone.2007.12.076
10.1210/en.2005-0362
10.1073/pnas.0408729102
10.1359/JBMR.051203
10.1002/ar.a.10044
10.1016/j.ydbio.2005.06.012
10.1096/fj.04-2796com
10.1056/NEJMoa040933
10.1074/jbc.M203171200
10.1016/S0736-0266(03)00105-0
10.1128/MCB.23.20.7230-7242.2003
10.1038/387083a0
10.1016/j.archoralbio.2005.05.008
10.1016/j.orthres.2005.03.015
10.1002/(SICI)1097-4652(199908)180:2<141::AID-JCP1>3.0.CO;2-I
10.1359/JBMR.050702
10.1007/s00223-001-2037-3
10.1016/S8756-3282(99)00152-0
10.1083/jcb.200312045
10.1126/science.1069525
ContentType Journal Article
Copyright Elsevier Inc.
2008 Elsevier Inc.
2009 INIST-CNRS
Copyright_xml – notice: Elsevier Inc.
– notice: 2008 Elsevier Inc.
– notice: 2009 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7X8
5PM
DOI 10.1016/j.bone.2008.08.126
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Calcium & Calcified Tissue Abstracts

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1873-2763
EndPage 23
ExternalDocumentID 10_1016_j_bone_2008_08_126
18852073
21021667
S8756328208007710
1_s2_0_S8756328208007710
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: AR 049717
– fundername: NIAMS NIH HHS
  grantid: R01 AR049717
– fundername: NIAMS NIH HHS
  grantid: R01 AR049717-04
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEVXI
AFCTW
AFJKZ
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZMT
~02
~G-
AAIAV
ABLVK
ABYKQ
AHPSJ
AJBFU
DOVZS
EFLBG
LCYCR
ZA5
08R
AAPBV
AAUGY
ABPIF
ABPTK
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7X8
5PM
ID FETCH-LOGICAL-c569t-4212b2695f59a38d184d631a8977465eeb0d297d69e9064aae98aa171f3b75af3
ISSN 8756-3282
IngestDate Tue Sep 17 21:18:12 EDT 2024
Fri Oct 25 03:46:35 EDT 2024
Sat Oct 05 05:29:29 EDT 2024
Thu Sep 26 18:06:37 EDT 2024
Sat Sep 28 07:46:46 EDT 2024
Sun Oct 22 16:05:37 EDT 2023
Fri Feb 23 02:32:07 EST 2024
Tue Oct 15 22:56:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords BMP-2
Activin
Chondrogenesis
Osteogenesis
ActRIIB
Callus
Deficiency
Diseases of the osteoarticular system
Fracture
Trauma
Bone morphogenetic protein-2
Morphology
Orthopedics
Bone
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c569t-4212b2695f59a38d184d631a8977465eeb0d297d69e9064aae98aa171f3b75af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc2648293?pdf=render
PMID 18852073
PQID 20249009
PQPubID 23462
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2648293
proquest_miscellaneous_66744749
proquest_miscellaneous_20249009
crossref_primary_10_1016_j_bone_2008_08_126
pubmed_primary_18852073
pascalfrancis_primary_21021667
elsevier_sciencedirect_doi_10_1016_j_bone_2008_08_126
elsevier_clinicalkeyesjournals_1_s2_0_S8756328208007710
PublicationCentury 2000
PublicationDate 2009-01-01
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – month: 01
  year: 2009
  text: 2009-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Bone (New York, N.Y.)
