Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy

Abstract Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Her...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials Vol. 102; pp. 1 - 8
Main Authors: Ali, Moustafa R.K, Ali, Hala R, Rankin, Carl R, El-Sayed, Mostafa A
Format: Journal Article
Language:English
Published: Netherlands Elsevier Ltd 01-09-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Abstract Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 °C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis.
AbstractList Abstract Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 °C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis.
Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 °C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis.
Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat to cause cell death, mainly via apoptosis and necrosis. Modulating PPTT to induce cell apoptosis is more favorable than necrosis. Herein, we used a mild treatment condition using gold nanorods (AuNRs) to trigger apoptosis and tested how different cell lines responded to it. Three different cancer cell lines of epithelial origin: HSC (oral), MCF-7 (breast) and Huh7.5 (liver) had comparable AuNRs uptake and were heated to same environmental temperature (under 50 degree C). However, Huh7.5 cells displayed a significant increase in cell apoptosis after PPTT as compared to the other two cell lines. As HSP70 is known to increase cellular resistance to heat, we determined relative HSP70 levels in these cells and results indicated that Huh7.5 cells had ten-fold decreased levels of HSP70 as compared with HSC and MCF-7 cells. We then down-regulated HSP70 with a siRNA and observed that all three cell lines displayed significant reduction in viability and an increase in apoptosis after PPTT. As an enhancement to PPTT, we conjugated AuNRs with Quercetin, an inhibitor of HSP70 which displayed anti-cancer effects via apoptosis.
Author Ali, Moustafa R.K
Rankin, Carl R
Ali, Hala R
El-Sayed, Mostafa A
Author_xml – sequence: 1
  fullname: Ali, Moustafa R.K
– sequence: 2
  fullname: Ali, Hala R
– sequence: 3
  fullname: Rankin, Carl R
– sequence: 4
  fullname: El-Sayed, Mostafa A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27318931$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rFDEYx4NU7Lb6FSR48jJrknnJjAdBqlWh4MEK3kIm82Qn25lkTDKVPfjdm7BVxNNC4CHJ73n9PxfozDoLCL2iZEsJbd7st71xs4zgjZzClqW3LUmH8idoQ1veFnVH6jO0IbRiRddQdo4uQtiTdCcVe4bOGS9p25V0g37fSr-DaOwOjyAjDqNTd3jxLoKxmBO8hvy3c9OArbTOuyFgsKO0CgJW2XisYJqwXNwSXTABJ8fJ_cKDC4CXSYbZWaPwMrro4gh-lhPOVi6H5-ipTi3Ai0d7ib5ff7y9-lzcfP305er9TaHqhsdC04FrVkPfVAoqzauuBQpKlmTom1ITUivOoddaNmWnQNZSlq0muiRtpRNfXqLXx7ipsZ8rhChmE3LV0oJbg6Atq-u66mhzAkrapmk4o6egjFcVrcuEvj2iyrsQPGixeDNLfxCUiCyq2It_RRVZVEHSobn6l4951n6G4a_rHxUT8OEIQJrhvQEvgjKQpBmMBxXF4Mxped79F0ZNJkknpzs4QNi71dvsQ0Vggohveb3ydqWppUbpj_IBn9jTHA
CitedBy_id crossref_primary_10_1016_j_matdes_2023_111731
crossref_primary_10_1016_j_apsb_2018_05_011
crossref_primary_10_1039_C9NR10039C
crossref_primary_10_1039_D0CS00097C
crossref_primary_10_2147_IJN_S432928
crossref_primary_10_1016_j_colsurfb_2018_06_021
crossref_primary_10_1098_rsos_180159
crossref_primary_10_1039_D2BM01281B
crossref_primary_10_1007_s42765_022_00199_8
crossref_primary_10_1073_pnas_1619302114
crossref_primary_10_1186_s12951_024_02326_6
crossref_primary_10_1016_j_snb_2022_131485
crossref_primary_10_1002_adma_202100599
crossref_primary_10_1088_1748_605X_ac5a23
crossref_primary_10_1002_adma_202400416
crossref_primary_10_1002_smll_202003398
crossref_primary_10_1038_s41598_022_25289_w
crossref_primary_10_1016_j_jcis_2020_01_098
crossref_primary_10_1016_j_biomaterials_2018_06_006
crossref_primary_10_1038_s41598_020_72534_1
crossref_primary_10_1021_jacs_6b08787
crossref_primary_10_1021_acsnano_7b05858
crossref_primary_10_1039_C8TB02484G
crossref_primary_10_1002_ijc_31717
crossref_primary_10_1039_D0TB00696C
crossref_primary_10_34133_2022_9854342
crossref_primary_10_1080_21655979_2022_2025517
crossref_primary_10_1002_adfm_202003891
crossref_primary_10_1039_D4BM00057A
crossref_primary_10_3390_ma11040623
crossref_primary_10_1021_acsnano_6b08345
crossref_primary_10_1016_j_actbio_2020_08_007
crossref_primary_10_3389_fchem_2021_736468
crossref_primary_10_1039_C6TB02872A
crossref_primary_10_1039_D1CP03804D
crossref_primary_10_1016_j_msec_2020_111127
crossref_primary_10_1002_smll_202307078
crossref_primary_10_1177_0885328220916968
crossref_primary_10_1021_acs_analchem_9b02248
crossref_primary_10_1039_C7NR08509E
crossref_primary_10_1016_j_colsurfb_2017_10_027
crossref_primary_10_1016_j_jcis_2024_05_149
crossref_primary_10_1002_jemt_23213
crossref_primary_10_1038_s41419_021_04463_4
crossref_primary_10_1021_acsami_8b11645
crossref_primary_10_1080_17455030_2020_1738589
crossref_primary_10_1039_D1QM00630D
crossref_primary_10_1016_j_bbagen_2019_129435
crossref_primary_10_3390_pharmaceutics14112279
crossref_primary_10_1021_acs_analchem_9b05366
crossref_primary_10_3390_ijms19113385
crossref_primary_10_1039_C8TB00148K
crossref_primary_10_1042_BSR20200079
crossref_primary_10_1002_advs_201902576
crossref_primary_10_1039_D0NR08845E
