Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume
Abstract Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is...
Saved in:
Published in: | Bone (New York, N.Y.) Vol. 44; no. 1; pp. 17 - 23 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier Inc
01-01-2009
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Abstract Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/−), and mice homozygous for the disrupted myostatin sequence (−/−) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (−/−) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin −/− mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration. |
---|---|
AbstractList | Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/-), and mice homozygous for the disrupted myostatin sequence (-/-) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (-/-) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin -/- mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration. Abstract Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/−), and mice homozygous for the disrupted myostatin sequence (−/−) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (−/−) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin −/− mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration. Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/−), and mice homozygous for the disrupted myostatin sequence (−/−) were included for study at two- and four-weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficent (−/−) mice compared to wild-type (+/+) mice at two-weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two- and four-weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin −/− mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration. Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that myostatin deficiency increases bone strength and biomineralization throughout the skeleton, and others have demonstrated that myostatin is expressed during the earliest phase of fracture repair. In order to determine the role of myostatin in fracture callus morphogenesis, we studied fracture healing in mice lacking myostatin. Adult wild-type mice (+/+), mice heterozygous for the myostatin mutation (+/−), and mice homozygous for the disrupted myostatin sequence (−/−) were included for study at two and four weeks following osteotomy of the fibula. Expression of Sox-5 and BMP-2 were significantly upregulated in the fracture callus of myostatin-deficient (−/−) mice compared to wild-type (+/+) mice at two weeks following osteotomy. Fracture callus size was significantly increased in mice lacking myostatin at both two and four weeks following osteotomy, and total osseous tissue area and callus strength in three-point bending were significantly greater in myostatin −/− mice compared to myostatin +/+ mice at four weeks post-osteotomy. Our data suggest that myostatin functions to regulate fracture callus size by inhibiting the recruitment and proliferation of progenitor cells in the fracture blastema. Myostatin deficiency increases blastema size during the early inflammatory phase of fracture repair, ultimately producing an ossified callus having greater bone volume and greater callus strength. While myostatin is most well known for its effects on muscle development, it is also clear that myostatin plays a significant, direct role in bone formation and regeneration. |
Author | Fulzele, Sadanand Wenger, Karl Hamrick, Mark W Immel, David Kellum, Ethan Starr, Harlan Arounleut, Phonepasong |
AuthorAffiliation | 1 Department of Orthopaedic Surgery, Medical College of Georgia Augusta, GA USA 2 Institute of Molecular Medicine and Genetics, Medical College of Georgia Augusta, GA USA 4 Savannah River National Laboratory Aiken, SC USA 3 Department of Cellular Biology and Anatomy, Medical College of Georgia Augusta, GA USA |