PublicationTitleAlternate Bone
PublicationYear 2009
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Gaddy Kurten, Coker, Abe, Jilka, Manolagas (bib20) 2002; 143
Gamer, Nove, Levin, Rosen (bib25) 2005; 285
Lee (bib16) 2004; 20
Bahamonde, Lyons (bib24) 2001; 83-A
Gerstenfeld, Wronski, Hollinger, Einhorn (bib13) 2005; 20
Hadjiargyrou, Lombardo, Zhao, Ahrens, Joo, Ahn (bib14) 2002; 277
Hirotani, Ohtsuka-Isoya, Mori, Sakai, Eto, Echigo (bib21) 2002; 70
Hamrick, Samaddar, Pennington, McCormick (bib12) 2006; 21
Ekaza, Cabello (bib23) 2002; 7
Wagner, Liu, Chang, Allen (bib4) 2005; 102
Schuelke, Wagner, Stolz, Hubner, Riebel, Komen (bib2) 2004; 350
Piek, Afrakhte, Sampath, van Zoelen, Heldin, Dijke (bib26) 1999; 180
Smits, Dy, Mitra, Lefebvre (bib17) 2004; 164
Nagamine, Imamura, Ishidou, Kato, Murata, Dijke (bib18) 1998; 16
Bogdanovich, Perkins, Krag, Whittemore, Khurana (bib27) 2005; 19
Hamrick (bib5) 2003; 272
Hamrick, Shi, Zhang, Pennington, Kang, Thakore (bib8) 2007; 40
Artaza, Bhasin, Magee, Reisz-Porszasz, Shen, Groome (bib15) 2005; 146
McPherron, Lawler, Lee (bib1) 1997; 387
Nicholson, Stock, Hamrick, Ravosa (bib7) 2006; 51
Zimmers, Davies, Koniaris, Haynes, Esquela, Tomkinson (bib3) 2002; 296
Hamrick, Pennington, Byron (bib6) 2003; 21
Midura, Ibiwoye, Powell, Sakai, Doehring, Grabiner (bib11) 2005; 23
Cho, Gerstenfeld, Einhorn (bib10) 2002; 17
Bialek, Parkington, Warner, St. Andre, Jian, Gavin (bib9) 2008; 42
Rebbapragada, Benchabane, Wrana, Celeste, Attisano (bib22) 2003; 23
Sakai, Miwa, Eto (bib19) 1999; 25
11874242 - J Bone Miner Res. 2002 Mar;17(3):513-20
12029139 - Science. 2002 May 24;296(5572):1486-8
16054590 - Arch Oral Biol. 2006 Jan;51(1):37-49
15878958 - Endocrinology. 2005 Aug;146(8):3547-57
12704695 - Anat Rec A Discov Mol Cell Evol Biol. 2003 May;272(1):388-91
9139826 - Nature. 1997 May 1;387(6628):83-90
17374508 - Curr Opin Pharmacol. 2007 Jun;7(3):310-5
15215484 - N Engl J Med. 2004 Jun 24;350(26):2682-8
16491296 - J Bone Miner Res. 2006 Mar;21(3):477-83
12004338 - Calcif Tissue Int. 2002 Apr;70(4):330-8
15936919 - J Orthop Res. 2005 Sep;23(5):1035-46
10395283 - J Cell Physiol. 1999 Aug;180(2):141-9
12055193 - J Biol Chem. 2002 Aug 16;277(33):30177-82
16160729 - J Bone Miner Res. 2005 Oct;20(10):1715-22
16054124 - Dev Biol. 2005 Sep 1;285(1):156-68
15791004 - FASEB J. 2005 Apr;19(6):543-9
10456384 - Bone. 1999 Aug;25(2):191-6
15699335 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2519-24
14993235 - J Cell Biol. 2004 Mar 1;164(5):747-58
15473835 - Annu Rev Cell Dev Biol. 2004;20:61-86
14554215 - J Orthop Res. 2003 Nov;21(6):1025-32
14517293 - Mol Cell Biol. 2003 Oct;23(20):7230-42
9671926 - J Orthop Res. 1998 May;16(3):314-21
11263666 - J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 1):S56-62
17383950 - Bone. 2007 Jun;40(6):1544-53
11751595 - Endocrinology. 2002 Jan;143(1):74-83
McPherron (10.1016/j.bone.2008.08.126_bib1) 1997; 387
Hamrick (10.1016/j.bone.2008.08.126_bib8) 2007; 40
Hamrick (10.1016/j.bone.2008.08.126_bib5) 2003; 272
Hadjiargyrou (10.1016/j.bone.2008.08.126_bib14) 2002; 277
Gerstenfeld (10.1016/j.bone.2008.08.126_bib13) 2005; 20