crossref_primary_10_1002_mabi_202200161
crossref_primary_10_1002_smll_201902636
crossref_primary_10_1039_D2NR06692K
crossref_primary_10_1016_j_biomaterials_2020_119771
crossref_primary_10_1016_j_cej_2019_123043
crossref_primary_10_3390_cancers11060851
crossref_primary_10_1002_adts_201800100
crossref_primary_10_1021_jacs_1c02537
crossref_primary_10_1098_rstb_2016_0526
crossref_primary_10_1021_acs_jpcc_9b01961
crossref_primary_10_1002_adfm_202100738
crossref_primary_10_1016_j_ijleo_2020_165174
crossref_primary_10_3390_app12147097
crossref_primary_10_1039_C8BM00691A
crossref_primary_10_1016_j_biomaterials_2019_119463
crossref_primary_10_1021_acsabm_9b00764
crossref_primary_10_1039_D0TB01794A
crossref_primary_10_3389_fbioe_2022_878524
crossref_primary_10_1088_2515_7655_ad2cf2
crossref_primary_10_1002_adfm_201706398
crossref_primary_10_1021_acssensors_9b00524
crossref_primary_10_1002_macp_202200140
crossref_primary_10_2147_IJN_S269321
crossref_primary_10_34133_2021_9816594
crossref_primary_10_2217_nnm_2018_0409
crossref_primary_10_1002_anbr_202100029
crossref_primary_10_1007_s00339_018_2302_1
crossref_primary_10_3389_fbioe_2020_599040
crossref_primary_10_1021_acsnano_8b04128
crossref_primary_10_1063_5_0073208
crossref_primary_10_1007_s11051_017_3992_6
crossref_primary_10_1016_j_pdpdt_2020_102139
crossref_primary_10_1039_C7NR05278B
crossref_primary_10_1039_D1TB01469B
crossref_primary_10_1021_acs_bioconjchem_6b00430
crossref_primary_10_1186_s11671_022_03706_3
crossref_primary_10_1038_s41598_018_26978_1
crossref_primary_10_1016_j_ijbiomac_2021_06_172
crossref_primary_10_1016_j_cclet_2021_08_023
crossref_primary_10_1039_C9SC04389F
crossref_primary_10_1007_s11468_017_0614_1
crossref_primary_10_1016_j_jtherbio_2020_102615
crossref_primary_10_1073_pnas_1703151114
crossref_primary_10_1039_D0TB00539H
crossref_primary_10_1016_j_jphotobiol_2016_09_012
crossref_primary_10_1021_acsbiomaterials_7b00359
crossref_primary_10_1021_acsnano_8b09496
crossref_primary_10_1038_s41598_021_02697_y
crossref_primary_10_1021_acs_chemrev_0c00356
crossref_primary_10_1021_acsami_8b14649
crossref_primary_10_3390_pharmaceutics14030560
crossref_primary_10_1007_s11468_016_0495_8
crossref_primary_10_1016_j_biomaterials_2024_122514
crossref_primary_10_1007_s10118_022_2857_3
crossref_primary_10_1002_adtp_202200248
crossref_primary_10_1016_j_matdes_2022_110467
crossref_primary_10_1039_C6NR07598C
crossref_primary_10_2147_IJN_S249252
crossref_primary_10_1021_acs_bioconjchem_2c00011
crossref_primary_10_1021_acsbiomaterials_1c01311
crossref_primary_10_1038_s41598_022_15660_2
crossref_primary_10_1039_D1BM01245B
crossref_primary_10_1021_acs_nanolett_0c00147
crossref_primary_10_1021_acsami_6b13808
crossref_primary_10_3390_cancers11060764
crossref_primary_10_1016_j_ijpharm_2019_05_056
crossref_primary_10_1021_acsami_0c21332
crossref_primary_10_1016_j_nantod_2021_101363
crossref_primary_10_1088_1361_6528_aa75ad
crossref_primary_10_2147_IJN_S388996
crossref_primary_10_1177_15330338211039126
crossref_primary_10_1021_acs_analchem_9b04470
crossref_primary_10_1039_C7NR04983H
crossref_primary_10_1134_S1068162024030038
crossref_primary_10_1002_adfm_201909391
crossref_primary_10_1021_acsami_8b19042
crossref_primary_10_1007_s40846_023_00836_6
crossref_primary_10_1016_j_actbio_2024_06_034
crossref_primary_10_1016_j_jcis_2024_03_108
crossref_primary_10_1016_j_jconrel_2023_01_009
crossref_primary_10_1002_adfm_202008171
crossref_primary_10_1016_j_snb_2021_129554
crossref_primary_10_3390_molecules25030490
crossref_primary_10_1002_admi_202101369
crossref_primary_10_1186_s12951_022_01740_y
crossref_primary_10_1002_smtd_201800007
crossref_primary_10_1016_j_cej_2022_134886
crossref_primary_10_1039_D0NR01690J
crossref_primary_10_1039_D1TB01753E
crossref_primary_10_1080_09205063_2022_2112310
crossref_primary_10_1038_s41427_018_0040_7
crossref_primary_10_3390_nano12193318
Cites_doi 10.1039/C6NR00056H
10.1002/adfm.201401642
10.1186/1748-717X-8-42
10.3109/02656736.2011.607485
10.1096/fasebj.9.15.8529835
10.1379/1466-1268(2001)006<0136:TNMIAT>2.0.CO;2
10.1016/j.biomaterials.2010.08.096
10.1074/jbc.M113.524801
10.4161/cc.9.1.10354
10.1002/adhm.201400103
10.3892/ijo.2014.2399
10.1038/nmeth.2534
10.1016/j.bbapap.2014.12.019
10.1084/jem.177.5.1391
10.1016/j.biomaterials.2010.08.068
10.1007/s10495-014-1083-z
10.1111/j.1349-7006.2008.01072.x
10.1016/S0092-8674(00)80928-9
10.1002/anie.201506115
10.1074/jbc.M112.440909
10.1117/1.3486538
10.1073/pnas.0905195106
10.1038/nnano.2015.28
10.1152/japplphysiol.01267.2001
10.1016/j.jconrel.2013.04.006
10.1158/0008-5472.CAN-10-0250
10.1515/hsz-2014-0164
10.1073/pnas.1204391109
10.1021/am508837v
10.1007/BF01784843
10.1016/j.addr.2011.03.005
10.1002/adfm.201504884
10.1021/la301387p
10.1016/j.canlet.2008.04.026
10.1021/am508117e
10.1021/ja4124412
10.1097/CAD.0b013e3280145274
10.1021/nn900904h
10.1006/excr.1997.3494
10.1080/0265673031000065042
10.1021/nl400536d
10.1002/adma.200802789
10.1016/j.canlet.2014.11.022
10.1002/adma.201104797
10.1021/nn505468v
10.1379/CSC-99r.1
10.1021/nn500840x
10.1002/lsm.20110
10.1002/adfm.201301015
10.1021/jp409298f
10.1021/nn4033757
ContentType Journal Article
Copyright 2016
Published by Elsevier Ltd.