AuthorAffiliation_xml | – name: 4 Savannah River National Laboratory Aiken, SC USA – name: 2 Institute of Molecular Medicine and Genetics, Medical College of Georgia Augusta, GA USA – name: 3 Department of Cellular Biology and Anatomy, Medical College of Georgia Augusta, GA USA – name: 1 Department of Orthopaedic Surgery, Medical College of Georgia Augusta, GA USA |
Author_xml | – sequence: 1 fullname: Kellum, Ethan – sequence: 2 fullname: Starr, Harlan – sequence: 3 fullname: Arounleut, Phonepasong – sequence: 4 fullname: Immel, David – sequence: 5 fullname: Fulzele, Sadanand – sequence: 6 fullname: Wenger, Karl – sequence: 7 fullname: Hamrick, Mark W |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21021667$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/18852073$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1rFDEUhoNU7Lb6B7yQ3CgKnTUfM_kAKUhrq1DxonodspkzmnU2WZOZpeuvb8Zd68eFwoFA8pxz3pz3HKGDEAMg9JiSOSVUvFzOF-VizghR8xKUiXtoRpXkFZOCH6CZko2oOFPsEB3lvCSEcC3pA3RIlWoYkXyG4P025sEOPuDnl-cXlXqBW-i88xDcFvvgEtgMGXfJumFMgJ3t-zHj7L_DCb6ON1WD4WadIGcfwwm2of2JTOLwJvbjCh6i-53tMzzan8fo08Wbj2dvq6sPl-_OXl9VrhF6qGpG2YIJ3XSNtly1VNWt4NQqLWUtGoAFaZmWrdCgiaitBa2spZJ2fCEb2_FjdLqrux4XK2gdhCHZ3qyTX9m0NdF68-dL8F_M57gxTNSKaV4KPNsXSPHbCHkwK58d9L0NEMdshJB1LWv9X5ARVmtCJpDtQJdizgm6OzWUmMlGszTTpMxkoylRbCxJT37_x6-UvW8FeLoHbC7jLu4E5_MdxyhhtGgt3KsdB2XqGw_J5B_WQusTuMG00f9bx-lf6a73wZeOX2ELeRnHFIqfhprMDDHX08JN-0YUIVJSwm8Bii7SPw |
CitedBy_id | crossref_primary_10_1038_bonekey_2016_48 crossref_primary_10_1002_jor_21105 crossref_primary_10_1016_j_exger_2017_07_008 crossref_primary_10_1007_s00223_015_9956_x crossref_primary_10_3389_fphys_2024_1349253 crossref_primary_10_1007_s12018_014_9156_7 crossref_primary_10_3389_fgene_2021_662908 crossref_primary_10_1007_s00393_016_0160_9 crossref_primary_10_1016_j_injury_2013_09_009 crossref_primary_10_1002_biof_1675 crossref_primary_10_1016_j_jor_2020_01_036 crossref_primary_10_1111_cei_12979 crossref_primary_10_1186_s13075_016_1187_7 crossref_primary_10_1369_0022155411425389 crossref_primary_10_1530_EC_21_0488 crossref_primary_10_1111_1440_1681_12651 crossref_primary_10_3389_fphar_2020_565163 crossref_primary_10_3390_cells10082070 crossref_primary_10_1016_j_exger_2013_06_004 crossref_primary_10_3390_jcm9041150 crossref_primary_10_3109_08977194_2011_599324 crossref_primary_10_1038_bonekey_2012_25 crossref_primary_10_1097_JES_0b013e318201f601 crossref_primary_10_1089_scd_2018_0155 crossref_primary_10_1007_s12018_018_9254_z crossref_primary_10_1038_s41598_017_10404_z crossref_primary_10_1138_20100423 crossref_primary_10_3892_mmr_2017_6155 crossref_primary_10_1111_jcmm_13438 crossref_primary_10_1111_j_1469_7580_2011_01351_x crossref_primary_10_1530_JOE_11_0455 crossref_primary_10_3390_life11090899 crossref_primary_10_3389_fendo_2023_1146868 crossref_primary_10_1002_jor_24477 crossref_primary_10_1016_j_bbadis_2017_07_036 crossref_primary_10_1007_s11914_015_0264_1 crossref_primary_10_1038_boneres_2014_42 crossref_primary_10_1097_TA_0b013e3181c451f4 crossref_primary_10_1186_s13619_023_00169_4 crossref_primary_10_11005_jbm_2020_27_3_151 crossref_primary_10_1007_s12020_013_0026_8 crossref_primary_10_1007_s11914_014_0204_5 crossref_primary_10_1016_j_bone_2014_03_046 crossref_primary_10_1159_000507731 crossref_primary_10_1016_j_jot_2023_09_007 crossref_primary_10_1016_j_clinbiomech_2020_105244 crossref_primary_10_1016_j_gene_2013_12_027 crossref_primary_10_1016_j_injury_2020_06_023 crossref_primary_10_1017_S1751731110002405 crossref_primary_10_1002_jor_21112 crossref_primary_10_1002_jor_22686 crossref_primary_10_1016_j_bone_2013_12_002 crossref_primary_10_1111_nyas_14894 crossref_primary_10_29252_mlj_14_5_48 crossref_primary_10_1111_j_1474_9726_2009_00508_x crossref_primary_10_1038_nm_3917 crossref_primary_10_1007_s10753_015_0149_6 crossref_primary_10_3390_ijms24032981 crossref_primary_10_3390_biology12101331 crossref_primary_10_1016_j_exger_2012_11_004 crossref_primary_10_1016_j_mce_2015_10_017 crossref_primary_10_1016_j_livsci_2013_12_002 crossref_primary_10_1016_j_bone_2020_115610 crossref_primary_10_1093_gerona_glt030 crossref_primary_10_1016_j_bone_2015_02_029 |