Gamer (10.1016/j.bone.2008.08.126_bib25) 2005; 285
Ekaza (10.1016/j.bone.2008.08.126_bib23) 2002; 7
Bahamonde (10.1016/j.bone.2008.08.126_bib24) 2001; 83-A
Wagner (10.1016/j.bone.2008.08.126_bib4) 2005; 102
Nagamine (10.1016/j.bone.2008.08.126_bib18) 1998; 16
Hamrick (10.1016/j.bone.2008.08.126_bib6) 2003; 21
Bogdanovich (10.1016/j.bone.2008.08.126_bib27) 2005; 19
Bialek (10.1016/j.bone.2008.08.126_bib9) 2008; 42
Artaza (10.1016/j.bone.2008.08.126_bib15) 2005; 146
Nicholson (10.1016/j.bone.2008.08.126_bib7) 2006; 51
Hamrick (10.1016/j.bone.2008.08.126_bib12) 2006; 21
Midura (10.1016/j.bone.2008.08.126_bib11) 2005; 23
Lee (10.1016/j.bone.2008.08.126_bib16) 2004; 20
Gaddy Kurten (10.1016/j.bone.2008.08.126_bib20) 2002; 143
Schuelke (10.1016/j.bone.2008.08.126_bib2) 2004; 350
Zimmers (10.1016/j.bone.2008.08.126_bib3) 2002; 296
Sakai (10.1016/j.bone.2008.08.126_bib19) 1999; 25
Rebbapragada (10.1016/j.bone.2008.08.126_bib22) 2003; 23
Hirotani (10.1016/j.bone.2008.08.126_bib21) 2002; 70
Cho (10.1016/j.bone.2008.08.126_bib10) 2002; 17
Piek (10.1016/j.bone.2008.08.126_bib26) 1999; 180
Smits (10.1016/j.bone.2008.08.126_bib17) 2004; 164
References_xml – volume: 387
  start-page: 83
  year: 1997
  end-page: 90
  ident: bib1
  article-title: Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member
  publication-title: Nature
  contributor:
    fullname: Lee
– volume: 20
  start-page: 61
  year: 2004
  end-page: 86
  ident: bib16
  article-title: Regulation of muscle mass by myostatin
  publication-title: Annu. Rev. Cell Dev. Biol.
  contributor:
    fullname: Lee
– volume: 146
  start-page: 3547
  year: 2005
  end-page: 3557
  ident: bib15
  article-title: Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multi-potent cells
  publication-title: Endocrinol.
  contributor:
    fullname: Groome
– volume: 23
  start-page: 1035
  year: 2005
  end-page: 1046
  ident: bib11
  article-title: Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies
  publication-title: J. Orthop. Res.
  contributor:
    fullname: Grabiner
– volume: 70
  start-page: 330
  year: 2002
  end-page: 338
  ident: bib21
  article-title: Activin A increases the mass of grafted bone in C3H/HeJ mice
  publication-title: Calcif. Tissue Int.
  contributor:
    fullname: Echigo
– volume: 350
  start-page: 2682
  year: 2004
  end-page: 2688
  ident: bib2
  article-title: Myostatin mutation associated with gross muscle hypertrophy in a child
  publication-title: N. Eng. J. Med.
  contributor:
    fullname: Komen
– volume: 21
  start-page: 1025
  year: 2003
  end-page: 1032
  ident: bib6
  article-title: Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin)
  publication-title: J. Orthop. Res.
  contributor:
    fullname: Byron
– volume: 20
  start-page: 1715
  year: 2005
  end-page: 1722
  ident: bib13
  article-title: Application of histomorphometric methods to the study of bone repair
  publication-title: J. Bone Miner. Res.
  contributor:
    fullname: Einhorn
– volume: 23
  start-page: 7230
  year: 2003
  end-page: 7242
  ident: bib22
  article-title: Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis
  publication-title: Mol. Cell. Biol.