Copyright_xml – notice: 2016
– notice: Published by Elsevier Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
DOI 10.1016/j.biomaterials.2016.06.017
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
ANTE: Abstracts in New Technology & Engineering
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
Materials Research Database
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
DatabaseTitleList
MEDLINE - Academic
Engineering Research Database
MEDLINE

Materials Research Database
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Dentistry
EISSN 1878-5905
EndPage 8
ExternalDocumentID 10_1016_j_biomaterials_2016_06_017
27318931
S014296121630271X
1_s2_0_S014296121630271X
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYOK
ABFNM
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABXDB
ABXRA
ACDAQ
ACGFS
ACIUM
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
ADUVX
AEBSH
AECPX
AEHWI
AEKER
AENEX
AEVXI
AEZYN
AFCTW
AFFNX
AFJKZ
AFKWA
AFRHN
AFRZQ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJUYK
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OB-
OM.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SSG
SSM
SST
SSU
SSZ
T5K
TN5
VH1
WH7
WUQ
XPP
XUV
Z5R
ZMT
~G-
AAIAV
ABYKQ
AJBFU
DOVZS
EFLBG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
7SR
7TB
7U5
8BQ
F28
JG9
L7M
ID FETCH-LOGICAL-c567t-f1d7f25eb64ce4f7498e1eca30db63f005c77ebffa639cea5aa38f0f3084f4f73
ISSN 0142-9612
IngestDate Fri Oct 25 06:16:52 EDT 2024
Fri Oct 25 09:06:08 EDT 2024
Fri Oct 25 21:10:05 EDT 2024
Thu Sep 26 18:41:20 EDT 2024
Wed Oct 16 00:59:53 EDT 2024
Fri Feb 23 02:31:38 EST 2024
Tue Oct 15 22:54:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Plasmonic photothermal therapy (PPTT)
Quercetin (QE)
Heat shock protein 70 (HSP70)
Protein refolding
Gold nanorods (AuNRs)
Language English
License Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c567t-f1d7f25eb64ce4f7498e1eca30db63f005c77ebffa639cea5aa38f0f3084f4f73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 27318931
PQID 1802744153
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_1825554916
proquest_miscellaneous_1808666721
proquest_miscellaneous_1802744153
crossref_primary_10_1016_j_biomaterials_2016_06_017
pubmed_primary_27318931
elsevier_sciencedirect_doi_10_1016_j_biomaterials_2016_06_017
elsevier_clinicalkeyesjournals_1_s2_0_S014296121630271X
PublicationCentury 2000
PublicationDate 2016-09-01
PublicationDateYYYYMMDD 2016-09-01
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Biomaterials
PublicationTitleAlternate Biomaterials
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bonfil, Bustuoabad, Ruggiero, Meiss, Pasqualini (bib20) 1988; 6
Rylander, Stafford, Hazle, Whitney, Diller (bib32) 2011; 27
Feng, Zhou, Nie, Chen, Qiu, Zhang (bib42) 2015; 7
Kannadorai, Chiew, Luo, Liu (bib16) 2015; 357
Bukau, Horwich (bib28) 1998; 92
Bharti, Rani, Bhatia, Arya (bib25) 2015; 20
Mackey, Ali, Austin, Near, El-Sayed (bib38) 2014; 118
Nakamoto, Fujita, Ohtaki, Watanabe, Narumi, Maruyama (bib45) 2014; 289
Kang, Austin, El-Sayed (bib43) 2014; 8
Davidovich, Kearney, Martin (bib21) 2014; 395
Li, Gu (bib22) 2010; 31
Shen, Kim, Mu, Gentile, Mai, Wolfram (bib11) 2014; 3
Zhu, Zou, Hu, Li, Gu, Cao (bib14) 2016; 26
Kregel (bib27) 2002; 92
Huang, El-Sayed, El-Sayed (bib5) 2010
Larson, Gormley, Frazier, Ghandehari (bib33) 2013; 170
Shao, Xuan, Dai, Si, Li, He (bib15) 2015; 54
Ali, Snyder, El-Sayed (bib7) 2012; 28
Miyako, Deguchi, Nakajima, Yudasaka, Hagihara, Horie (bib29) 2012; 109
Lin, Liu, Zhao, Xie, Lin, Li (bib40) 2015; 10
Ye, Yang, Chen, Wu, Yang, Zhao (bib50) 2007; 18
Milanovic, Firat, Grosu, Niedermann (bib37) 2013; 8
Ciocca, Calderwood (bib26) 2005; 10
Bagley, Hill, Rogers, Bhatia (bib3) 2013; 7
Dickerson, Dreaden, Huang, El-Sayed, Chu, Pushpanketh (bib1) 2008; 269
Huang, Kang, Qian, Mackey, Chen, Oyelere (bib12) 2010; 15
Yang, Liu, Liu, Pu, Ren, Qu (bib13) 2012; 24
Fisher, Sarkar, Buchanan, Szot, Whitney, Hatcher (bib31) 2010; 70
Sun, Liu, Zhu, Wang, Hu, Liu (bib10) 2016; 8
Wang, Chen, Zhou, Zhang (bib44) 2014; 45
Gibson, Seiler, Veitia (bib49) 2013; 10
Yang, Tseng, Suo, Chen, Yu, Chiu (bib36) 2015; 7
Lepock, Frey, Heynen, Senisterra, Warters (bib46) 2001; 6
Ito, Saito, Mitobe, Minamiya, Takahashi, Maruyama (bib35) 2009; 100
Ali, Panikkanvalappil, El-Sayed (bib39) 2014; 136
Li, Sun, Wang, Wang, Zhai, Liang (bib2) 2013; 13
Burke, Ding, Singh, Kraft, Levi-Polyachenko, Rylander (bib30) 2009; 106
He, Fox (bib48) 1997; 232
Perez-Hernandez, del Pino, Mitchell, Moros, Stepien, Pelaz (bib17) 2015; 9
Bakthisaran, Tangirala, Rao (bib24) 2015; 1854
Kudryavets (bib19) 1998; 20
Huang, Kang, Qian, Mackey, Chen, Oyelere (bib55) 2010; 15
Wong, Luna, Ferrario, Gomer (bib34) 2004; 35
Rankin, Hilgarth, Leoni, Kwon, Den Beste, Parkos (bib54) 2013; 288
Lepock (bib47) 2003; 19
Shichiri, Tanaka (bib52) 2010; 9
Zhou, Yu, Zhang, Wang, Wu, Zhou (bib4) 2014; 24
Shi, Li, Ren, Qu (bib9) 2013; 23
Hendrick, Hartl (bib23) 1995; 9
Wei, Zhao, Kariya, Fukata, Teshigawara, Uchida (bib51) 1994; 54
Moon, Lee, Choi (bib41) 2009; 3
Orosz, Echtenacher, Falk, Ruschoff, Weber, Mannel (bib18) 1993; 177
Huang, Neretina, El-Sayed (bib8) 2009; 21
Liu, Tao, Yang, Zhang, Lee, Liu (bib53) 2011; 32
Alkilany, Thompson, Boulos, Sisco, Murphy (bib6) 2012; 64
Shen (10.1016/j.biomaterials.2016.06.017_bib11) 2014; 3
Yang (10.1016/j.biomaterials.2016.06.017_bib13) 2012; 24
Davidovich (10.1016/j.biomaterials.2016.06.017_bib21) 2014; 395
Huang (10.1016/j.biomaterials.2016.06.017_bib55) 2010; 15
