An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine
Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wa...
Saved in:
Published in: | TheScientificWorld Vol. 2013; no. 2013; pp. 1 - 9 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cairo, Egypt
Hindawi Publishing Corporation
01-01-2013
Hindawi Limited |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM. |
---|---|
AbstractList | Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and sigma . Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick's disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM. Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ. Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick’s disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM. Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we proposed a novel hybrid system to classify a given MR brain image as either normal or abnormal. The proposed method first employed digital wavelet transform to extract features then used principal component analysis (PCA) to reduce the feature space. Afterwards, we constructed a kernel support vector machine (KSVM) with RBF kernel, using particle swarm optimization (PSO) to optimize the parameters C and σ . Fivefold cross-validation was utilized to avoid overfitting. In the experimental procedure, we created a 90 images dataset brain downloaded from Harvard Medical School website. The abnormal brain MR images consist of the following diseases: glioma, metastatic adenocarcinoma, metastatic bronchogenic carcinoma, meningioma, sarcoma, Alzheimer, Huntington, motor neuron disease, cerebral calcinosis, Pick's disease, Alzheimer plus visual agnosia, multiple sclerosis, AIDS dementia, Lyme encephalopathy, herpes encephalitis, Creutzfeld-Jakob disease, and cerebral toxoplasmosis. The 5-folded cross-validation classification results showed that our method achieved 97.78% classification accuracy, higher than 86.22% by BP-NN and 91.33% by RBF-NN. For the parameter selection, we compared PSO with those of random selection method. The results showed that the PSO is more effective to build optimal KSVM. |
Author | Dong, Zhengchao Zhang, Yudong Wang, Shuihua Ji, Genlin |
AuthorAffiliation | 3 School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China 1 School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China 2 Brain Imaging Lab and MRI Unit, New York State Psychiatry Institute and Columbia University, New York, NY 10032, USA |
AuthorAffiliation_xml | – name: 1 School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, China – name: 3 School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210046, China – name: 2 Brain Imaging Lab and MRI Unit, New York State Psychiatry Institute and Columbia University, New York, NY 10032, USA |
Author_xml | – sequence: 1 fullname: Zhang, Yudong – sequence: 2 fullname: Wang, Shuihua – sequence: 3 fullname: Ji, Genlin – sequence: 4 fullname: Dong, Zhengchao |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24163610$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rFDEYh4NU7IeevEvAiyhr852ZS6Eufiy2VNwi3kIm8842y0yyJrMt9a83666l9dRLAsnDQ95ffodoL8QACL2k5D2lUh4zQvkx5WUVT9ABlVxPtBA_99AB41JNFBVkHx3mvCSEV5rKZ2ifCaq4ouQAdacBn3_HH5L1Ac8Gu4CMp73N2XceEp7f5hEGfO0t_mbT6F0PeH5j04AvVqMf_G87-hiwDS3-CilAj-fr1SqmEf8AN8aEz6278gGeo6ed7TO82O1H6PLTx8vpl8nZxefZ9PRs4qRS40RaxminBUAjm8ZRRTklrdKdo4IxbhVUbcuc0s62UDvhatEqIbpak66pKD9Cs622jXZpVskPNt2aaL35exDTwuymMC1nUolK6UYxUbW06RqpGSVadrJi4IrrZOtarZsBWgdhTLZ_IH14E_yVWcRrw3Vd0hVF8GYnSPHXGvJoBp8d9L0NENfZUCl4XVeqfgQqhKo0k4IU9PV_6DKuUyihbihBRFVXulDvtpRLMecE3d27KTGb1phNa8y2NYV-dX_UO_ZfTQrwdguUv2ztjX-cDQoCnb0Hl8yl5n8A-_HT5Q |