  contributor:
    fullname: Attisano
– volume: 42
  start-page: S46
  year: 2008
  ident: bib9
  article-title: Mice treated with a myostatin/GDF-8 decoy receptor, ActRIIB-Fc, exhibit a tremendous increase in bone mass
  publication-title: Bone
  contributor:
    fullname: Gavin
– volume: 16
  start-page: 314
  year: 1998
  end-page: 321
  ident: bib18
  article-title: Immunohistochemical detection of activin A, follistatin, and activin receptors during fracture healing in the rat
  publication-title: J. Orthop. Res.
  contributor:
    fullname: Dijke
– volume: 285
  start-page: 156
  year: 2005
  end-page: 168
  ident: bib25
  article-title: BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in xenopus embryos
  publication-title: Dev. Biol.
  contributor:
    fullname: Rosen
– volume: 296
  start-page: 1486
  year: 2002
  end-page: 1488
  ident: bib3
  article-title: Induction of cachexia in mice by systemically administered myostatin
  publication-title: Science
  contributor:
    fullname: Tomkinson
– volume: 272
  start-page: 388
  year: 2003
  end-page: 391
  ident: bib5
  article-title: Increased bone mineral density in the femora of GDF8 knockout mice
  publication-title: Anat. Rec.
  contributor:
    fullname: Hamrick
– volume: 40
  start-page: 1544
  year: 2007
  end-page: 1553
  ident: bib8
  article-title: Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading
  publication-title: Bone
  contributor:
    fullname: Thakore
– volume: 164
  start-page: 747
  year: 2004
  end-page: 758
  ident: bib17
  article-title: Sox5 and sox 6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate
  publication-title: J. Cell Biol.
  contributor:
    fullname: Lefebvre
– volume: 21
  start-page: 477
  year: 2006
  end-page: 483
  ident: bib12
  article-title: Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise
  publication-title: J. Bone Miner. Res.
  contributor:
    fullname: McCormick
– volume: 19
  start-page: 543
  year: 2005
  end-page: 549
  ident: bib27
  article-title: Myostatin-propeptide mediated amelioration of dystrophic pathophysiology
  publication-title: FASEB J.
  contributor:
    fullname: Khurana
– volume: 83-A
  start-page: S56
  year: 2001
  end-page: S62
  ident: bib24
  article-title: BMP3: to be or not to be a BMP
  publication-title: J. Bone Jt. Surg.
  contributor:
    fullname: Lyons
– volume: 102
  start-page: 2519
  year: 2005
  end-page: 2524
  ident: bib4
  article-title: Muscle regeneration in the prolonged absence of myostatin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  contributor:
    fullname: Allen
– volume: 17
  start-page: 513
  year: 2002
  end-page: 520
  ident: bib10
  article-title: Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing
  publication-title: J. Bone Miner. Res.
  contributor:
    fullname: Einhorn
– volume: 277
  start-page: 30177
  year: 2002
  end-page: 30182
  ident: bib14
  article-title: Transcriptional profiling of bone regeneration
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Ahn
– volume: 143
  start-page: 74
  year: 2002
  end-page: 83
  ident: bib20
  article-title: Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures
  publication-title: Endocrinology
  contributor:
    fullname: Manolagas
– volume: 7
  start-page: 1
  year: 2002
  end-page: 6
  ident: bib23
  article-title: The myostatin gene: physiology and pharmacological relevance
  publication-title: Curr. Opin. Pharmacol.
  contributor:
    fullname: Cabello
– volume: 51
  start-page: 37
  year: 2006
  end-page: 49
  ident: bib7
  article-title: Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice
  publication-title: Arch. Oral Biol.
  contributor:
    fullname: Ravosa
– volume: 180
  start-page: 141
  year: 1999
  end-page: 149
  ident: bib26
  article-title: Functional antagonism between activin and osteogenic protein-1 in human embryonal carcinoma cells
  publication-title: J. Cell. Physiol.