Hendrick (10.1016/j.biomaterials.2016.06.017_bib23) 1995; 9
Bukau (10.1016/j.biomaterials.2016.06.017_bib28) 1998; 92
Nakamoto (10.1016/j.biomaterials.2016.06.017_bib45) 2014; 289
Shao (10.1016/j.biomaterials.2016.06.017_bib15) 2015; 54
Kudryavets (10.1016/j.biomaterials.2016.06.017_bib19) 1998; 20
Mackey (10.1016/j.biomaterials.2016.06.017_bib38) 2014; 118
Shichiri (10.1016/j.biomaterials.2016.06.017_bib52) 2010; 9
Wong (10.1016/j.biomaterials.2016.06.017_bib34) 2004; 35
Feng (10.1016/j.biomaterials.2016.06.017_bib42) 2015; 7
Perez-Hernandez (10.1016/j.biomaterials.2016.06.017_bib17) 2015; 9
Zhou (10.1016/j.biomaterials.2016.06.017_bib4) 2014; 24
Orosz (10.1016/j.biomaterials.2016.06.017_bib18) 1993; 177
Bagley (10.1016/j.biomaterials.2016.06.017_bib3) 2013; 7
Kang (10.1016/j.biomaterials.2016.06.017_bib43) 2014; 8
Milanovic (10.1016/j.biomaterials.2016.06.017_bib37) 2013; 8
Dickerson (10.1016/j.biomaterials.2016.06.017_bib1) 2008; 269
Rankin (10.1016/j.biomaterials.2016.06.017_bib54) 2013; 288
Liu (10.1016/j.biomaterials.2016.06.017_bib53) 2011; 32
Zhu (10.1016/j.biomaterials.2016.06.017_bib14) 2016; 26
Huang (10.1016/j.biomaterials.2016.06.017_bib5) 2010
Wei (10.1016/j.biomaterials.2016.06.017_bib51) 1994; 54
Rylander (10.1016/j.biomaterials.2016.06.017_bib32) 2011; 27
Huang (10.1016/j.biomaterials.2016.06.017_bib8) 2009; 21
Kannadorai (10.1016/j.biomaterials.2016.06.017_bib16) 2015; 357
Huang (10.1016/j.biomaterials.2016.06.017_bib12) 2010; 15
Yang (10.1016/j.biomaterials.2016.06.017_bib36) 2015; 7
Bakthisaran (10.1016/j.biomaterials.2016.06.017_bib24) 2015; 1854
Bonfil (10.1016/j.biomaterials.2016.06.017_bib20) 1988; 6
Moon (10.1016/j.biomaterials.2016.06.017_bib41) 2009; 3
Burke (10.1016/j.biomaterials.2016.06.017_bib30) 2009; 106
Lepock (10.1016/j.biomaterials.2016.06.017_bib47) 2003; 19
Ye (10.1016/j.biomaterials.2016.06.017_bib50) 2007; 18
Wang (10.1016/j.biomaterials.2016.06.017_bib44) 2014; 45
Sun (10.1016/j.biomaterials.2016.06.017_bib10) 2016; 8
Fisher (10.1016/j.biomaterials.2016.06.017_bib31) 2010; 70
Li (10.1016/j.biomaterials.2016.06.017_bib2) 2013; 13
Alkilany (10.1016/j.biomaterials.2016.06.017_bib6) 2012; 64
Lepock (10.1016/j.biomaterials.2016.06.017_bib46) 2001; 6
Kregel (10.1016/j.biomaterials.2016.06.017_bib27) 2002; 92
Gibson (10.1016/j.biomaterials.2016.06.017_bib49) 2013; 10
Ali (10.1016/j.biomaterials.2016.06.017_bib7) 2012; 28
Ali (10.1016/j.biomaterials.2016.06.017_bib39) 2014; 136
Larson (10.1016/j.biomaterials.2016.06.017_bib33) 2013; 170
Miyako (10.1016/j.biomaterials.2016.06.017_bib29) 2012; 109
Lin (10.1016/j.biomaterials.2016.06.017_bib40) 2015; 10
Ciocca (10.1016/j.biomaterials.2016.06.017_bib26) 2005; 10
Ito (10.1016/j.biomaterials.2016.06.017_bib35) 2009; 100
Li (10.1016/j.biomaterials.2016.06.017_bib22) 2010; 31
He (10.1016/j.biomaterials.2016.06.017_bib48) 1997; 232
Shi (10.1016/j.biomaterials.2016.06.017_bib9) 2013; 23
Bharti (10.1016/j.biomaterials.2016.06.017_bib25) 2015; 20
References_xml – volume: 54
  start-page: 4952
  year: 1994
  end-page: 4957
  ident: bib51
  article-title: Induction of apoptosis by quercetin - involvement of heat-shock protein
  publication-title: Cancer Res.
  contributor:
    fullname: Uchida
– volume: 70
  start-page: 9855
  year: 2010
  end-page: 9864
  ident: bib31
  article-title: Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation
  publication-title: Cancer Res.
  contributor:
    fullname: Hatcher
– volume: 170
  start-page: 41
  year: 2013
  end-page: 50
  ident: bib33
  article-title: Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia
  publication-title: J. Control. Release
  contributor:
    fullname: Ghandehari
– volume: 395
  start-page: 1163
  year: 2014
  end-page: 1171
  ident: bib21
  article-title: Inflammatory outcomes of apoptosis, necrosis and necroptosis
  publication-title: Biol. Chem.
  contributor:
    fullname: Martin
– volume: 24
  start-page: 2890
  year: 2012
  end-page: 2895
  ident: bib13
  article-title: Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles
  publication-title: Adv. Mater.
  contributor:
    fullname: Qu
– volume: 118
  start-page: 1319
  year: 2014
  end-page: 1326
  ident: bib38
  article-title: The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments
  publication-title: J. Phys. Chem. B
  contributor:
    fullname: El-Sayed
– volume: 7
  start-page: 4354
  year: 2015
  end-page: 4367
  ident: bib42
  article-title: Au/Polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study
  publication-title: Acs Appl. Mater. Interfaces
  contributor:
    fullname: Zhang
– volume: 269
  start-page: 57
  year: 2008
  end-page: 66
  ident: bib1
  article-title: Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice
  publication-title: Cancer Lett.
  contributor:
    fullname: Pushpanketh
– volume: 9
  start-page: 1559
  year: 1995
  end-page: 1569
  ident: bib23
  article-title: The role of molecular chaperones in protein folding
  publication-title: Faseb J.
  contributor:
    fullname: Hartl
– volume: 13
  start-page: 2477
  year: 2013
  end-page: 2484
  ident: bib2
  article-title: Achieving a new controllable male contraception by the photothermal effect of gold nanorods
  publication-title: Nano Lett.
  contributor:
    fullname: Liang
– volume: 54
  start-page: 12782
  year: 2015
  end-page: 12787
  ident: bib15
  article-title: Near-infrared-activated nanocalorifiers in microcapsules: vapor bubble generation for in vivo enhanced cancer therapy
  publication-title: Angew. Chem. Int. Ed.
