An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine

Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wa...

Full description

Saved in:
Bibliographic Details
Published in:TheScientificWorld Vol. 2013; no. 2013; pp. 1 - 9
Main Authors: Zhang, Yudong, Wang, Shuihua, Ji, Genlin, Dong, Zhengchao
Format: Journal Article
Language:English
Published: Cairo, Egypt Hindawi Publishing Corporation 01-01-2013
Hindawi Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.
AbstractList Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and sigma . Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick's disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.
Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.
Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ . Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick's disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM.
Author Dong, Zhengchao
Zhang, Yudong
Wang, Shuihua
Ji, Genlin
AuthorAffiliation 3 School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
1 School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China
2 Brain Imaging Lab and MRI Unit, New York State Psychiatry Institute and Columbia University, New York, NY 10032, USA
AuthorAffiliation_xml – name: 1 School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China
– name: 3 School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China
– name: 2 Brain Imaging Lab and MRI Unit, New York State Psychiatry Institute and Columbia University, New York, NY 10032, USA
Author_xml – sequence: 1
  fullname: Zhang, Yudong
– sequence: 2
  fullname: Wang, Shuihua
– sequence: 3
  fullname: Ji, Genlin
– sequence: 4
  fullname: Dong, Zhengchao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24163610$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFDEYh4NU7IeevEvAiyhr852ZS6Eufiy2VNwi3kIm8842y0yyJrMt9a83666l9dRLAsnDQ95ffodoL8QACL2k5D2lUh4zQvkx5WUVT9ABlVxPtBA_99AB41JNFBVkHx3mvCSEV5rKZ2ifCaq4ouQAdacBn3_HH5L1Ac8Gu4CMp73N2XceEp7f5hEGfO0t_mbT6F0PeH5j04AvVqMf_G87-hiwDS3-CilAj-fr1SqmEf8AN8aEz6278gGeo6ed7TO82O1H6PLTx8vpl8nZxefZ9PRs4qRS40RaxminBUAjm8ZRRTklrdKdo4IxbhVUbcuc0s62UDvhatEqIbpak66pKD9Cs622jXZpVskPNt2aaL35exDTwuymMC1nUolK6UYxUbW06RqpGSVadrJi4IrrZOtarZsBWgdhTLZ_IH14E_yVWcRrw3Vd0hVF8GYnSPHXGvJoBp8d9L0NENfZUCl4XVeqfgQqhKo0k4IU9PV_6DKuUyihbihBRFVXulDvtpRLMecE3d27KTGb1phNa8y2NYV-dX_UO_ZfTQrwdguUv2ztjX-cDQoCnb0Hl8yl5n8A-_HT5Q
CitedBy_id crossref_primary_10_1016_j_bspc_2015_05_014
crossref_primary_10_1155_2014_272496
crossref_primary_10_1155_2015_931256
crossref_primary_10_1002_ima_22132
crossref_primary_10_1088_1742_6596_2562_1_012004
crossref_primary_10_1109_ACCESS_2023_3272223
crossref_primary_10_1155_2014_840305
crossref_primary_10_3389_fnhum_2023_1150120
crossref_primary_10_1155_2013_753251
crossref_primary_10_1155_2017_9060124
crossref_primary_10_1007_s11042_019_7498_3
crossref_primary_10_1080_0954898X_2023_2225601
crossref_primary_10_1109_ACCESS_2019_2901055
crossref_primary_10_1080_0952813X_2015_1132274
crossref_primary_10_1155_2014_652135
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_1155_2015_513849
crossref_primary_10_1155_2022_1541980
crossref_primary_10_1007_s10916_018_1135_y
crossref_primary_10_1002_ima_22144
crossref_primary_10_1007_s11517_020_02256_z
crossref_primary_10_1155_2013_982438
crossref_primary_10_1155_2017_4205141