Cites_doi | 10.1002/jor.1100160307 10.1016/j.bone.2007.02.012 10.1359/jbmr.2002.17.3.513 10.1210/en.143.1.74 10.1146/annurev.cellbio.20.012103.135836 10.1016/j.bone.2007.12.076 10.1210/en.2005-0362 10.1073/pnas.0408729102 10.1359/JBMR.051203 10.1002/ar.a.10044 10.1016/j.ydbio.2005.06.012 10.1096/fj.04-2796com 10.1056/NEJMoa040933 10.1074/jbc.M203171200 10.1016/S0736-0266(03)00105-0 10.1128/MCB.23.20.7230-7242.2003 10.1038/387083a0 10.1016/j.archoralbio.2005.05.008 10.1016/j.orthres.2005.03.015 10.1002/(SICI)1097-4652(199908)180:2<141::AID-JCP1>3.0.CO;2-I 10.1359/JBMR.050702 10.1007/s00223-001-2037-3 10.1016/S8756-3282(99)00152-0 10.1083/jcb.200312045 10.1126/science.1069525 |
ContentType | Journal Article |
Copyright | Elsevier Inc. 2008 Elsevier Inc. 2009 INIST-CNRS |
Copyright_xml | – notice: Elsevier Inc. – notice: 2008 Elsevier Inc. – notice: 2009 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7X8 5PM |
DOI | 10.1016/j.bone.2008.08.126 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1873-2763 |
EndPage | 23 |
ExternalDocumentID | 10_1016_j_bone_2008_08_126 18852073 21021667 S8756328208007710 1_s2_0_S8756328208007710 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: AR 049717 – fundername: NIAMS NIH HHS grantid: R01 AR049717 – fundername: NIAMS NIH HHS grantid: R01 AR049717-04 |
GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABBQC ABFNM ABGSF ABJNI ABLJU ABMAC ABMZM ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEHWI AEKER AENEX AEVXI AFCTW AFJKZ AFKWA AFRHN AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJRQY AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEB HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM L7B M29 M41 MO0 N9A O-L O9- OAUVE OF0 OR. OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSU SSZ T5K WUQ X7M Z5R ZGI ZMT ~02 ~G- AAIAV ABLVK ABYKQ AHPSJ AJBFU DOVZS EFLBG LCYCR ZA5 08R AAPBV AAUGY ABPIF ABPTK IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7X8 5PM |
ID | FETCH-LOGICAL-c569t-4212b2695f59a38d184d631a8977465eeb0d297d69e9064aae98aa171f3b75af3 |
ISSN | 8756-3282 |
IngestDate | Tue Sep 17 21:18:12 EDT 2024 Fri Oct 25 03:46:35 EDT 2024 Sat Oct 05 05:29:29 EDT 2024 Thu Sep 26 18:06:37 EDT 2024 Sat Sep 28 07:46:46 EDT 2024 Sun Oct 22 16:05:37 EDT 2023 Fri Feb 23 02:32:07 EST 2024 Tue Oct 15 22:56:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | BMP-2 Activin Chondrogenesis Osteogenesis ActRIIB Callus Deficiency Diseases of the osteoarticular system Fracture Trauma Bone morphogenetic protein-2 Morphology Orthopedics Bone |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c569t-4212b2695f59a38d184d631a8977465eeb0d297d69e9064aae98aa171f3b75af3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://europepmc.org/articles/pmc2648293?pdf=render |
PMID | 18852073 |
PQID | 20249009 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2648293 proquest_miscellaneous_66744749 proquest_miscellaneous_20249009 crossref_primary_10_1016_j_bone_2008_08_126 pubmed_primary_18852073 pascalfrancis_primary_21021667 elsevier_sciencedirect_doi_10_1016_j_bone_2008_08_126 elsevier_clinicalkeyesjournals_1_s2_0_S8756328208007710 |
PublicationCentury | 2000 |
PublicationDate | 2009-01-01 |
PublicationDateYYYYMMDD | 2009-01-01 |
PublicationDate_xml | – month: 01 year: 2009 text: 2009-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Bone (New York, N.Y.) |
PublicationTitleAlternate | Bone |