  contributor:
    fullname: He
– volume: 177
  start-page: 1391
  year: 1993
  end-page: 1398
  ident: bib18
  article-title: Enhancement of experimental metastasis by tumor-necrosis-factor
  publication-title: J. Exp. Med.
  contributor:
    fullname: Mannel
– volume: 64
  start-page: 190
  year: 2012
  end-page: 199
  ident: bib6
  article-title: Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions
  publication-title: Adv. Drug Deliv. Rev.
  contributor:
    fullname: Murphy
– volume: 1854
  start-page: 291
  year: 2015
  end-page: 319
  ident: bib24
  article-title: Small heat shock proteins: role in cellular functions and pathology
  publication-title: BBA-Proteins Proteom.
  contributor:
    fullname: Rao
– volume: 8
  start-page: 4883
  year: 2014
  end-page: 4892
  ident: bib43
  article-title: Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes
  publication-title: ACS Nano
  contributor:
    fullname: El-Sayed
– volume: 32
  start-page: 144
  year: 2011
  end-page: 151
  ident: bib53
  article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors
  publication-title: Biomaterials
  contributor:
    fullname: Liu
– volume: 109
  start-page: 7523
  year: 2012
  end-page: 7528
  ident: bib29
  article-title: Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  contributor:
    fullname: Horie
– volume: 15
  start-page: 7
  year: 2010
  ident: bib12
  article-title: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers
  publication-title: J. Biomed. Opt.
  contributor:
    fullname: Oyelere
– volume: 232
  start-page: 64
  year: 1997
  end-page: 71
  ident: bib48
  article-title: Variation of heat shock protein 70 through the cell cycle in HL-60 cells and its relationship to apoptosis
  publication-title: Exp. Cell Res.
  contributor:
    fullname: Fox
– volume: 26
  start-page: 1793
  year: 2016
  end-page: 1802
  ident: bib14
  article-title: Near-infrared plasmonic 2D semimetals for applications in communication and biology
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Cao
– start-page: 343
  year: 2010
  end-page: 357
  ident: bib5
  article-title: Applications of gold nanorods for cancer imaging and photothermal therapy
  publication-title: Cancer Nanotechnology: Methods and Protocols
  contributor:
    fullname: El-Sayed
– volume: 289
  start-page: 6110
  year: 2014
  end-page: 6119
  ident: bib45
  article-title: Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Maruyama
– volume: 10
  start-page: 715
  year: 2013
  end-page: 721
  ident: bib49
  article-title: The transience of transient overexpression
  publication-title: Nat. Methods
  contributor:
    fullname: Veitia
– volume: 9
  start-page: 52
  year: 2015
  end-page: 61
  ident: bib17
  article-title: Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms
  publication-title: ACS Nano
  contributor:
    fullname: Pelaz
– volume: 106
  start-page: 12897
  year: 2009
  end-page: 12902
  ident: bib30
  article-title: Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  contributor:
    fullname: Rylander
– volume: 8
  year: 2013
  ident: bib37
  article-title: Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990
  publication-title: Radiat. Oncol.
  contributor:
    fullname: Niedermann
– volume: 27
  start-page: 791
  year: 2011
  end-page: 801
  ident: bib32
  article-title: Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells
  publication-title: Int. J. Hyperth.
  contributor:
    fullname: Diller
– volume: 3
  start-page: 1629
  year: 2014
  end-page: 1637
  ident: bib11
  article-title: Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy
  publication-title: Adv. Healthc. Mater.
  contributor:
    fullname: Wolfram
– volume: 100
  start-page: 558
  year: 2009
  end-page: 564
  ident: bib35
  article-title: Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature
  publication-title: Cancer Sci.
  contributor:
    fullname: Maruyama
– volume: 136
  start-page: 4464
  year: 2014
  end-page: 4467
  ident: bib39
  article-title: Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin
  publication-title: J. Am. Chem. Soc.
  contributor:
    fullname: El-Sayed
– volume: 20
  start-page: 455
  year: 2015
  end-page: 465
  ident: bib25
  article-title: 5-HT2B receptor blockade attenuates beta-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs
  publication-title: Apoptosis
  contributor:
    fullname: Arya
– volume: 10
  start-page: 86
  year: 2005
  end-page: 103
  ident: bib26
  article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications
  publication-title: Cell Stress & Chaperones
  contributor:
    fullname: Calderwood
– volume: 3
  start-page: 3707
  year: 2009
  end-page: 3713
  ident: bib41
  article-title: In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes
  publication-title: ACS Nano
  contributor:
    fullname: Choi
– volume: 7
  start-page: 8089
  year: 2013
  end-page: 8097
  ident: bib3
  article-title: Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source
  publication-title: ACS Nano
  contributor:
    fullname: Bhatia
– volume: 28
  start-page: 9807
  year: 2012
  end-page: 9815
  ident: bib7
  article-title: Synthesis and optical properties of small Au nanorods using a seedless growth technique
  publication-title: Langmuir
  contributor:
    fullname: El-Sayed
– volume: 288
  start-page: 15229
  year: 2013
  end-page: 15239
  ident: bib54
  article-title: Annexin A2 regulates beta1 integrin internalization and intestinal epithelial cell migration
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Parkos
– volume: 6
  start-page: 136
  year: 2001
  end-page: 147
  ident: bib46
  article-title: The nuclear matrix is a thermolabile cellular structure
  publication-title: Cell Stress & Chaperones
  contributor:
    fullname: Warters
– volume: 357
  start-page: 152
  year: 2015
  end-page: 159
  ident: bib16
  article-title: Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy
  publication-title: Cancer Lett.
  contributor:
    fullname: Liu
– volume: 24
  start-page: 6922
  year: 2014
  end-page: 6932
  ident: bib4
  article-title: Inhibition of cancer cell migration by gold nanorods: molecular mechanisms and implications for cancer therapy
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Zhou
– volume: 20
  start-page: 114
  year: 1998
  end-page: 118
  ident: bib19
  article-title: Enhancement of tumor colony formation in lungs of mice by tumor necrosis factor
  publication-title: Exp. Oncol.
  contributor:
    fullname: Kudryavets
– volume: 7
  start-page: 5097
  year: 2015
  end-page: 5106
  ident: bib36
  article-title: Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-Hybridized graphene oxide under NIR illumination
  publication-title: Acs Appl. Mater. Interfaces
  contributor:
    fullname: Chiu
– volume: 23
  start-page: 5412
  year: 2013
  end-page: 5419
  ident: bib9
  article-title: Gold nanocage-based dual responsive “caged metal chelator” release system: noninvasive remote control with near infrared for potential treatment of Alzheimer's disease
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Qu
– volume: 6
  start-page: 121
  year: 1988
  end-page: 129
  ident: bib20
  article-title: Tumor necrosis can facilitate the appearance of metastases
  publication-title: Clin. Exp. Metastasis
  contributor:
    fullname: Pasqualini
– volume: 31
  start-page: 9492
  year: 2010
  end-page: 9498
  ident: bib22
  article-title: Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells
  publication-title: Biomaterials
  contributor:
    fullname: Gu
– volume: 10
  start-page: 465
  year: 2015
  end-page: 471
  ident: bib40
  article-title: Carbon nanotube-assisted optical activation of TGF-beta signalling by near-infrared light
  publication-title: Nat. Nanotechnol.