CitedBy_id | crossref_primary_10_1016_j_bspc_2015_05_014 crossref_primary_10_1155_2014_272496 crossref_primary_10_1155_2015_931256 crossref_primary_10_1002_ima_22132 crossref_primary_10_1088_1742_6596_2562_1_012004 crossref_primary_10_1109_ACCESS_2023_3272223 crossref_primary_10_1155_2014_840305 crossref_primary_10_3389_fnhum_2023_1150120 crossref_primary_10_1155_2013_753251 crossref_primary_10_1155_2017_9060124 crossref_primary_10_1007_s11042_019_7498_3 crossref_primary_10_1080_0954898X_2023_2225601 crossref_primary_10_1109_ACCESS_2019_2901055 crossref_primary_10_1080_0952813X_2015_1132274 crossref_primary_10_1155_2014_652135 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_1155_2015_513849 crossref_primary_10_1155_2022_1541980 crossref_primary_10_1007_s10916_018_1135_y crossref_primary_10_1002_ima_22144 crossref_primary_10_1007_s11517_020_02256_z crossref_primary_10_1155_2013_982438 crossref_primary_10_1155_2017_4205141 crossref_primary_10_1007_s11042_020_09676_x crossref_primary_10_1016_j_knosys_2014_03_015 crossref_primary_10_3389_fonc_2021_788819 crossref_primary_10_1155_2014_546814 crossref_primary_10_7717_peerj_1251 crossref_primary_10_3390_e17106663 crossref_primary_10_1007_s11227_022_04420_8 crossref_primary_10_1155_2014_138548 crossref_primary_10_1007_s11831_023_10041_y crossref_primary_10_1007_s11042_020_09306_6 crossref_primary_10_3390_sym9030037 crossref_primary_10_1155_2015_954086 crossref_primary_10_1007_s11265_017_1230_1 crossref_primary_10_3389_fncom_2015_00066 crossref_primary_10_3390_a14020029 |
Cites_doi | 10.1016/S1361-8415(03)00037-9 10.1016/j.ijsolstr.2008.02.015 10.1142/S0218339010003652 10.1016/j.jmva.2011.11.004 10.1016/j.jfranklin.2008.08.006 10.1016/j.neucom.2011.07.005 10.1205/cherd.03144 10.1016/j.eswa.2010.02.126 10.1016/j.fishres.2006.11.021 10.1016/j.jbiomech.2009.10.018 10.1016/j.eswa.2011.02.043 10.1016/j.bspc.2006.05.002 10.1016/j.eswa.2006.12.012 10.1016/j.eswa.2009.06.049 10.3390/s120912489 10.1016/j.sigpro.2009.03.032 10.1016/j.aca.2009.10.054 10.1016/j.compag.2010.09.002 10.1016/j.applanim.2009.03.005 10.2528/PIER09041905 |
ContentType | Journal Article |
Copyright | Copyright © 2013 Yudong Zhang et al. Copyright © 2013 Yudong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2013 Yudong Zhang et al. 2013 |
Copyright_xml | – notice: Copyright © 2013 Yudong Zhang et al. – notice: Copyright © 2013 Yudong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2013 Yudong Zhang et al. 2013 |
DBID | ADJCN AHFXO RHU RHW RHX CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QP 7TK 7TM 7X2 7X7 7XB 88E 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO FR3 FYUFA GHDGH HCIFZ K9. M0K M0S M1P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI RC3 7X8 5PM DOA |
DOI | 10.1155/2013/130134 |
DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete Hindawi Publishing Complete Hindawi Publishing Subscription Journals Open Access Journals (Hindawi Publishing) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Agricultural Science Database Publicly Available Content Database Technology Collection Technology Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Genetics Abstracts Health Research Premium Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Advanced Technologies & Aerospace Database ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Neurosciences Abstracts Agricultural Science Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1537-744X |