crossref_primary_10_1007_s11042_020_09676_x
crossref_primary_10_1016_j_knosys_2014_03_015
crossref_primary_10_3389_fonc_2021_788819
crossref_primary_10_1155_2014_546814
crossref_primary_10_7717_peerj_1251
crossref_primary_10_3390_e17106663
crossref_primary_10_1007_s11227_022_04420_8
crossref_primary_10_1155_2014_138548
crossref_primary_10_1007_s11831_023_10041_y
crossref_primary_10_1007_s11042_020_09306_6
crossref_primary_10_3390_sym9030037
crossref_primary_10_1155_2015_954086
crossref_primary_10_1007_s11265_017_1230_1
crossref_primary_10_3389_fncom_2015_00066
crossref_primary_10_3390_a14020029
Cites_doi 10.1016/S1361-8415(03)00037-9
10.1016/j.ijsolstr.2008.02.015
10.1142/S0218339010003652
10.1016/j.jmva.2011.11.004
10.1016/j.jfranklin.2008.08.006
10.1016/j.neucom.2011.07.005
10.1205/cherd.03144
10.1016/j.eswa.2010.02.126
10.1016/j.fishres.2006.11.021
10.1016/j.jbiomech.2009.10.018
10.1016/j.eswa.2011.02.043
10.1016/j.bspc.2006.05.002
10.1016/j.eswa.2006.12.012
10.1016/j.eswa.2009.06.049
10.3390/s120912489
10.1016/j.sigpro.2009.03.032
10.1016/j.aca.2009.10.054
10.1016/j.compag.2010.09.002
10.1016/j.applanim.2009.03.005
10.2528/PIER09041905
ContentType Journal Article
Copyright Copyright © 2013 Yudong Zhang et al.
Copyright © 2013 Yudong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2013 Yudong Zhang et al. 2013
Copyright_xml – notice: Copyright © 2013 Yudong Zhang et al.
– notice: Copyright © 2013 Yudong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2013 Yudong Zhang et al. 2013
DBID ADJCN
AHFXO
RHU
RHW
RHX
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QP
7TK
7TM
7X2
7X7
7XB
88E
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
FR3
FYUFA
GHDGH
HCIFZ
K9.
M0K
M0S
M1P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
RC3
7X8
5PM
DOA
DOI 10.1155/2013/130134
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Open Access Journals (Hindawi Publishing)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Agricultural Science Database
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Advanced Technologies & Aerospace Database
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Neurosciences Abstracts

Agricultural Science Database


MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1537-744X
Editor Fossati, C.
Bourennane, S.
Marot, J.
Editor_xml – sequence: 1
  givenname: S.
  surname: Bourennane
  fullname: Bourennane, S.
– sequence: 2
  givenname: C.
  surname: Fossati
  fullname: Fossati, C.
– sequence: 3
  givenname: J.
  surname: Marot
  fullname: Marot, J.
– fullname: S Bourennane
– fullname: C Fossati
– fullname: J Marot
EndPage 9
ExternalDocumentID oai_doaj_org_article_d32564867b6248d1bfb5721075f582ec
3106280881
10_1155_2013_130134
24163610
1032557
Genre Journal Article
GroupedDBID 123
24P
3V.
4.4
53G
5VS
7X2
7X7
88E
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAHBH
AAJEY
AAWTL
ABUWG
ADBBV
ADDVE
ADJCN
ADRAZ
AEGXH
AFKRA
AFPKN
AHFXO
ALMA_UNASSIGNED_HOLDINGS
AOIJS
APEBS
ARAPS
ATCPS
BAWUL
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DA7
DIK
E3Z
EBD
EBS
EJD
EMOBN
FAC
FYUFA
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IGS
INH
INR
IPNFZ
ITC
KQ8
M0K
M1P
M48
M~E
OK1
P62
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RHX
RIG
RPM
SV3
TUS
UKHRP
ACHIH
RHU
RHW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
K9.