PublicationYear | 2009 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Gaddy Kurten, Coker, Abe, Jilka, Manolagas (bib20) 2002; 143 Gamer, Nove, Levin, Rosen (bib25) 2005; 285 Lee (bib16) 2004; 20 Bahamonde, Lyons (bib24) 2001; 83-A Gerstenfeld, Wronski, Hollinger, Einhorn (bib13) 2005; 20 Hadjiargyrou, Lombardo, Zhao, Ahrens, Joo, Ahn (bib14) 2002; 277 Hirotani, Ohtsuka-Isoya, Mori, Sakai, Eto, Echigo (bib21) 2002; 70 Hamrick, Samaddar, Pennington, McCormick (bib12) 2006; 21 Ekaza, Cabello (bib23) 2002; 7 Wagner, Liu, Chang, Allen (bib4) 2005; 102 Schuelke, Wagner, Stolz, Hubner, Riebel, Komen (bib2) 2004; 350 Piek, Afrakhte, Sampath, van Zoelen, Heldin, Dijke (bib26) 1999; 180 Smits, Dy, Mitra, Lefebvre (bib17) 2004; 164 Nagamine, Imamura, Ishidou, Kato, Murata, Dijke (bib18) 1998; 16 Bogdanovich, Perkins, Krag, Whittemore, Khurana (bib27) 2005; 19 Hamrick (bib5) 2003; 272 Hamrick, Shi, Zhang, Pennington, Kang, Thakore (bib8) 2007; 40 Artaza, Bhasin, Magee, Reisz-Porszasz, Shen, Groome (bib15) 2005; 146 McPherron, Lawler, Lee (bib1) 1997; 387 Nicholson, Stock, Hamrick, Ravosa (bib7) 2006; 51 Zimmers, Davies, Koniaris, Haynes, Esquela, Tomkinson (bib3) 2002; 296 Hamrick, Pennington, Byron (bib6) 2003; 21 Midura, Ibiwoye, Powell, Sakai, Doehring, Grabiner (bib11) 2005; 23 Cho, Gerstenfeld, Einhorn (bib10) 2002; 17 Bialek, Parkington, Warner, St. Andre, Jian, Gavin (bib9) 2008; 42 Rebbapragada, Benchabane, Wrana, Celeste, Attisano (bib22) 2003; 23 Sakai, Miwa, Eto (bib19) 1999; 25 11874242 - J Bone Miner Res. 2002 Mar;17(3):513-20 12029139 - Science. 2002 May 24;296(5572):1486-8 16054590 - Arch Oral Biol. 2006 Jan;51(1):37-49 15878958 - Endocrinology. 2005 Aug;146(8):3547-57 12704695 - Anat Rec A Discov Mol Cell Evol Biol. 2003 May;272(1):388-91 9139826 - Nature. 1997 May 1;387(6628):83-90 17374508 - Curr Opin Pharmacol. 2007 Jun;7(3):310-5 15215484 - N Engl J Med. 2004 Jun 24;350(26):2682-8 16491296 - J Bone Miner Res. 2006 Mar;21(3):477-83 12004338 - Calcif Tissue Int. 2002 Apr;70(4):330-8 15936919 - J Orthop Res. 2005 Sep;23(5):1035-46 10395283 - J Cell Physiol. 1999 Aug;180(2):141-9 12055193 - J Biol Chem. 2002 Aug 16;277(33):30177-82 16160729 - J Bone Miner Res. 2005 Oct;20(10):1715-22 16054124 - Dev Biol. 2005 Sep 1;285(1):156-68 15791004 - FASEB J. 2005 Apr;19(6):543-9 10456384 - Bone. 1999 Aug;25(2):191-6 15699335 - Proc Natl Acad Sci U S A. 2005 Feb 15;102(7):2519-24 14993235 - J Cell Biol. 2004 Mar 1;164(5):747-58 15473835 - Annu Rev Cell Dev Biol. 2004;20:61-86 14554215 - J Orthop Res. 2003 Nov;21(6):1025-32 14517293 - Mol Cell Biol. 2003 Oct;23(20):7230-42 9671926 - J Orthop Res. 1998 May;16(3):314-21 11263666 - J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 1):S56-62 17383950 - Bone. 2007 Jun;40(6):1544-53 11751595 - Endocrinology. 2002 Jan;143(1):74-83 McPherron (10.1016/j.bone.2008.08.126_bib1) 1997; 387 Hamrick (10.1016/j.bone.2008.08.126_bib8) 2007; 40 Hamrick (10.1016/j.bone.2008.08.126_bib5) 2003; 272 Hadjiargyrou (10.1016/j.bone.2008.08.126_bib14) 2002; 277 Gerstenfeld (10.1016/j.bone.2008.08.126_bib13) 2005; 20 Gamer (10.1016/j.bone.2008.08.126_bib25) 2005; 285 Ekaza (10.1016/j.bone.2008.08.126_bib23) 2002; 7 Bahamonde (10.1016/j.bone.2008.08.126_bib24) 2001; 83-A Wagner (10.1016/j.bone.2008.08.126_bib4) 2005; 102 Nagamine (10.1016/j.bone.2008.08.126_bib18) 1998; 16 Hamrick (10.1016/j.bone.2008.08.126_bib6) 2003; 21 Bogdanovich (10.1016/j.bone.2008.08.126_bib27) 2005; 19 Bialek (10.1016/j.bone.2008.08.126_bib9) 2008; 42 Artaza (10.1016/j.bone.2008.08.126_bib15) 2005; 146 Nicholson (10.1016/j.bone.2008.08.126_bib7) 2006; 51 Hamrick (10.1016/j.bone.2008.08.126_bib12) 2006; 21 Midura (10.1016/j.bone.2008.08.126_bib11) 2005; 23 Lee (10.1016/j.bone.2008.08.126_bib16) 2004; 20 Gaddy Kurten (10.1016/j.bone.2008.08.126_bib20) 2002; 143 Schuelke (10.1016/j.bone.2008.08.126_bib2) 2004; 350 Zimmers (10.1016/j.bone.2008.08.126_bib3) 2002; 296 Sakai (10.1016/j.bone.2008.08.126_bib19) 1999; 25 Rebbapragada (10.1016/j.bone.2008.08.126_bib22) 2003; 23 Hirotani (10.1016/j.bone.2008.08.126_bib21) 2002; 70 Cho (10.1016/j.bone.2008.08.126_bib10) 2002; 17 Piek (10.1016/j.bone.2008.08.126_bib26) 1999; 180 Smits (10.1016/j.bone.2008.08.126_bib17) 2004; 164 |