  contributor:
    fullname: Dijke
– volume: 25
  start-page: 191
  year: 1999
  end-page: 196
  ident: bib19
  article-title: Local administration of activin promotes fracture healing in the rat fibula fracture model
  publication-title: Bone
  contributor:
    fullname: Eto
– volume: 16
  start-page: 314
  year: 1998
  ident: 10.1016/j.bone.2008.08.126_bib18
  article-title: Immunohistochemical detection of activin A, follistatin, and activin receptors during fracture healing in the rat
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.1100160307
  contributor:
    fullname: Nagamine
– volume: 40
  start-page: 1544
  year: 2007
  ident: 10.1016/j.bone.2008.08.126_bib8
  article-title: Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading
  publication-title: Bone
  doi: 10.1016/j.bone.2007.02.012
  contributor:
    fullname: Hamrick
– volume: 17
  start-page: 513
  year: 2002
  ident: 10.1016/j.bone.2008.08.126_bib10
  article-title: Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.3.513
  contributor:
    fullname: Cho
– volume: 143
  start-page: 74
  year: 2002
  ident: 10.1016/j.bone.2008.08.126_bib20
  article-title: Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures
  publication-title: Endocrinology
  doi: 10.1210/en.143.1.74
  contributor:
    fullname: Gaddy Kurten
– volume: 20
  start-page: 61
  year: 2004
  ident: 10.1016/j.bone.2008.08.126_bib16
  article-title: Regulation of muscle mass by myostatin
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev.cellbio.20.012103.135836
  contributor:
    fullname: Lee
– volume: 42
  start-page: S46
  year: 2008
  ident: 10.1016/j.bone.2008.08.126_bib9
  article-title: Mice treated with a myostatin/GDF-8 decoy receptor, ActRIIB-Fc, exhibit a tremendous increase in bone mass
  publication-title: Bone
  doi: 10.1016/j.bone.2007.12.076
  contributor:
    fullname: Bialek
– volume: 83-A
  start-page: S56
  issue: Suppl 1
  year: 2001
  ident: 10.1016/j.bone.2008.08.126_bib24
  article-title: BMP3: to be or not to be a BMP
  publication-title: J. Bone Jt. Surg.
  contributor:
    fullname: Bahamonde
– volume: 146
  start-page: 3547
  year: 2005
  ident: 10.1016/j.bone.2008.08.126_bib15
  article-title: Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multi-potent cells
  publication-title: Endocrinol.
  doi: 10.1210/en.2005-0362
  contributor:
    fullname: Artaza
– volume: 102
  start-page: 2519
  year: 2005
  ident: 10.1016/j.bone.2008.08.126_bib4
  article-title: Muscle regeneration in the prolonged absence of myostatin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0408729102
  contributor:
    fullname: Wagner
– volume: 21
  start-page: 477
  year: 2006
  ident: 10.1016/j.bone.2008.08.126_bib12
  article-title: Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.051203
  contributor:
    fullname: Hamrick
– volume: 272
  start-page: 388
  year: 2003
  ident: 10.1016/j.bone.2008.08.126_bib5
  article-title: Increased bone mineral density in the femora of GDF8 knockout mice
  publication-title: Anat. Rec.
  doi: 10.1002/ar.a.10044
  contributor:
    fullname: Hamrick
– volume: 285
  start-page: 156
  year: 2005
  ident: 10.1016/j.bone.2008.08.126_bib25
  article-title: BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in xenopus embryos
  publication-title: Dev. Biol.
  doi: 10.1016/j.ydbio.2005.06.012
  contributor:
    fullname: Gamer
– volume: 19
  start-page: 543
  year: 2005
  ident: 10.1016/j.bone.2008.08.126_bib27
  article-title: Myostatin-propeptide mediated amelioration of dystrophic pathophysiology
  publication-title: FASEB J.
  doi: 10.1096/fj.04-2796com
  contributor:
    fullname: Bogdanovich
– volume: 350
  start-page: 2682
  year: 2004
  ident: 10.1016/j.bone.2008.08.126_bib2
  article-title: Myostatin mutation associated with gross muscle hypertrophy in a child
  publication-title: N. Eng. J. Med.
