A polymorph of dipeptide halide glycyl-L-alanine hydroiodide monohydrate: crystal structure, optical second harmonic generation, piezoelectricity and pyroelectricity
A polymorph of glycyl-L-alanine HI.H2O is synthesized from chiral cyclo-glycyl-L-alanine dipeptide. The dipeptide is known to show molecular flexibility in different environments, which leads to polymorphism. The crystal structure of the glycyl-L-alanine HI.H2O polymorph is determined at room temper...
Saved in:
Published in: | Materials Vol. 16; no. 10; pp. 1 - 20 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
Multidisciplinary Digital Publishing Institute
12-05-2023
MDPI AG MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A polymorph of glycyl-L-alanine HI.H2O is synthesized from chiral cyclo-glycyl-L-alanine dipeptide. The dipeptide is known to show molecular flexibility in different environments, which leads to polymorphism. The crystal structure of the glycyl-L-alanine HI.H2O polymorph is determined at room temperature and indicates that the space group is polar (P21), with two molecules per unit cell and unit cell parameters a = 7.747 Å, b = 6.435 Å, c = 10.941 Å, α = 90◦, β = 107.53(3)◦,γ = 90◦ and V = 520.1(7) Å3. Crystallization in the polar point group 2, with one polar axis parallel to the b axis, allows pyroelectricity and optical second harmonic generation. Thermal melting of the glycyl-L-alanine HI.H2O polymorph starts at 533 K, close to the melting temperature reported for cyclo-glycyl-L-alanine (531 K) and 32 K lower than that reported for linear glycyl-L-alanine dipeptide (563 K), suggesting that although the dipeptide, when crystallized in the polymorphic form, is not anymore in its cyclic form, it keeps a memory of its initial closed chain and therefore shows a thermal memory effect. Here, we report a pyroelectric coefficient as high as 45 µC/m2K occurring at 345 K, one order of magnitude smaller than that of semi-organic ferroelectric triglycine sulphate (TGS) crystal. Moreover, the glycyl-L-alanine HI.H2O polymorph displays a nonlinear optical effective coefficient of 0.14 pm/V, around 14 times smaller than the value from a phase-matched inorganic barium borate (BBO) single crystal. The new polymorph displays an effective piezoelectric coefficient equal to deff = 280 pCN−1, when embedded into electrospun polymer fibers, indicating its suitability as an active system for energy harvesting.
This research was funded by Fundação para a Ciência e Tecnologia through FEDER (European Fund for Regional Development)-COMPETE-QREN-EU (ref. UID/FIS/04650/2013 and UID/FIS/04650/2019) and E-Field—“Electric-Field Engineered Lattice Distortions (E-FiELD) for optoelectronic devices”, ref. PTDC/NAN-MAT/0098/2020. C.S.B.G. acknowledges funding from Fundação para a Ciência e Tecnologia FCT/MCTES through projects UIDB/50006/2020, UIDP/50006/2020 and LA/P/0008/2020 of the Associate Laboratory for Green Chemistry—LAQV, UIDB/04378/2020, UIDP/04378/2020 and LA/P/0140/2020 of UCIBIO and Associate Laboratory i4HB, respectively.
We acknowledge national funds (OE), through FCT − Fundação para a Ciência e a Tecnologia, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of article 23 of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma16103690 |