References_xml | – volume: 387 start-page: 83 year: 1997 end-page: 90 ident: bib1 article-title: Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member publication-title: Nature contributor: fullname: Lee – volume: 20 start-page: 61 year: 2004 end-page: 86 ident: bib16 article-title: Regulation of muscle mass by myostatin publication-title: Annu. Rev. Cell Dev. Biol. contributor: fullname: Lee – volume: 146 start-page: 3547 year: 2005 end-page: 3557 ident: bib15 article-title: Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multi-potent cells publication-title: Endocrinol. contributor: fullname: Groome – volume: 23 start-page: 1035 year: 2005 end-page: 1046 ident: bib11 article-title: Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies publication-title: J. Orthop. Res. contributor: fullname: Grabiner – volume: 70 start-page: 330 year: 2002 end-page: 338 ident: bib21 article-title: Activin A increases the mass of grafted bone in C3H/HeJ mice publication-title: Calcif. Tissue Int. contributor: fullname: Echigo – volume: 350 start-page: 2682 year: 2004 end-page: 2688 ident: bib2 article-title: Myostatin mutation associated with gross muscle hypertrophy in a child publication-title: N. Eng. J. Med. contributor: fullname: Komen – volume: 21 start-page: 1025 year: 2003 end-page: 1032 ident: bib6 article-title: Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin) publication-title: J. Orthop. Res. contributor: fullname: Byron – volume: 20 start-page: 1715 year: 2005 end-page: 1722 ident: bib13 article-title: Application of histomorphometric methods to the study of bone repair publication-title: J. Bone Miner. Res. contributor: fullname: Einhorn – volume: 23 start-page: 7230 year: 2003 end-page: 7242 ident: bib22 article-title: Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis publication-title: Mol. Cell. Biol. contributor: fullname: Attisano – volume: 42 start-page: S46 year: 2008 ident: bib9 article-title: Mice treated with a myostatin/GDF-8 decoy receptor, ActRIIB-Fc, exhibit a tremendous increase in bone mass publication-title: Bone contributor: fullname: Gavin – volume: 16 start-page: 314 year: 1998 end-page: 321 ident: bib18 article-title: Immunohistochemical detection of activin A, follistatin, and activin receptors during fracture healing in the rat publication-title: J. Orthop. Res. contributor: fullname: Dijke – volume: 285 start-page: 156 year: 2005 end-page: 168 ident: bib25 article-title: BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in xenopus embryos publication-title: Dev. Biol. contributor: fullname: Rosen – volume: 296 start-page: 1486 year: 2002 end-page: 1488 ident: bib3 article-title: Induction of cachexia in mice by systemically administered myostatin publication-title: Science contributor: fullname: Tomkinson – volume: 272 start-page: 388 year: 2003 end-page: 391 ident: bib5 article-title: Increased bone mineral density in the femora of GDF8 knockout mice publication-title: Anat. Rec. contributor: fullname: Hamrick – volume: 40 start-page: 1544 year: 2007 end-page: 1553 ident: bib8 article-title: Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading publication-title: Bone contributor: fullname: Thakore – volume: 164 start-page: 747 year: 2004 end-page: 758 ident: bib17 article-title: Sox5 and sox 6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate publication-title: J. Cell Biol. contributor: fullname: Lefebvre – volume: 21 start-page: 477 year: 2006 end-page: 483 ident: bib12 article-title: Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise publication-title: J. Bone Miner. Res. contributor: fullname: McCormick – volume: 19 start-page: 543 year: 2005 end-page: 549 ident: bib27 article-title: Myostatin-propeptide mediated amelioration of dystrophic pathophysiology publication-title: FASEB J. contributor: fullname: Khurana – volume: 83-A start-page: S56 year: 2001 end-page: S62 ident: bib24 article-title: BMP3: to be or not to be a BMP publication-title: J. Bone Jt. Surg. contributor: fullname: Lyons – volume: 102 start-page: 2519 year: 2005 end-page: 2524 ident: bib4 article-title: Muscle regeneration in the prolonged absence of myostatin publication-title: Proc. Natl. Acad. Sci. U. S. A. contributor: fullname: Allen – volume: 17 start-page: 513 year: 2002 end-page: 520 ident: bib10 article-title: Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing publication-title: J. Bone Miner. Res. contributor: fullname: Einhorn – volume: 277 start-page: 30177 year: 2002 end-page: 30182 ident: bib14 article-title: Transcriptional profiling of bone regeneration publication-title: J. Biol. Chem. contributor: fullname: Ahn – volume: 143 start-page: 74 year: 2002 end-page: 83 ident: bib20 article-title: Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures publication-title: Endocrinology contributor: fullname: Manolagas – volume: 7 start-page: 1 year: 2002 end-page: 6 ident: bib23 article-title: The myostatin gene: physiology and pharmacological relevance publication-title: Curr. Opin. Pharmacol. contributor: fullname: Cabello – volume: 51 start-page: 37 year: 2006 end-page: 49 ident: bib7 article-title: Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice publication-title: Arch. Oral Biol. contributor: fullname: Ravosa – volume: 180 start-page: 141 year: 1999 end-page: 149 ident: bib26 article-title: Functional antagonism between activin and osteogenic protein-1 in human embryonal carcinoma cells publication-title: J. Cell. Physiol. contributor: fullname: Dijke – volume: 25 start-page: 191 year: 1999 end-page: 196 ident: bib19 article-title: Local administration of activin promotes fracture healing in the rat fibula fracture model publication-title: Bone contributor: fullname: Eto – volume: 16 start-page: 314 year: 1998 ident: 10.1016/j.bone.2008.08.126_bib18 article-title: Immunohistochemical detection of activin A, follistatin, and activin receptors during fracture healing in the rat publication-title: J. Orthop. Res. doi: 10.1002/jor.1100160307 contributor: fullname: Nagamine – volume: 40 start-page: 1544 year: 2007 ident: 10.1016/j.bone.2008.08.126_bib8 article-title: Loss of myostatin (GDF8) function increases osteogenic differentiation of bone marrow-derived mesenchymal stem cells but the osteogenic effect is ablated with unloading publication-title: Bone doi: 10.1016/j.bone.2007.02.012 contributor: fullname: Hamrick – volume: 17 start-page: 513 year: 2002 ident: 10.1016/j.bone.2008.08.126_bib10 article-title: Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2002.17.3.513 contributor: fullname: Cho – volume: 143 start-page: 74 year: 2002 ident: 10.1016/j.bone.2008.08.126_bib20 article-title: Inhibin suppresses and activin stimulates osteoblastogenesis and osteoclastogenesis in murine bone marrow cultures publication-title: Endocrinology doi: 10.1210/en.143.1.74 contributor: fullname: Gaddy Kurten – volume: 20 start-page: 61 year: 2004 ident: 10.1016/j.bone.2008.08.126_bib16 article-title: Regulation of muscle mass by myostatin publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev.cellbio.20.012103.135836 contributor: fullname: Lee – volume: 42 start-page: S46 year: 2008 ident: 10.1016/j.bone.2008.08.126_bib9 article-title: Mice treated with a myostatin/GDF-8 decoy receptor, ActRIIB-Fc, exhibit a tremendous increase in bone mass publication-title: Bone doi: 10.1016/j.bone.2007.12.076 contributor: fullname: Bialek – volume: 83-A start-page: S56 issue: Suppl 1 year: 2001 ident: 10.1016/j.bone.2008.08.126_bib24 article-title: BMP3: to be or not to be a BMP publication-title: J. Bone Jt. Surg. contributor: fullname: Bahamonde – volume: 146 start-page: 3547 year: 2005 ident: 10.1016/j.bone.2008.08.126_bib15 article-title: Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10T(1/2) mesenchymal multi-potent cells publication-title: Endocrinol. doi: 10.1210/en.2005-0362 contributor: fullname: Artaza – volume: 102 start-page: 2519 year: 2005 ident: 10.1016/j.bone.2008.08.126_bib4 article-title: Muscle regeneration in the prolonged absence of myostatin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0408729102 contributor: fullname: Wagner – volume: 21 