  contributor:
    fullname: Li
– volume: 9
  start-page: 64
  year: 2010
  end-page: 68
  ident: bib52
  article-title: Inhibition of cancer progression by rifampicin Involvement of antiangiogenic and anti-tumor effects
  publication-title: Cell Cycle
  contributor:
    fullname: Tanaka
– volume: 15
  year: 2010
  ident: bib55
  article-title: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers
  publication-title: J. Biomed. Opt.
  contributor:
    fullname: Oyelere
– volume: 35
  start-page: 336
  year: 2004
  end-page: 341
  ident: bib34
  article-title: CHOP activation by photodynamic therapy increases treatment induced photosensitization
  publication-title: Lasers Surg. Med.
  contributor:
    fullname: Gomer
– volume: 18
  start-page: 1165
  year: 2007
  end-page: 1171
  ident: bib50
  article-title: Induction of apoptosis by phenylisocyanate derivative of quercetin: involvement of heat shock protein
  publication-title: Anti Cancer Drugs
  contributor:
    fullname: Zhao
– volume: 45
  start-page: 18
  year: 2014
  end-page: 30
  ident: bib44
  article-title: HSP27,70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review)
  publication-title: Int. J. Oncol.
  contributor:
    fullname: Zhang
– volume: 21
  start-page: 4880
  year: 2009
  end-page: 4910
  ident: bib8
  article-title: Gold nanorods: from synthesis and properties to biological and biomedical applications
  publication-title: Adv. Mater.
  contributor:
    fullname: El-Sayed
– volume: 8
  start-page: 4452
  year: 2016
  end-page: 4457
  ident: bib10
  article-title: Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer
  publication-title: Nanoscale
  contributor:
    fullname: Liu
– volume: 92
  start-page: 351
  year: 1998
  end-page: 366
  ident: bib28
  article-title: The Hsp70 and Hsp60 chaperone machines
  publication-title: Cell.
  contributor:
    fullname: Horwich
– volume: 19
  start-page: 252
  year: 2003
  end-page: 266
  ident: bib47
  article-title: Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage
  publication-title: Int. J. Hyperth.
  contributor:
    fullname: Lepock
– volume: 92
  start-page: 2177
  year: 2002
  end-page: 2186
  ident: bib27
  article-title: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance
  publication-title: J. Appl. Physiol.
  contributor:
    fullname: Kregel
– volume: 8
  start-page: 4452
  year: 2016
  ident: 10.1016/j.biomaterials.2016.06.017_bib10
  article-title: Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer
  publication-title: Nanoscale
  doi: 10.1039/C6NR00056H
  contributor:
    fullname: Sun
– volume: 24
  start-page: 6922
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.017_bib4
  article-title: Inhibition of cancer cell migration by gold nanorods: molecular mechanisms and implications for cancer therapy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401642
  contributor:
    fullname: Zhou
– volume: 8
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.017_bib37
  article-title: Increased radiosensitivity and radiothermosensitivity of human pancreatic MIA PaCa-2 and U251 glioblastoma cell lines treated with the novel Hsp90 inhibitor NVP-HSP990
  publication-title: Radiat. Oncol.
  doi: 10.1186/1748-717X-8-42
  contributor:
    fullname: Milanovic
– volume: 27
  start-page: 791
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.017_bib32
  article-title: Heat shock protein expression and temperature distribution in prostate tumours treated with laser irradiation and nanoshells
  publication-title: Int. J. Hyperth.
  doi: 10.3109/02656736.2011.607485
  contributor:
    fullname: Rylander
– volume: 9
  start-page: 1559
  year: 1995
  ident: 10.1016/j.biomaterials.2016.06.017_bib23
  article-title: The role of molecular chaperones in protein folding
  publication-title: Faseb J.
  doi: 10.1096/fasebj.9.15.8529835
  contributor:
    fullname: Hendrick
– volume: 6
  start-page: 136
  year: 2001
  ident: 10.1016/j.biomaterials.2016.06.017_bib46
  article-title: The nuclear matrix is a thermolabile cellular structure
  publication-title: Cell Stress & Chaperones
  doi: 10.1379/1466-1268(2001)006<0136:TNMIAT>2.0.CO;2
  contributor:
    fullname: Lepock
– volume: 32
  start-page: 144
  year: 2011
  ident: 10.1016/j.biomaterials.2016.06.017_bib53
  article-title: Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.096
  contributor:
    fullname: Liu
– volume: 289
  start-page: 6110
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.017_bib45
  article-title: Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.524801
  contributor:
    fullname: Nakamoto
– volume: 9
  start-page: 64
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.017_bib52
  article-title: Inhibition of cancer progression by rifampicin Involvement of antiangiogenic and anti-tumor effects
  publication-title: Cell Cycle
  doi: 10.4161/cc.9.1.10354
  contributor:
    fullname: Shichiri
– volume: 3
  start-page: 1629
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.017_bib11
  article-title: Multifunctional gold nanorods for siRNA gene silencing and photothermal therapy
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201400103
  contributor:
    fullname: Shen
– volume: 45
  start-page: 18
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.017_bib44
  article-title: HSP27,70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review)
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2014.2399
  contributor:
    fullname: Wang
– volume: 10
  start-page: 715
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.017_bib49
  article-title: The transience of transient overexpression
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2534
  contributor:
    fullname: Gibson
– start-page: 343
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.017_bib5
  article-title: Applications of gold nanorods for cancer imaging and photothermal therapy
  contributor:
    fullname: Huang
– volume: 1854
  start-page: 291
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.017_bib24
  article-title: Small heat shock proteins: role in cellular functions and pathology
  publication-title: BBA-Proteins Proteom.
  doi: 10.1016/j.bbapap.2014.12.019
  contributor:
    fullname: Bakthisaran
– volume: 177
  start-page: 1391
  year: 1993
  ident: 10.1016/j.biomaterials.2016.06.017_bib18
  article-title: Enhancement of experimental metastasis by tumor-necrosis-factor
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.177.5.1391
  contributor:
    fullname: Orosz
– volume: 31
  start-page: 9492
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.017_bib22
  article-title: Surface plasmonic gold nanorods for enhanced two-photon microscopic imaging and apoptosis induction of cancer cells
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.08.068
  contributor:
    fullname: Li
– volume: 20
  start-page: 455
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.017_bib25
  article-title: 5-HT2B receptor blockade attenuates beta-adrenergic receptor-stimulated myocardial remodeling in rats via inhibiting apoptosis: role of MAPKs and HSPs
  publication-title: Apoptosis
  doi: 10.1007/s10495-014-1083-z
  contributor:
    fullname: Bharti
– volume: 100
  start-page: 558
  year: 2009
  ident: 10.1016/j.biomaterials.2016.06.017_bib35
  article-title: Inhibition of heat shock protein 90 sensitizes melanoma cells to thermosensitive ferromagnetic particle-mediated hyperthermia with low Curie temperature
  publication-title: Cancer Sci.