P64
PQEST
PQUKI
RC3
7X8
5PM
ID FETCH-LOGICAL-c566t-5a221f74eeb5bbc161310d67fc14223a6e8dd2c67cade9c4c94d644f970fb813
IEDL.DBID RPM
ISSN 2356-6140
IngestDate Mon Nov 04 19:59:04 EST 2024
Tue Sep 17 21:16:54 EDT 2024
Fri Oct 25 00:43:10 EDT 2024
Fri Aug 16 23:58:41 EDT 2024
Sat Oct 19 19:30:41 EDT 2024
Fri Aug 23 04:44:46 EDT 2024
Sat Sep 28 07:52:59 EDT 2024
Sun Jun 02 18:48:22 EDT 2024
Tue Nov 26 17:07:42 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2013
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c566t-5a221f74eeb5bbc161310d67fc14223a6e8dd2c67cade9c4c94d644f970fb813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Academic Editors: S. Bourennane, C. Fossati, and J. Marot
ORCID 0000-0002-4870-1493
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791634/
PMID 24163610
PQID 1444048987
PQPubID 1136335
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_d32564867b6248d1bfb5721075f582ec
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3791634
proquest_miscellaneous_1543998694
proquest_miscellaneous_1446872540
proquest_journals_1444048987
crossref_primary_10_1155_2013_130134
pubmed_primary_24163610
hindawi_primary_10_1155_2013_130134
emarefa_primary_1032557
PublicationCentury 2000
PublicationDate 2013-01-01
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: 2013-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: United States
– name: Cairo
PublicationTitle TheScientificWorld
PublicationTitleAlternate ScientificWorldJournal
PublicationYear 2013
Publisher Hindawi Publishing Corporation
Hindawi Limited
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi Limited
References (7) 2005; 83
(6) 2012; 12
(20) 2011; 38
(21) 2008; 45
(18) 2009; 89
(2) 2010; 658
(13) 2009; 94
(15) 2009; 119
(3) 2006; 1
(4) 2003; 7
(12) 2010; 18
(16) 2007; 84
(10) 2012; 106
(19) 2010; 37
(11) 2009; 346
(17) 2010; 43
(9) 2012; 75
Support vector machine 2012, http://en.wikipedia.org/wiki/Support_vector_machine
(1) 2010; 37
(5) 2008; 34
(8) 2010; 74
19914622 - J Biomech. 2010 Mar 3;43(4):720-6
19427459 - Anal Chim Acta. 2009 May 29;642(1-2):59-68
23112727 - Sensors (Basel). 2012;12(9):12489-505
14561555 - Med Image Anal. 2003 Dec;7(4):513-27
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_1_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_21_2
e_1_2_7_20_2
References_xml – volume: 83
  start-page: 1030
  issue: 8
  year: 2005
  end-page: 1037
  ident: 7
  article-title: Regression models using pattern search assisted least square support vector machines
  publication-title:
– volume: 38
  start-page: 9908
  issue: 8
  year: 2011
  end-page: 9912
  ident: 20
  article-title: Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine
  publication-title:
– volume: 75
  start-page: 3
  year: 2012
  end-page: 13
  ident: 9
  article-title: Combining meta-learning and search techniques to select parameters for support vector machines
  publication-title:
– volume: 346
  start-page: 136
  issue: 2
  year: 2009
  end-page: 146
  ident: 11
  article-title: Shift-invariance of short-time Fourier transform in fractional Fourier domains
  publication-title:
– volume: 18