start-page: 477 year: 2006 ident: 10.1016/j.bone.2008.08.126_bib12 article-title: Increased muscle mass with myostatin deficiency improves gains in bone strength with exercise publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.051203 contributor: fullname: Hamrick – volume: 272 start-page: 388 year: 2003 ident: 10.1016/j.bone.2008.08.126_bib5 article-title: Increased bone mineral density in the femora of GDF8 knockout mice publication-title: Anat. Rec. doi: 10.1002/ar.a.10044 contributor: fullname: Hamrick – volume: 285 start-page: 156 year: 2005 ident: 10.1016/j.bone.2008.08.126_bib25 article-title: BMP-3 is a novel inhibitor of both activin and BMP-4 signaling in xenopus embryos publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2005.06.012 contributor: fullname: Gamer – volume: 19 start-page: 543 year: 2005 ident: 10.1016/j.bone.2008.08.126_bib27 article-title: Myostatin-propeptide mediated amelioration of dystrophic pathophysiology publication-title: FASEB J. doi: 10.1096/fj.04-2796com contributor: fullname: Bogdanovich – volume: 350 start-page: 2682 year: 2004 ident: 10.1016/j.bone.2008.08.126_bib2 article-title: Myostatin mutation associated with gross muscle hypertrophy in a child publication-title: N. Eng. J. Med. doi: 10.1056/NEJMoa040933 contributor: fullname: Schuelke – volume: 277 start-page: 30177 year: 2002 ident: 10.1016/j.bone.2008.08.126_bib14 article-title: Transcriptional profiling of bone regeneration publication-title: J. Biol. Chem. doi: 10.1074/jbc.M203171200 contributor: fullname: Hadjiargyrou – volume: 21 start-page: 1025 year: 2003 ident: 10.1016/j.bone.2008.08.126_bib6 article-title: Bone architecture and disc degeneration in the lumbar spine of mice lacking GDF-8 (myostatin) publication-title: J. Orthop. Res. doi: 10.1016/S0736-0266(03)00105-0 contributor: fullname: Hamrick – volume: 23 start-page: 7230 year: 2003 ident: 10.1016/j.bone.2008.08.126_bib22 article-title: Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.23.20.7230-7242.2003 contributor: fullname: Rebbapragada – volume: 387 start-page: 83 year: 1997 ident: 10.1016/j.bone.2008.08.126_bib1 article-title: Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member publication-title: Nature doi: 10.1038/387083a0 contributor: fullname: McPherron – volume: 51 start-page: 37 year: 2006 ident: 10.1016/j.bone.2008.08.126_bib7 article-title: Biomineralization and adaptive plasticity of the temporomandibular joint in myostatin knockout mice publication-title: Arch. Oral Biol. doi: 10.1016/j.archoralbio.2005.05.008 contributor: fullname: Nicholson – volume: 23 start-page: 1035 year: 2005 ident: 10.1016/j.bone.2008.08.126_bib11 article-title: Pulsed electromagnetic field treatments enhance the healing of fibular osteotomies publication-title: J. Orthop. Res. doi: 10.1016/j.orthres.2005.03.015 contributor: fullname: Midura – volume: 180 start-page: 141 year: 1999 ident: 10.1016/j.bone.2008.08.126_bib26 article-title: Functional antagonism between activin and osteogenic protein-1 in human embryonal carcinoma cells publication-title: J. Cell. Physiol. doi: 10.1002/(SICI)1097-4652(199908)180:2<141::AID-JCP1>3.0.CO;2-I contributor: fullname: Piek – volume: 20 start-page: 1715 year: 2005 ident: 10.1016/j.bone.2008.08.126_bib13 article-title: Application of histomorphometric methods to the study of bone repair publication-title: J. Bone Miner. Res. doi: 10.1359/JBMR.050702 contributor: fullname: Gerstenfeld – volume: 70 start-page: 330 year: 2002 ident: 10.1016/j.bone.2008.08.126_bib21 article-title: Activin A increases the mass of grafted bone in C3H/HeJ mice publication-title: Calcif. Tissue Int. doi: 10.1007/s00223-001-2037-3 contributor: fullname: Hirotani – volume: 25 start-page: 191 year: 1999 ident: 10.1016/j.bone.2008.08.126_bib19 article-title: Local administration of activin promotes fracture healing in the rat fibula fracture model publication-title: Bone doi: 10.1016/S8756-3282(99)00152-0 contributor: fullname: Sakai – volume: 164 start-page: 747 year: 2004 ident: 10.1016/j.bone.2008.08.126_bib17 article-title: Sox5 and sox 6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate publication-title: J. Cell Biol. doi: 10.1083/jcb.200312045 contributor: fullname: Smits – volume: 7 start-page: 1 year: 2002 ident: 10.1016/j.bone.2008.08.126_bib23 article-title: The myostatin gene: physiology and pharmacological relevance publication-title: Curr. Opin. Pharmacol. contributor: fullname: Ekaza – volume: 296 start-page: 1486 year: 2002 ident: 10.1016/j.bone.2008.08.126_bib3 article-title: Induction of cachexia in mice by systemically administered myostatin publication-title: Science doi: 10.1126/science.1069525 contributor: fullname: Zimmers |
SSID | ssj0003971 |
Score | 2.263773 |
Snippet | Abstract Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown... Myostatin (GDF-8) is a negative regulator of skeletal muscle growth and mice lacking myostatin show increased muscle mass. We have previously shown that... |
SourceID | pubmedcentral proquest crossref pubmed pascalfrancis elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 17 |
SubjectTerms | Activin ActRIIB Animals Biological and medical sciences Biomechanical Phenomena BMP-2 Bony Callus - diagnostic imaging Bony Callus - pathology Cartilage - pathology Cell physiology Chondrogenesis Female Fractures, Bone - diagnostic imaging Fractures, Bone - pathology Fractures, Bone - surgery Fundamental and applied biological sciences. Psychology Gene Expression Regulation Heterozygote Injuries of the limb. Injuries of the spine Male Medical sciences Mice Mineralization, calcification Molecular and cellular biology Myostatin - deficiency Myostatin - metabolism Organ Size Orthopedics Osteogenesis Osteotomy Radiography SOXD Transcription Factors - genetics SOXD Transcription Factors - metabolism Time Factors Traumas. Diseases due to physical agents Vertebrates: anatomy and physiology, studies on body, several organs or systems |
Title | Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S8756328208007710 https://dx.doi.org/10.1016/j.bone.2008.08.126 https://www.ncbi.nlm.nih.gov/pubmed/18852073 https://search.proquest.com/docview/20249009 https://search.proquest.com/docview/66744749 https://pubmed.ncbi.nlm.nih.gov/PMC2648293 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZpB2Mwxtbukl06PYyxkTrYsmVbj6XNCJTuYe1g7MXIttymJHapY1j363eOZdlx2oxtsBcTHNmWdT7rXPSdI0LegQrLUBFZ4HbFlpekthVmcWIlMuSJ7bI4U5iNPD0NPn8LjybeZDAwO2t25_6rpOEcyBozZ_9C2u1N4QT8BpnDEaQOxz-S-8lNgUlCs7wOABxBl9DxTxVWiqjTLGc5GoqlKkcZZkhVNfNrPq_KUTn7qQPSxQ-LY-1_zZHNDcOzaRYXYJjqWa23JFxoe3V9b5-VWMOxMvsqTzBi30Z3lvK6Bs605t52GISZaK4qzSO-gNtfSfAOzls0LxaaYtDx8k34QqyELwzD07dcFvamZF0Ssgc9Pb_qPM9GU-tE5Vs6QIcjLsc4Gg1ZNhw77I6C25PDY8cq2di2TrEb2As0oIOgYdr2C3E7UckiO7rVdIvcYzDLIZ_0O__SmgFg6Dk6uKzfr8nY0uTC9b5tsooewsCCcDO9ycpdXtA6mXfFOjp7TB41bg090Hh8QgYq3yG7B7lcFosb-p7WRON6BWeH3D9p-By7RLVopR9qrH6kHVJpi1RqkEo1BCkidZ_WOKUdTvcpoNQ0wXenWtBPyddPk7PDqdVs_GEl3BdLC1kKMfMFz7iQbpg6oZf6riNDdFZ8rlRsp0wEqS-UAJNaSiVCKZ3Aydw44DJzn5HtHJ7yglDB0szNEh4LBr5wFsRO4tqex3maugLslCEZmYGPrnR9l8gQHy8j7GqzUWsYgZiGJDCyiUzmMuhaVTYTQBltAsmQ8PbKxrbVNmsEsP3tE_d6EGg7iaEax_eDIXlrMBGBZsDlPpmroirhLswT8MVtbgGXe17gQYvnGkPdEIQhZ6D94YV76GobYFX6_j_57KKuTo-UWfAhXv7zUL0iD7qJ4jXZXl5X6g3ZKtNqr_7CfgF8O_-5 |
link.rule.ids | 230,315,782,786,887,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myostatin+%28GDF-8%29+deficiency+increases+fracture+callus+size%2C+Sox-5+expression%2C+and+callus+bone+volume&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Kellum%2C+Ethan&rft.au=Starr%2C+Harlan&rft.au=Arounleut%2C+Phonepasong&rft.au=Immel%2C+David&rft.date=2009-01-01&rft.issn=8756-3282&rft.volume=44&rft.issue=1&rft.spage=17&rft.epage=23&rft_id=info:doi/10.1016%2Fj.bone.2008.08.126&rft.externalDBID=ECK1-s2.0-S8756328208007710&rft.externalDocID=1_s2_0_S8756328208007710 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F87563282%2FS8756328208X00158%2Fcov150h.gif |