  doi: 10.1111/j.1349-7006.2008.01072.x
  contributor:
    fullname: Ito
– volume: 92
  start-page: 351
  year: 1998
  ident: 10.1016/j.biomaterials.2016.06.017_bib28
  article-title: The Hsp70 and Hsp60 chaperone machines
  publication-title: Cell.
  doi: 10.1016/S0092-8674(00)80928-9
  contributor:
    fullname: Bukau
– volume: 54
  start-page: 12782
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.017_bib15
  article-title: Near-infrared-activated nanocalorifiers in microcapsules: vapor bubble generation for in vivo enhanced cancer therapy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201506115
  contributor:
    fullname: Shao
– volume: 288
  start-page: 15229
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.017_bib54
  article-title: Annexin A2 regulates beta1 integrin internalization and intestinal epithelial cell migration
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.440909
  contributor:
    fullname: Rankin
– volume: 15
  start-page: 7
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.017_bib12
  article-title: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3486538
  contributor:
    fullname: Huang
– volume: 106
  start-page: 12897
  year: 2009
  ident: 10.1016/j.biomaterials.2016.06.017_bib30
  article-title: Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0905195106
  contributor:
    fullname: Burke
– volume: 10
  start-page: 465
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.017_bib40
  article-title: Carbon nanotube-assisted optical activation of TGF-beta signalling by near-infrared light
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.28
  contributor:
    fullname: Lin
– volume: 92
  start-page: 2177
  year: 2002
  ident: 10.1016/j.biomaterials.2016.06.017_bib27
  article-title: Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.01267.2001
  contributor:
    fullname: Kregel
– volume: 170
  start-page: 41
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.017_bib33
  article-title: Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer-drug conjugates and gold nanorod induced hyperthermia
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2013.04.006
  contributor:
    fullname: Larson
– volume: 70
  start-page: 9855
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.017_bib31
  article-title: Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-0250
  contributor:
    fullname: Fisher
– volume: 395
  start-page: 1163
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.017_bib21
  article-title: Inflammatory outcomes of apoptosis, necrosis and necroptosis
  publication-title: Biol. Chem.
  doi: 10.1515/hsz-2014-0164
  contributor:
    fullname: Davidovich
– volume: 109
  start-page: 7523
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.017_bib29
  article-title: Photothermic regulation of gene expression triggered by laser-induced carbon nanohorns
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1204391109
  contributor:
    fullname: Miyako
– volume: 20
  start-page: 114
  year: 1998
  ident: 10.1016/j.biomaterials.2016.06.017_bib19
  article-title: Enhancement of tumor colony formation in lungs of mice by tumor necrosis factor
  publication-title: Exp. Oncol.
  contributor:
    fullname: Kudryavets
– volume: 7
  start-page: 4354
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.017_bib42
  article-title: Au/Polypyrrole@Fe3O4 nanocomposites for MR/CT dual-modal imaging guided-photothermal therapy: an in vitro study
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/am508837v
  contributor:
    fullname: Feng
– volume: 6
  start-page: 121
  year: 1988
  ident: 10.1016/j.biomaterials.2016.06.017_bib20
  article-title: Tumor necrosis can facilitate the appearance of metastases
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/BF01784843
  contributor:
    fullname: Bonfil
– volume: 64
  start-page: 190
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.017_bib6
  article-title: Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2011.03.005
  contributor:
    fullname: Alkilany
– volume: 26
  start-page: 1793
  year: 2016
  ident: 10.1016/j.biomaterials.2016.06.017_bib14
  article-title: Near-infrared plasmonic 2D semimetals for applications in communication and biology
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504884
  contributor:
    fullname: Zhu
– volume: 28
  start-page: 9807
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.017_bib7
  article-title: Synthesis and optical properties of small Au nanorods using a seedless growth technique
  publication-title: Langmuir
  doi: 10.1021/la301387p
  contributor:
    fullname: Ali
– volume: 269
  start-page: 57
  year: 2008
  ident: 10.1016/j.biomaterials.2016.06.017_bib1
  article-title: Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2008.04.026
  contributor:
    fullname: Dickerson
– volume: 7
  start-page: 5097
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.017_bib36
  article-title: Photothermal therapeutic response of cancer cells to aptamer-gold nanoparticle-Hybridized graphene oxide under NIR illumination
  publication-title: Acs Appl. Mater. Interfaces
  doi: 10.1021/am508117e
  contributor:
    fullname: Yang
– volume: 136
  start-page: 4464
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.017_bib39
  article-title: Enhancing the efficiency of gold nanoparticles treatment of cancer by increasing their rate of endocytosis and cell accumulation using rifampicin
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4124412
  contributor:
    fullname: Ali
– volume: 18
  start-page: 1165
  year: 2007
  ident: 10.1016/j.biomaterials.2016.06.017_bib50
  article-title: Induction of apoptosis by phenylisocyanate derivative of quercetin: involvement of heat shock protein
  publication-title: Anti Cancer Drugs
  doi: 10.1097/CAD.0b013e3280145274
  contributor:
    fullname: Ye
– volume: 3
  start-page: 3707
  year: 2009
  ident: 10.1016/j.biomaterials.2016.06.017_bib41
  article-title: In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes
  publication-title: ACS Nano
  doi: 10.1021/nn900904h
  contributor:
    fullname: Moon
– volume: 232
  start-page: 64
  year: 1997
  ident: 10.1016/j.biomaterials.2016.06.017_bib48
  article-title: Variation of heat shock protein 70 through the cell cycle in HL-60 cells and its relationship to apoptosis
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1997.3494
  contributor:
    fullname: He
– volume: 19
  start-page: 252
  year: 2003
  ident: 10.1016/j.biomaterials.2016.06.017_bib47
  article-title: Cellular effects of hyperthermia: relevance to the minimum dose for thermal damage
  publication-title: Int. J. Hyperth.
  doi: 10.1080/0265673031000065042
  contributor:
    fullname: Lepock
– volume: 13
  start-page: 2477
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.017_bib2
  article-title: Achieving a new controllable male contraception by the photothermal effect of gold nanorods
  publication-title: Nano Lett.
  doi: 10.1021/nl400536d
  contributor:
    fullname: Li
– volume: 15
  year: 2010
  ident: 10.1016/j.biomaterials.2016.06.017_bib55
  article-title: Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.3486538
  contributor:
    fullname: Huang
– volume: 54
  start-page: 4952
  year: 1994
  ident: 10.1016/j.biomaterials.2016.06.017_bib51
  article-title: Induction of apoptosis by quercetin - involvement of heat-shock protein
  publication-title: Cancer Res.