  start-page: 115
  issue: 1
  year: 2010
  end-page: 132
  ident: 12
  article-title: Feature extraction of brain MRI by stationary wavelet transform and its applications
  publication-title:
– volume: 106
  start-page: 92
  year: 2012
  end-page: 117
  ident: 10
  article-title: Asymptotic normality of support vector machine variants and other regularized kernel methods
  publication-title:
– volume: 43
  start-page: 720
  issue: 4
  year: 2010
  end-page: 726
  ident: 17
  article-title: Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait
  publication-title:
– volume: 89
  start-page: 2066
  issue: 10
  year: 2009
  end-page: 2071
  ident: 18
  article-title: Computational load reduction in decision functions using support vector machines
  publication-title:
– volume: 94
  start-page: 83
  year: 2009
  end-page: 104
  ident: 13
  article-title: A new classifier for polarimetric SAR images
  publication-title:
– volume: 74
  start-page: 274
  issue: 2
  year: 2010
  end-page: 279
  ident: 8
  article-title: Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine
  publication-title:
– volume: 37
  start-page: 1600
  issue: 2
  year: 2010
  end-page: 1607
  ident: 1
  article-title: Classification of sleep apnea by using wavelet transform and artificial neural networks
  publication-title:
– volume: 34
  start-page: 1285
  issue: 2
  year: 2008
  end-page: 1295
  ident: 5
  article-title: A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI
  publication-title:
– volume: 84
  start-page: 247
  issue: 2
  year: 2007
  end-page: 253
  ident: 16
  article-title: Fish age categorization from otolith images using multi-class support vector machines
  publication-title:
– volume: 7
  start-page: 513
  issue: 4
  year: 2003
  end-page: 527
  ident: 4
  article-title: A fully automatic and robust brain MRI tissue classification method
  publication-title:
– volume: 658
  start-page: 106
  issue: 1
  year: 2010
  ident: 2
  article-title: ‘The best approaches in the on-line monitoring of batch processes based on PCA: does the modelling structure matter?’ [Anal. Chim. Acta Volume 642 (2009) 59–68]
  publication-title:
– volume: 12
  start-page: 12489
  issue: 9
  year: 2012
  end-page: 12505
  ident: 6
  article-title: Classification of fruits using computer vision and a multiclass support vector machine
  publication-title:
– volume: 37
  start-page: 6748
  issue: 10
  year: 2010
  end-page: 6752
  ident: 19
  article-title: Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine
  publication-title:
– volume: 1
  start-page: 86
  issue: 1
  year: 2006
  end-page: 92
  ident: 3
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title:
– volume: 119
  start-page: 32
  issue: 1-2
  year: 2009
  end-page: 38
  ident: 15
  article-title: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines
  publication-title:
– volume: 45
  start-page: 4068
  issue: 14-15
  year: 2008
  end-page: 4097
  ident: 21
  article-title: Refinements of damage detection methods based on wavelet analysis of dynamical shapes
  publication-title:
– ident: e_1_2_7_4_2
  doi: 10.1016/S1361-8415(03)00037-9