Editor | Fossati, C. Bourennane, S. Marot, J. |
Editor_xml | – sequence: 1 givenname: S. surname: Bourennane fullname: Bourennane, S. – sequence: 2 givenname: C. surname: Fossati fullname: Fossati, C. – sequence: 3 givenname: J. surname: Marot fullname: Marot, J. – fullname: S Bourennane – fullname: C Fossati – fullname: J Marot |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_d32564867b6248d1bfb5721075f582ec 3106280881 10_1155_2013_130134 24163610 1032557 |
Genre | Journal Article |
GroupedDBID | 123 24P 3V. 4.4 53G 5VS 7X2 7X7 88E 8FE 8FG 8FH 8FI 8FJ AAFWJ AAHBH AAJEY AAWTL ABUWG ADBBV ADDVE ADJCN ADRAZ AEGXH AFKRA AFPKN AHFXO ALMA_UNASSIGNED_HOLDINGS AOIJS APEBS ARAPS ATCPS BAWUL BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DA7 DIK E3Z EBD EBS EJD EMOBN FAC FYUFA GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IGS INH INR IPNFZ ITC KQ8 M0K M1P M48 M~E OK1 P62 PGMZT PIMPY PQQKQ PROAC PSQYO RHX RIG RPM SV3 TUS UKHRP ACHIH RHU RHW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 K9. P64 PQEST PQUKI RC3 7X8 5PM |
ID | FETCH-LOGICAL-c566t-5a221f74eeb5bbc161310d67fc14223a6e8dd2c67cade9c4c94d644f970fb813 |
IEDL.DBID | RPM |
ISSN | 2356-6140 |
IngestDate | Mon Nov 04 19:59:04 EST 2024 Tue Sep 17 21:16:54 EDT 2024 Fri Oct 25 00:43:10 EDT 2024 Fri Aug 16 23:58:41 EDT 2024 Sat Oct 19 19:30:41 EDT 2024 Fri Aug 23 04:44:46 EDT 2024 Sat Sep 28 07:52:59 EDT 2024 Sun Jun 02 18:48:22 EDT 2024 Tue Nov 26 17:07:42 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2013 |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c566t-5a221f74eeb5bbc161310d67fc14223a6e8dd2c67cade9c4c94d644f970fb813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 Academic Editors: S. Bourennane, C. Fossati, and J. Marot |
ORCID | 0000-0002-4870-1493 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791634/ |
PMID | 24163610 |
PQID | 1444048987 |
PQPubID | 1136335 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d32564867b6248d1bfb5721075f582ec pubmedcentral_primary_oai_pubmedcentral_nih_gov_3791634 proquest_miscellaneous_1543998694 proquest_miscellaneous_1446872540 proquest_journals_1444048987 crossref_primary_10_1155_2013_130134 pubmed_primary_24163610 hindawi_primary_10_1155_2013_130134 emarefa_primary_1032557 |
PublicationCentury | 2000 |
PublicationDate | 2013-01-01 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – month: 01 year: 2013 text: 2013-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cairo, Egypt |
PublicationPlace_xml | – name: Cairo, Egypt – name: United States – name: Cairo |
PublicationTitle | TheScientificWorld |
PublicationTitleAlternate | ScientificWorldJournal |
PublicationYear | 2013 |
Publisher | Hindawi Publishing Corporation Hindawi Limited |
Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi Limited |
References | (7) 2005; 83 (6) 2012; 12 (20) 2011; 38 (21) 2008; 45 (18) 2009; 89 (2) 2010; 658 (13) 2009; 94 (15) 2009; 119 (3) 2006; 1 (4) 2003; 7 (12) 2010; 18 (16) 2007; 84 (10) 2012; 106 (19) 2010; 37 (11) 2009; 346 (17) 2010; 43 (9) 2012; 75 Support vector machine 2012, http://en.wikipedia.org/wiki/Support_vector_machine (1) 2010; 37 (5) 2008; 34 (8) 2010; 74 19914622 - J Biomech. 2010 Mar 3;43(4):720-6 19427459 - Anal Chim Acta. 2009 May 29;642(1-2):59-68 23112727 - Sensors (Basel). 2012;12(9):12489-505 14561555 - Med Image Anal. 2003 Dec;7(4):513-27 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_1_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_21_2 e_1_2_7_20_2 |