  doi: 10.1056/NEJMoa040933
  contributor:
    fullname: Schuelke
– volume: 277
  start-page: 30177
  year: 2002
  ident: 10.1016/j.bone.2008.08.126_bib14
  article-title: Transcriptional profiling of bone regeneration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M203171200
  contributor:
    fullname: Hadjiargyrou
– volume: 21
  start-page: 1025
  year: 2003
  ident: 10.1016/j.bone.2008.08.126_bib6
  article-title: Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin)
  publication-title: J. Orthop. Res.
  doi: 10.1016/S0736-0266(03)00105-0
  contributor:
    fullname: Hamrick
– volume: 23
  start-page: 7230
  year: 2003
  ident: 10.1016/j.bone.2008.08.126_bib22
  article-title: Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.23.20.7230-7242.2003
  contributor:
    fullname: Rebbapragada
– volume: 387
  start-page: 83
  year: 1997
  ident: 10.1016/j.bone.2008.08.126_bib1
  article-title: Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member
  publication-title: Nature
  doi: 10.1038/387083a0
  contributor:
    fullname: McPherron
– volume: 51
  start-page: 37
  year: 2006
  ident: 10.1016/j.bone.2008.08.126_bib7
  article-title: Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice
  publication-title: Arch. Oral Biol.
  doi: 10.1016/j.archoralbio.2005.05.008
  contributor:
    fullname: Nicholson
– volume: 23
  start-page: 1035
  year: 2005
  ident: 10.1016/j.bone.2008.08.126_bib11
  article-title: Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies
  publication-title: J. Orthop. Res.
  doi: 10.1016/j.orthres.2005.03.015
  contributor:
    fullname: Midura
– volume: 180
  start-page: 141
  year: 1999
  ident: 10.1016/j.bone.2008.08.126_bib26
  article-title: Functional antagonism between activin and osteogenic protein-1 in human embryonal carcinoma cells
  publication-title: J. Cell. Physiol.
  doi: 10.1002/(SICI)1097-4652(199908)180:2<141::AID-JCP1>3.0.CO;2-I
  contributor:
    fullname: Piek
– volume: 20
  start-page: 1715
  year: 2005
  ident: 10.1016/j.bone.2008.08.126_bib13
  article-title: Application of histomorphometric methods to the study of bone repair
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/JBMR.050702
  contributor:
    fullname: Gerstenfeld
– volume: 70
  start-page: 330
  year: 2002
  ident: 10.1016/j.bone.2008.08.126_bib21
  article-title: Activin A increases the mass of grafted bone in C3H/HeJ mice
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-001-2037-3
  contributor:
    fullname: Hirotani
– volume: 25
  start-page: 191
  year: 1999
  ident: 10.1016/j.bone.2008.08.126_bib19
  article-title: Local administration of activin promotes fracture healing in the rat fibula fracture model
  publication-title: Bone
  doi: 10.1016/S8756-3282(99)00152-0
  contributor:
    fullname: Sakai
– volume: 164
  start-page: 747
  year: 2004
  ident: 10.1016/j.bone.2008.08.126_bib17
  article-title: Sox5 and sox 6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200312045
  contributor:
    fullname: Smits
– volume: 7
  start-page: 1
  year: 2002
  ident: 10.1016/j.bone.2008.08.126_bib23
  article-title: The myostatin gene: physiology and pharmacological relevance
  publication-title: Curr. Opin. Pharmacol.
  contributor:
    fullname: Ekaza
– volume: 296
  start-page: 1486
  year: 2002
  ident: 10.1016/j.bone.2008.08.126_bib3
  article-title: Induction of cachexia in mice by systemically administered myostatin
  publication-title: Science
  doi: 10.1126/science.1069525
  contributor:
    fullname: Zimmers
SSID ssj0003971
Score 2.263773
Snippet Abstract Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown...
Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 17
SubjectTerms Activin
ActRIIB
Animals
Biological and medical sciences
Biomechanical Phenomena
BMP-2
Bony Callus - diagnostic imaging
Bony Callus - pathology
Cartilage - pathology
Cell physiology
Chondrogenesis
Female
Fractures, Bone - diagnostic imaging
Fractures, Bone - pathology
Fractures, Bone - surgery
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation
Heterozygote
Injuries of the limb. Injuries of the spine
Male
Medical sciences
Mice
Mineralization, calcification
Molecular and cellular biology
Myostatin - deficiency
Myostatin - metabolism
Organ Size
Orthopedics
Osteogenesis
Osteotomy
Radiography
SOXD Transcription Factors - genetics
SOXD Transcription Factors - metabolism
Time Factors
Traumas. Diseases due to physical agents
Vertebrates: anatomy and physiology, studies on body, several organs or systems
Title Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume
URI https://www.clinicalkey.es/playcontent/1-s2.0-S8756328208007710
https://dx.doi.org/10.1016/j.bone.2008.08.126
https://www.ncbi.nlm.nih.gov/pubmed/18852073
https://search.proquest.com/docview/20249009
https://search.proquest.com/docview/66744749
https://pubmed.ncbi.nlm.nih.gov/PMC2648293
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpB2Mwxtbukl06PYyxkTrYsmVbj6XNCJTuYe1g7MXIttymJHapY1j363eOZdlx2oxtsBcTHNmWdT7rXPSdI0LegQrLUBFZ4HbFlpekthVmcWIlMuSJ7bI4U5iNPD0NPn8LjybeZDAwO2t25_6rpOEcyBozZ_9C2u1N4QT8BpnDEaQOxz-S-8lNgUlCs7wOABxBl9DxTxVWiqjTLGc5GoqlKkcZZkhVNfNrPq_KUTn7qQPSxQ-LY-1_zZHNDcOzaRYXYJjqWa23JFxoe3V9b5-VWMOxMvsqTzBi30Z3lvK6Bs605t52GISZaK4qzSO-gNtfSfAOzls0LxaaYtDx8k34QqyELwzD07dcFvamZF0Ssgc9Pb_qPM9GU-tE5Vs6QIcjLsc4Gg1ZNhw77I6C25PDY8cq2di2TrEb2As0oIOgYdr2C3E7UckiO7rVdIvcYzDLIZ_0O__SmgFg6Dk6uKzfr8nY0uTC9b5tsooewsCCcDO9ycpdXtA6mXfFOjp7TB41bg090Hh8QgYq3yG7B7lcFosb-p7WRON6BWeH3D9p-By7RLVopR9qrH6kHVJpi1RqkEo1BCkidZ_WOKUdTvcpoNQ0wXenWtBPyddPk7PDqdVs_GEl3BdLC1kKMfMFz7iQbpg6oZf6riNDdFZ8rlRsp0wEqS-UAJNaSiVCKZ3Aydw44DJzn5HtHJ7yglDB0szNEh4LBr5wFsRO4tqex3maugLslCEZmYGPrnR9l8gQHy8j7GqzUWsYgZiGJDCyiUzmMuhaVTYTQBltAsmQ8PbKxrbVNmsEsP3tE_d6EGg7iaEax_eDIXlrMBGBZsDlPpmroirhLswT8MVtbgGXe17gQYvnGkPdEIQhZ6D94YV76GobYFX6_j_57KKuTo-UWfAhXv7zUL0iD7qJ4jXZXl5X6g3ZKtNqr_7CfgF8O_-5
link.rule.ids 230,315,782,786,887,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myostatin+%28GDF-8%29+deficiency+increases+fracture+callus+size%2C+Sox-5+expression%2C+and+callus+bone+volume&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Kellum%2C+Ethan&rft.au=Starr%2C+Harlan&rft.au=Arounleut%2C+Phonepasong&rft.au=Immel%2C+David&rft.date=2009-01-01&rft.issn=8756-3282&rft.volume=44&rft.issue=1&rft.spage=17&rft.epage=23&rft_id=info:doi/10.1016%2Fj.bone.2008.08.126&rft.externalDBID=ECK1-s2.0-S8756328208007710&rft.externalDocID=1_s2_0_S8756328208007710
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F87563282%2FS8756328208X00158%2Fcov150h.gif