Electric field control of magnetization direction across the antiferromagnetic to ferromagnetic transition
Electric-field-induced magnetic switching can lead to a new paradigm of ultra-low power nonvolatile magnetoelectric random access memory (MeRAM). To date the realization of MeRAM relies primarily on ferromagnetic (FM) based heterostructures which exhibit low voltage-controlled magnetic anisotropy (V...
Saved in:
Published in: | Scientific reports Vol. 7; no. 1; pp. 5366 - 9 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
14-07-2017
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electric-field-induced magnetic switching can lead to a new paradigm of ultra-low power nonvolatile magnetoelectric random access memory (MeRAM). To date the realization of MeRAM relies primarily on ferromagnetic (FM) based heterostructures which exhibit low voltage-controlled magnetic anisotropy (VCMA) efficiency. On the other hand, manipulation of magnetism in antiferromagnetic (AFM) based nanojunctions by purely electric field means (rather than E-field induced strain) remains unexplored thus far.
Ab initio
electronic structure calculations reveal that the VCMA of ultrathin FeRh/MgO bilayers exhibits distinct linear or nonlinear behavior across the AFM to FM metamagnetic transition depending on the Fe- or Rh-interface termination. We predict that the AFM Fe-terminated phase undergoes an E-field magnetization switching with large VCMA efficiency and a
spin reorientation
across the metamagnetic transition. In sharp contrast, while the Rh-terminated interface exhibits large out-of-plane (in-plane) MA in the FM (AFM) phase, its magnetization is more rigid to external E-field. These findings demonstrate that manipulation of the AFM Néel-order magnetization direction via purely E-field means can pave the way toward ultra-low energy
AFM-based
MeRAM devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231 USDOE Office of Science (SC) |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-017-05611-7 |