References_xml | – volume: 83 start-page: 1030 issue: 8 year: 2005 end-page: 1037 ident: 7 article-title: Regression models using pattern search assisted least square support vector machines publication-title: – volume: 38 start-page: 9908 issue: 8 year: 2011 end-page: 9912 ident: 20 article-title: Fault diagnosis of sensor by chaos particle swarm optimization algorithm and support vector machine publication-title: – volume: 75 start-page: 3 year: 2012 end-page: 13 ident: 9 article-title: Combining meta-learning and search techniques to select parameters for support vector machines publication-title: – volume: 346 start-page: 136 issue: 2 year: 2009 end-page: 146 ident: 11 article-title: Shift-invariance of short-time Fourier transform in fractional Fourier domains publication-title: – volume: 18 start-page: 115 issue: 1 year: 2010 end-page: 132 ident: 12 article-title: Feature extraction of brain MRI by stationary wavelet transform and its applications publication-title: – volume: 106 start-page: 92 year: 2012 end-page: 117 ident: 10 article-title: Asymptotic normality of support vector machine variants and other regularized kernel methods publication-title: – volume: 43 start-page: 720 issue: 4 year: 2010 end-page: 726 ident: 17 article-title: Comparison among probabilistic neural network, support vector machine and logistic regression for evaluating the effect of subthalamic stimulation in Parkinson disease on ground reaction force during gait publication-title: – volume: 89 start-page: 2066 issue: 10 year: 2009 end-page: 2071 ident: 18 article-title: Computational load reduction in decision functions using support vector machines publication-title: – volume: 94 start-page: 83 year: 2009 end-page: 104 ident: 13 article-title: A new classifier for polarimetric SAR images publication-title: – volume: 74 start-page: 274 issue: 2 year: 2010 end-page: 279 ident: 8 article-title: Classification of foreign fibers in cotton lint using machine vision and multi-class support vector machine publication-title: – volume: 37 start-page: 1600 issue: 2 year: 2010 end-page: 1607 ident: 1 article-title: Classification of sleep apnea by using wavelet transform and artificial neural networks publication-title: – volume: 34 start-page: 1285 issue: 2 year: 2008 end-page: 1295 ident: 5 article-title: A hierarchical genetic algorithm for segmentation of multi-spectral human-brain MRI publication-title: – volume: 84 start-page: 247 issue: 2 year: 2007 end-page: 253 ident: 16 article-title: Fish age categorization from otolith images using multi-class support vector machines publication-title: – volume: 7 start-page: 513 issue: 4 year: 2003 end-page: 527 ident: 4 article-title: A fully automatic and robust brain MRI tissue classification method publication-title: – volume: 658 start-page: 106 issue: 1 year: 2010 ident: 2 article-title: ‘The best approaches in the on-line monitoring of batch processes based on PCA: does the modelling structure matter?’ [Anal. Chim. Acta Volume 642 (2009) 59–68] publication-title: – volume: 12 start-page: 12489 issue: 9 year: 2012 end-page: 12505 ident: 6 article-title: Classification of fruits using computer vision and a multiclass support vector machine publication-title: – volume: 37 start-page: 6748 issue: 10 year: 2010 end-page: 6752 ident: 19 article-title: Diagnostic study on arrhythmia cordis based on particle swarm optimization-based support vector machine publication-title: – volume: 1 start-page: 86 issue: 1 year: 2006 end-page: 92 ident: 3 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: – volume: 119 start-page: 32 issue: 1-2 year: 2009 end-page: 38 ident: 15 article-title: Cow behaviour pattern recognition using a three-dimensional accelerometer and support vector machines publication-title: – volume: 45 start-page: 4068 issue: 14-15 year: 2008 end-page: 4097 ident: 21 article-title: Refinements of damage detection methods based on wavelet analysis of dynamical shapes publication-title: – ident: e_1_2_7_4_2 doi: 10.1016/S1361-8415(03)00037-9 – ident: e_1_2_7_21_2 doi: 10.1016/j.ijsolstr.2008.02.015 – ident: e_1_2_7_12_2 doi: 10.1142/S0218339010003652 – ident: e_1_2_7_10_2 doi: 10.1016/j.jmva.2011.11.004 – ident: e_1_2_7_11_2 doi: 10.1016/j.jfranklin.2008.08.006 – ident: e_1_2_7_14_2 – ident: e_1_2_7_9_2 doi: 10.1016/j.neucom.2011.07.005 – ident: e_1_2_7_7_2 doi: 10.1205/cherd.03144 – ident: e_1_2_7_19_2 doi: 10.1016/j.eswa.2010.02.126 – ident: e_1_2_7_16_2 doi: 10.1016/j.fishres.2006.11.021 – ident: e_1_2_7_17_2 doi: 10.1016/j.jbiomech.2009.10.018 – ident: e_1_2_7_20_2 doi: 10.1016/j.eswa.2011.02.043 – ident: e_1_2_7_3_2 doi: 10.1016/j.bspc.2006.05.002 – ident: e_1_2_7_5_2 doi: 10.1016/j.eswa.2006.12.012 – ident: e_1_2_7_1_2 doi: 10.1016/j.eswa.2009.06.049 – ident: e_1_2_7_6_2 doi: 10.3390/s120912489 – ident: e_1_2_7_18_2 doi: 10.1016/j.sigpro.2009.03.032 – ident: e_1_2_7_2_2 doi: 10.1016/j.aca.2009.10.054 – ident: e_1_2_7_8_2 doi: 10.1016/j.compag.2010.09.002 – ident: e_1_2_7_15_2 doi: 10.1016/j.applanim.2009.03.005 – ident: e_1_2_7_13_2 doi: 10.2528/PIER09041905 |
SSID | ssj0038715 ssib053847956 |
Score | 2.5824192 |
Snippet | Automated abnormal brain detection is extremely of importance for clinical diagnosis. Over last decades numerous methods had been presented. In this paper, we... |
SourceID | doaj pubmedcentral proquest crossref pubmed hindawi emarefa |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Advantages Algorithms Artificial Intelligence Biomedical research Borrelia Brain Brain - metabolism Brain - pathology Brain research Classification Dementia disorders Digital imaging Encephalitis Feature extraction Humans Hybrid systems Image classification Image Processing, Computer-Assisted - standards Kernels Magnetic resonance imaging Medical imaging Methods Multiple sclerosis NMR Nuclear magnetic resonance Optimization algorithms Parameters Particle swarm optimization Principal Component Analysis Principal components analysis Sarcoma Studies Support Vector Machine Support vector machines Toxoplasmosis Wavelet analysis Wavelet transforms Websites |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaJKReKigtDdDKqBzoIWLjd47QgkAVLQJU9RbFL7ESG9AuW_5-ZxzvikUVXDgmdhJrxp75xvF8Q8hObHktjHOlxjxlYZ0sjYq8VG4QnYhMywrznY8v9M8_5vsh0uTMS33hmbCeHrgX3J7n4JSRFs4qJoyvbLQSohbwdFEaFlyyvgM1C6Z6G8whDJA5Gw8cJkT4Fd8Da11xseB_Ek1_ysVt4Rp80_IVRsL3w__hzcfHJh_4oaMV8jYDSLrfD3yVvArdO7Kal-iE7mYe6a9rJO539PScHmARCHoyAsMxoakG5jCCL6Q9Vzn9O2zpWRYDvbhvxyP6C8zIKOdn0rbz9EcYd-GaYgVQQOv0d9rpp6fpHGZ4Ty6PDi-_HZe5rELpALvdlbJlrIpahGCltQ4gH0A8r3R0uB_EWxWM98wpjQf0aydcLTygpljrQbSm4h_IUnfThY-EWuN18AZAm-MiKmailnVUNjobVBWrguzMZN3c9uQZTQo6pGxQJU2vkoIcoB7mXZDxOt2AedBkATTPzYOCrGctPvgUPCN1Qb5krT49iK2Zxpu8jCcQFyF9oqkNvGR73gwLEP-qtF24maY-ymiIswdP9JEY9hlVw2fW-0k0HwtDSAwgtiB6YXotiGOxpRteJSJwrgHcc7HxEvLbJG9YqvSBu0tbZOluPA2fyOuJn35OS-sf9IslGA priority: 102 providerName: Directory of Open Access Journals |
Title | An MR Brain Images Classifier System via Particle Swarm Optimization and Kernel Support Vector Machine |