– ident: e_1_2_7_21_2
  doi: 10.1016/j.ijsolstr.2008.02.015
– ident: e_1_2_7_12_2
  doi: 10.1142/S0218339010003652
– ident: e_1_2_7_10_2
  doi: 10.1016/j.jmva.2011.11.004
– ident: e_1_2_7_11_2
  doi: 10.1016/j.jfranklin.2008.08.006
– ident: e_1_2_7_14_2
– ident: e_1_2_7_9_2
  doi: 10.1016/j.neucom.2011.07.005
– ident: e_1_2_7_7_2
  doi: 10.1205/cherd.03144
– ident: e_1_2_7_19_2
  doi: 10.1016/j.eswa.2010.02.126
– ident: e_1_2_7_16_2
  doi: 10.1016/j.fishres.2006.11.021
– ident: e_1_2_7_17_2
  doi: 10.1016/j.jbiomech.2009.10.018
– ident: e_1_2_7_20_2
  doi: 10.1016/j.eswa.2011.02.043
– ident: e_1_2_7_3_2
  doi: 10.1016/j.bspc.2006.05.002
– ident: e_1_2_7_5_2
  doi: 10.1016/j.eswa.2006.12.012
– ident: e_1_2_7_1_2
  doi: 10.1016/j.eswa.2009.06.049
– ident: e_1_2_7_6_2
  doi: 10.3390/s120912489
– ident: e_1_2_7_18_2
  doi: 10.1016/j.sigpro.2009.03.032
– ident: e_1_2_7_2_2
  doi: 10.1016/j.aca.2009.10.054
– ident: e_1_2_7_8_2
  doi: 10.1016/j.compag.2010.09.002
– ident: e_1_2_7_15_2
  doi: 10.1016/j.applanim.2009.03.005
– ident: e_1_2_7_13_2
  doi: 10.2528/PIER09041905
SSID ssj0038715
ssib053847956
Score 2.5824192
Snippet Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
hindawi
emarefa
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Accuracy
Advantages
Algorithms
Artificial Intelligence
Biomedical research
Borrelia
Brain
Brain - metabolism
Brain - pathology
Brain research
Classification
Dementia disorders
Digital imaging
Encephalitis
Feature extraction
Humans
Hybrid systems
Image classification
Image Processing, Computer-Assisted - standards
Kernels
Magnetic resonance imaging
Medical imaging
Methods
Multiple sclerosis
NMR
Nuclear magnetic resonance
Optimization algorithms
Parameters
Particle swarm optimization
Principal Component Analysis
Principal components analysis
Sarcoma
Studies
Support Vector Machine
Support vector machines
Toxoplasmosis
Wavelet analysis
Wavelet transforms
Websites
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaJKReKigtDdDKqBzoIWLjd47QgkAVLQJU9RbFL7ESG9AuW_5-ZxzvikUVXDgmdhJrxp75xvF8Q8hObHktjHOlxjxlYZ0sjYq8VG4QnYhMywrznY8v9M8_5vsh0uTMS33hmbCeHrgX3J7n4JSRFs4qJoyvbLQSohbwdFEaFlyyvgM1C6Z6G8whDJA5Gw8cJkT4Fd8Da11xseB_Ek1_ysVt4Rp80_IVRsL3w__hzcfHJh_4oaMV8jYDSLrfD3yVvArdO7Kal-iE7mYe6a9rJO539PScHmARCHoyAsMxoakG5jCCL6Q9Vzn9O2zpWRYDvbhvxyP6C8zIKOdn0rbz9EcYd-GaYgVQQOv0d9rpp6fpHGZ4Ty6PDi-_HZe5rELpALvdlbJlrIpahGCltQ4gH0A8r3R0uB_EWxWM98wpjQf0aydcLTygpljrQbSm4h_IUnfThY-EWuN18AZAm-MiKmailnVUNjobVBWrguzMZN3c9uQZTQo6pGxQJU2vkoIcoB7mXZDxOt2AedBkATTPzYOCrGctPvgUPCN1Qb5krT49iK2Zxpu8jCcQFyF9oqkNvGR73gwLEP-qtF24maY-ymiIswdP9JEY9hlVw2fW-0k0HwtDSAwgtiB6YXotiGOxpRteJSJwrgHcc7HxEvLbJG9YqvSBu0tbZOluPA2fyOuJn35OS-sf9IslGA
  priority: 102
  providerName: Directory of Open Access Journals
Title An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine
URI https://search.emarefa.net/detail/BIM-1032557
https://dx.doi.org/10.1155/2013/130134
https://www.ncbi.nlm.nih.gov/pubmed/24163610
https://www.proquest.com/docview/1444048987
https://search.proquest.com/docview/1446872540
https://search.proquest.com/docview/1543998694
https://pubmed.ncbi.nlm.nih.gov/PMC3791634