  contributor:
    fullname: Wei
– volume: 21
  start-page: 4880
  year: 2009
  ident: 10.1016/j.biomaterials.2016.06.017_bib8
  article-title: Gold nanorods: from synthesis and properties to biological and biomedical applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200802789
  contributor:
    fullname: Huang
– volume: 357
  start-page: 152
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.017_bib16
  article-title: Dual functions of gold nanorods as photothermal agent and autofluorescence enhancer to track cell death during plasmonic photothermal therapy
  publication-title: Cancer Lett.
  doi: 10.1016/j.canlet.2014.11.022
  contributor:
    fullname: Kannadorai
– volume: 24
  start-page: 2890
  year: 2012
  ident: 10.1016/j.biomaterials.2016.06.017_bib13
  article-title: Near-infrared light-triggered, targeted drug delivery to cancer cells by aptamer gated nanovehicles
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104797
  contributor:
    fullname: Yang
– volume: 9
  start-page: 52
  year: 2015
  ident: 10.1016/j.biomaterials.2016.06.017_bib17
  article-title: Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms
  publication-title: ACS Nano
  doi: 10.1021/nn505468v
  contributor:
    fullname: Perez-Hernandez
– volume: 10
  start-page: 86
  year: 2005
  ident: 10.1016/j.biomaterials.2016.06.017_bib26
  article-title: Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications
  publication-title: Cell Stress & Chaperones
  doi: 10.1379/CSC-99r.1
  contributor:
    fullname: Ciocca
– volume: 8
  start-page: 4883
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.017_bib43
  article-title: Observing real-time molecular event dynamics of apoptosis in living cancer cells using nuclear-targeted plasmonically enhanced Raman nanoprobes
  publication-title: ACS Nano
  doi: 10.1021/nn500840x
  contributor:
    fullname: Kang
– volume: 35
  start-page: 336
  year: 2004
  ident: 10.1016/j.biomaterials.2016.06.017_bib34
  article-title: CHOP activation by photodynamic therapy increases treatment induced photosensitization
  publication-title: Lasers Surg. Med.
  doi: 10.1002/lsm.20110
  contributor:
    fullname: Wong
– volume: 23
  start-page: 5412
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.017_bib9
  article-title: Gold nanocage-based dual responsive “caged metal chelator” release system: noninvasive remote control with near infrared for potential treatment of Alzheimer's disease
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201301015
  contributor:
    fullname: Shi
– volume: 118
  start-page: 1319
  year: 2014
  ident: 10.1016/j.biomaterials.2016.06.017_bib38
  article-title: The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp409298f
  contributor:
    fullname: Mackey
– volume: 7
  start-page: 8089
  year: 2013
  ident: 10.1016/j.biomaterials.2016.06.017_bib3
  article-title: Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source
  publication-title: ACS Nano
  doi: 10.1021/nn4033757
  contributor:
    fullname: Bagley
SSID ssj0014042
Score 2.609576
Snippet Abstract Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to...
Plasmonic photothermal therapy (PPTT) is a promising cancer treatment where plasmonic nanoparticles are used to convert near infrared light to localized heat...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Advanced Basic Science
Apoptosis
Biotechnology
Cancer
Cell Line, Tumor
Cellular
Dentistry
Gold
Gold - chemistry
Gold - therapeutic use
Gold nanorods (AuNRs)
Heat shock protein 70 (HSP70)
HSP70 Heat-Shock Proteins - metabolism
Humans
Hyperthermia, Induced - methods
MCF-7 Cells
Nanorods
Nanotubes - chemistry
Nanotubes - ultrastructure
Neoplasms - metabolism
Neoplasms - therapy
Phototherapy - methods
Plasmonic photothermal therapy (PPTT)
Plasmonics
Protein refolding
Quercetin (QE)
Therapy
Title Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy
URI https://www.clinicalkey.es/playcontent/1-s2.0-S014296121630271X
https://dx.doi.org/10.1016/j.biomaterials.2016.06.017
https://www.ncbi.nlm.nih.gov/pubmed/27318931
https://search.proquest.com/docview/1802744153
https://search.proquest.com/docview/1808666721
https://search.proquest.com/docview/1825554916
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBdpB_t4GFv2lX2hwd6Mi2XZUvKwh5JmBEr20HYw9iJkW1paUjvECWMP-993J3_E7ZbSDfbiBEVyJN1Pp7vT6Y6Q98ORMDwWma9B_fGj1CT-yMaBz2yUZNKksADR3jE9lZ--DI8m0aTXazIzbsv-K6WhDGiNN2f_gtrtS6EAvgPN4QlUh-ft6O5cu9EAgGzWK-fA8DwXjeE892TgbZxx4FuxyLxc5wXwz9Iz-RyJj3Gq4WPloTXf08tiuS4wXgk0XBTfvQxd25cgbV-6rDnLebF217cu0V-9E5ygOSI-L0Aarobcwqq6jD0r8NqW1d7JwfG1n6Z6ob3O6VNepwsb69ViWz5Z-Kf6R2WnnRXVuw67BgwmWg-trU0z9EeCXWXKQdhhq6y7P_-R8Vc2iIuDpDM2dNwTLjprdT30arTtyfiY-WV4EPjo4BZiB0A2BS3dpfC5HoWbqTJUgfqt6h65EwKLQ976NT5pz6-iwKVtaofWhLt1noW7-rhLNNql-jgR6OwReVjrLvSwAt1j0jN5n9w7Qn8zTBnYJw860S375O6s9tt4Qn62qKSISupQSWtUUhlQh0qKqKQNKmmDSlqhkiIqaYtKCg0BlRRRSVtU0i4qaY3Kp-Tzx8nZeOrXiT_8NBZy7VuWSRvGJhHAPCIro9HQMJNqHmSJ4BY2jlRKk1irQb5OjY41cBobWB4MIwv1-TOynxe5eUGghzzRacp5qHUEsm8Scg60y2Cb4yLL4gHhzZyrZRXfRTWOjxeqSymFlFLoBcrkgMiGPKq5wQx7rilrRlCqXXgZkA9ty1rGrWRXBUi-1T-_a9CgYCPAmde5gVWrMJSjROsIv7HOUAghQ3ZTnTAGHQPUxgF5XsGtnRnQdRgoOOzlP4__Fbm_5QGvyf56tTFvyF6Zbd66FfQLi6n7Lw
link.rule.ids 315,783,787,27936,27937
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Targeting+heat+shock+protein+70+using+gold+nanorods+enhances+cancer+cell+apoptosis+in+low+dose+plasmonic+photothermal+therapy&rft.jtitle=Biomaterials&rft.au=Ali%2C+Moustafa+R.K&rft.au=Ali%2C+Hala+R&rft.au=Rankin%2C+Carl+R&rft.au=El-Sayed%2C+Mostafa+A&rft.date=2016-09-01&rft.issn=0142-9612&rft.volume=102&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1016%2Fj.biomaterials.2016.06.017&rft.externalDBID=ECK1-s2.0-S014296121630271X&rft.externalDocID=1_s2_0_S014296121630271X
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F01429612%2Fcov200h.gif