URI | https://search.emarefa.net/detail/BIM-1032557 https://dx.doi.org/10.1155/2013/130134 https://www.ncbi.nlm.nih.gov/pubmed/24163610 https://www.proquest.com/docview/1444048987 https://search.proquest.com/docview/1446872540 https://search.proquest.com/docview/1543998694 https://pubmed.ncbi.nlm.nih.gov/PMC3791634 https://doaj.org/article/d32564867b6248d1bfb5721075f582ec |
Volume | 2013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLboJCReEOMyAqMyYg_wkLWJr3ncxqZNU2FiE-Itih17i7SkU7uyv885jlu1CO2BxzTOpT4-9vc553yHkD1fsYJra1OFecrcWJFq6Vkq7dhb7nMlMsx3Pr1U337pr8cokyOWuTAhaN-aZr-7bfe75ibEVt61drSMExtdTI6YAlDD-GhABoANNyk6ODBXBQrE9NMxA0YgQoU5IYEn8XFM0oN1FIh_xkYwiWcMy_PkiE0kptKurVBByD9k61ZwDKvX0xvkyg_NvxDp34GVayvVyQvyPEJMetD_lW3yxHUvyXZ04jn9HJWmv7wi_qCjkx_0EMtE0LMWppY5DVUyGw-rJe3VzOnvpqIXsWPo5UM1a-l3mGjamMFJq66m527WuVuKNUIBz9Of4VsAnYRITfeaXJ0cXx2dprHwQmoB3d2nosrzzCvunBHGWACFAAJrqbzFHSNWSafrOrdSYQh_YbkteA24yhdq7I3O2Buy1U0795ZQo2vlag2wzjLuZa69EoWXxlvjZOazhOwt-7q86-U1ykBLhCjROmVvnYQcoh1WTVATO_wwnV2XsQPKmgF8QwFBI3Ou68x4I4DfAibyQufOJmQnWnHtUXCNUAn5FK36-EvsLi1eRkefA3NCgUVdaLjJx9VpcFH87lJ1broIbaRWwMTHj7QRSAy1LOAxO_0gWr3LcmAmRG0Mr43u2DwDnhOkwqOnvPvvK9-TZ3koAIKbTrtk6362cB_IYF4vhkBAzs6HYRNjGFzwD341Lew |
link.rule.ids | 230,315,729,782,786,866,879,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfYEILLYHyMwAAjdoBD1iT-zHEbmzptHROrELcodmwWaUmndt3-fZ4dp2oR2mHHxk6d5D2_9_sl7wOhHVuSnEqtY-HylKnSLJbckpjrxGpqM8FSl-88vBBnv-X3Q1cmh_W5MD5oX6t6t71qdtv60sdWXjd60MeJDc5HB0QAqCF0sIYew35NklWSDoeoyF2JmM4gE-AEzPeYYxyYEk1Cmh54UqD-KRmAGU-Ja9CTOXTCXTLtko_ypfx9vm4Jv8F_Pbl0bPmu_h8m_Te0cslXHT1_4F2-QBsBnOK9bngTPTLtS7QZtv8Mfw01qr-9QnavxaOfeN81mMDHDRilGfb9NWsLfhZ3ddDxbV3i87AYvrgrpw3-ASaqCbmfuGwrfGKmrbnCrrsoMAH8y39FwCMf42leo_HR4fhgGIeWDbEGXHgTszLLUiuoMYoppQFOAnysuLDavWsiJTeyqjLNhQv-zzXVOa0AkdlcJFbJlLxB6-2kNW8RVrISppIACDWhlmfSCpZbrqxWhqc2jdBOL6PiuivMUXhCw1jhpFp0Uo3QvpPfYoqrpu0PTKZ_ivAAiooA8HOlBxXPqKxSZRUDZgxoyjKZGR2hrSD9paXgHCYi9CVow_0Xsd1rShFMxAw4lyvNKHMJf_J5MQyb232xKVszmfs5XArg8Mk9c5ijlJLnsMxWp3yLa-kVOkJiRS1XHsfqCGijLzIetO_dg8_8hJ4Ox6PT4vT47OQ9epb5NiLu1dU2Wr-Zzs0HtDar5h_91v0LLKlBhw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RIhAXoDyKocAieoCDm9j79LGvqFVJiWiFuFneF7VUO1HS0L_P7HoTJQj1AEfba6_tnZ39PnvmG4R2XUUKKrVOhc9TpkqzVHJHUq77TlOXC5b5fOeTC3H-Qx4de5mcZamvELSvVb3XXjd7bX0VYisnje4t4sR6o-EhEQBqCO1NjOttoPswZ_v5OlGHXVQUXiamc8oEeAELdeYYB7ZE-zFVD1ZToP8Z6YErz4gv0pN7hMJ9Qu3KOhXk_EPObgXbsIY9uPKM-bb-Gy79M7xyZb0aPPmPJ32KHkeQive7Jlvonm2foa3oBmb4U9Sq_vwcuf0WD7_hA19oAp824JxmONTZrB2st7jTQ8e_6gqPYof44raaNvgruKom5oDiqjX4zE5be419lVFgBPh7-JuAhyHW075Al4Pjy8OTNJZuSDXgw5uUVXmeOUGtVUwpDbASYKThwmn_zYlU3Epjcs2FTwIoNNUFNYDMXCH6TsmMvESb7bi1rxBW0ghrJABDTajjuXSCFY4rp5XlmcsStLsYp3LSCXSUgdgwVvqRLbuRTdCBH8NlE6-qHXaMpz_L-AJKQwAAeglCxXMqTaacYsCQAVU5JnOrE7QdLWClKziHiQR9jBZx903sLKyljK5iBtzLSzTKQsJFPiwPwyT3f26q1o7noQ2XArh8_442zFNLyQvoZrszwOW9LIw6QWLNNNdex_oRsMggNh4t8PU_n_kePRwdDcovp-dnb9CjPFQT8V-wdtDmzXRu36KNmZm_C7P3N1eiRAc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+MR+Brain+Images+Classifier+System+via+Particle+Swarm+Optimization+and+Kernel+Support+Vector+Machine&rft.jtitle=TheScientificWorld&rft.au=Zhang%2C+Yudong&rft.au=Wang%2C+Shuihua&rft.au=Ji%2C+Genlin&rft.au=Dong%2C+Zhengchao&rft.date=2013-01-01&rft.eissn=1537-744X&rft.volume=2013&rft_id=info:doi/10.1155%2F2013%2F130134&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2356-6140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2356-6140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2356-6140&client=summon |