https://doaj.org/article/d32564867b6248d1bfb5721075f582ec
Volume 2013
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLboJCReEOMyAqMyYg_wkLWJr3ncxqZNU2FiE-Itih17i7SkU7uyv885jlu1CO2BxzTOpT4-9vc553yHkD1fsYJra1OFecrcWJFq6Vkq7dhb7nMlMsx3Pr1U337pr8cokyOWuTAhaN-aZr-7bfe75ibEVt61drSMExtdTI6YAlDD-GhABoANNyk6ODBXBQrE9NMxA0YgQoU5IYEn8XFM0oN1FIh_xkYwiWcMy_PkiE0kptKurVBByD9k61ZwDKvX0xvkyg_NvxDp34GVayvVyQvyPEJMetD_lW3yxHUvyXZ04jn9HJWmv7wi_qCjkx_0EMtE0LMWppY5DVUyGw-rJe3VzOnvpqIXsWPo5UM1a-l3mGjamMFJq66m527WuVuKNUIBz9Of4VsAnYRITfeaXJ0cXx2dprHwQmoB3d2nosrzzCvunBHGWACFAAJrqbzFHSNWSafrOrdSYQh_YbkteA24yhdq7I3O2Buy1U0795ZQo2vlag2wzjLuZa69EoWXxlvjZOazhOwt-7q86-U1ykBLhCjROmVvnYQcoh1WTVATO_wwnV2XsQPKmgF8QwFBI3Ou68x4I4DfAibyQufOJmQnWnHtUXCNUAn5FK36-EvsLi1eRkefA3NCgUVdaLjJx9VpcFH87lJ1broIbaRWwMTHj7QRSAy1LOAxO_0gWr3LcmAmRG0Mr43u2DwDnhOkwqOnvPvvK9-TZ3koAIKbTrtk6362cB_IYF4vhkBAzs6HYRNjGFzwD341Lew
link.rule.ids 230,315,729,782,786,866,879,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYEILLYHyMwAAjdoBD1iT-zHEbmzptHROrELcodmwWaUmndt3-fZ4dp2oR2mHHxk6d5D2_9_sl7wOhHVuSnEqtY-HylKnSLJbckpjrxGpqM8FSl-88vBBnv-X3Q1cmh_W5MD5oX6t6t71qdtv60sdWXjd60MeJDc5HB0QAqCF0sIYew35NklWSDoeoyF2JmM4gE-AEzPeYYxyYEk1Cmh54UqD-KRmAGU-Ja9CTOXTCXTLtko_ypfx9vm4Jv8F_Pbl0bPmu_h8m_Te0cslXHT1_4F2-QBsBnOK9bngTPTLtS7QZtv8Mfw01qr-9QnavxaOfeN81mMDHDRilGfb9NWsLfhZ3ddDxbV3i87AYvrgrpw3-ASaqCbmfuGwrfGKmrbnCrrsoMAH8y39FwCMf42leo_HR4fhgGIeWDbEGXHgTszLLUiuoMYoppQFOAnysuLDavWsiJTeyqjLNhQv-zzXVOa0AkdlcJFbJlLxB6-2kNW8RVrISppIACDWhlmfSCpZbrqxWhqc2jdBOL6PiuivMUXhCw1jhpFp0Uo3QvpPfYoqrpu0PTKZ_ivAAiooA8HOlBxXPqKxSZRUDZgxoyjKZGR2hrSD9paXgHCYi9CVow_0Xsd1rShFMxAw4lyvNKHMJf_J5MQyb232xKVszmfs5XArg8Mk9c5ijlJLnsMxWp3yLa-kVOkJiRS1XHsfqCGijLzIetO_dg8_8hJ4Ox6PT4vT47OQ9epb5NiLu1dU2Wr-Zzs0HtDar5h_91v0LLKlBhw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RIhAXoDyKocAieoCDm9j79LGvqFVJiWiFuFneF7VUO1HS0L_P7HoTJQj1AEfba6_tnZ39PnvmG4R2XUUKKrVOhc9TpkqzVHJHUq77TlOXC5b5fOeTC3H-Qx4de5mcZamvELSvVb3XXjd7bX0VYisnje4t4sR6o-EhEQBqCO1NjOttoPswZ_v5OlGHXVQUXiamc8oEeAELdeYYB7ZE-zFVD1ZToP8Z6YErz4gv0pN7hMJ9Qu3KOhXk_EPObgXbsIY9uPKM-bb-Gy79M7xyZb0aPPmPJ32KHkeQive7Jlvonm2foa3oBmb4U9Sq_vwcuf0WD7_hA19oAp824JxmONTZrB2st7jTQ8e_6gqPYof44raaNvgruKom5oDiqjX4zE5be419lVFgBPh7-JuAhyHW075Al4Pjy8OTNJZuSDXgw5uUVXmeOUGtVUwpDbASYKThwmn_zYlU3Epjcs2FTwIoNNUFNYDMXCH6TsmMvESb7bi1rxBW0ghrJABDTajjuXSCFY4rp5XlmcsStLsYp3LSCXSUgdgwVvqRLbuRTdCBH8NlE6-qHXaMpz_L-AJKQwAAeglCxXMqTaacYsCQAVU5JnOrE7QdLWClKziHiQR9jBZx903sLKyljK5iBtzLSzTKQsJFPiwPwyT3f26q1o7noQ2XArh8_442zFNLyQvoZrszwOW9LIw6QWLNNNdex_oRsMggNh4t8PU_n_kePRwdDcovp-dnb9CjPFQT8V-wdtDmzXRu36KNmZm_C7P3N1eiRAc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+MR+Brain+Images+Classifier+System+via+Particle+Swarm+Optimization+and+Kernel+Support+Vector+Machine&rft.jtitle=TheScientificWorld&rft.au=Zhang%2C+Yudong&rft.au=Wang%2C+Shuihua&rft.au=Ji%2C+Genlin&rft.au=Dong%2C+Zhengchao&rft.date=2013-01-01&rft.eissn=1537-744X&rft.volume=2013&rft_id=info:doi/10.1155%2F2013%2F130134&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2356-6140&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2356-6140&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2356-6140&client=summon