High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array

Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT...

Full description

Saved in:
Bibliographic Details
Published in:Medical physics (Lancaster) Vol. 39; no. 4; pp. 2090 - 2099
Main Authors: Qian, Xin, Tucker, Andrew, Gidcumb, Emily, Shan, Jing, Yang, Guang, Calderon-Colon, Xiomara, Sultana, Shabana, Lu, Jianping, Zhou, Otto, Spronk, Derrek, Sprenger, Frank, Zhang, Yiheng, Kennedy, Don, Farbizio, Tom, Jing, Zhenxue
Format: Journal Article
Language:English
Published: United States American Association of Physicists in Medicine 01-04-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation-transfer-function (MTF)] in DBT to 5.1 cycles/mm in s-DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. Conclusions: A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x-ray source array with typical clinical operation lifetime over 3 years.
AbstractList Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x‐ray tube with a specially designed carbon nanotube (CNT) x‐ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x‐ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s‐DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x‐ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x‐ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x‐ray beams. The performance of the s‐DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x‐ray source array comprised 31 individually addressable x‐ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half‐maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source‐to‐source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation‐transfer‐function (MTF)] in DBT to 5.1 cycles/mm in s‐DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s‐DBT system scanning time is 6.3 s for a 15‐view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. Conclusions: A prototype s‐DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x‐ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x‐ray focal spot motion. The scanner speed of s‐DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x‐ray source array with typical clinical operation lifetime over 3 years.
The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 × 2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation-transfer-function (MTF)] in DBT to 5.1 cycles/mm in s-DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x-ray source array with typical clinical operation lifetime over 3 years.
Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2 x 2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation-transfer-function (MTF)] in DBT to 5.1 cycles/mm in s-DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. Conclusions: A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x-ray source array with typical clinical operation lifetime over 3 years.
Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions digital breast tomosynthesis (DBT) scanner by replacing the rotating mammography x-ray tube with a specially designed carbon nanotube (CNT) x-ray source array, which generates all the projection images needed for tomosynthesis reconstruction by electronically activating individual x-ray sources without any mechanical motion. The stationary digital breast tomosynthesis (s-DBT) design aims to (i) increase the system spatial resolution by eliminating image blurring due to x-ray tube motion and (ii) reduce the scanning time. Low spatial resolution and long scanning time are the two main technical limitations of current DBT technology. Methods: A CNT x-ray source array was designed and evaluated against a set of targeted system performance parameters. Simulations were performed to determine the maximum anode heat load at the desired focal spot size and to design the electron focusing optics. Field emission current from CNT cathode was measured for an extended period of time to determine the stable life time of CNT cathode for an expected clinical operation scenario. The source array was manufactured, tested, and integrated with a Selenia scanner. An electronic control unit was developed to interface the source array with the detection system and to scan and regulate x-ray beams. The performance of the s-DBT system was evaluated using physical phantoms. Results: The spatially distributed CNT x-ray source array comprised 31 individually addressable x-ray sources covering a 30 angular span with 1 pitch and an isotropic focal spot size of 0.6 mm at full width at half-maximum. Stable operation at 28 kV(peak) anode voltage and 38 mA tube current was demonstrated with extended lifetime and good source-to-source consistency. For the standard imaging protocol of 15 views over 14, 100 mAs dose, and 2×2 detector binning, the projection resolution along the scanning direction increased from 4.0 cycles/mm [at 10% modulation-transfer-function (MTF)] in DBT to 5.1 cycles/mm in s-DBT at magnification factor of 1.08. The improvement is more pronounced for faster scanning speeds, wider angular coverage, and smaller detector pixel sizes. The scanning speed depends on the detector, the number of views, and the imaging dose. With 240 ms detector readout time, the s-DBT system scanning time is 6.3 s for a 15-view, 100 mAs scan regardless of the angular coverage. The scanning speed can be reduced to less than 4 s when detectors become faster. Initial phantom studies showed good quality reconstructed images. Conclusions: A prototype s-DBT scanner has been developed and evaluated by retrofitting the Selenia rotating gantry DBT scanner with a spatially distributed CNT x-ray source array. Preliminary results show that it improves system spatial resolution substantially by eliminating image blur due to x-ray focal spot motion. The scanner speed of s-DBT system is independent of angular coverage and can be increased with faster detector without image degration. The accelerated lifetime measurement demonstrated the long term stability of CNT x-ray source array with typical clinical operation lifetime over 3 years.
Author Spronk, Derrek
Lu, Jianping
Sprenger, Frank
Jing, Zhenxue
Qian, Xin
Zhang, Yiheng
Zhou, Otto
Farbizio, Tom
Calderon-Colon, Xiomara
Yang, Guang
Sultana, Shabana
Kennedy, Don
Shan, Jing
Gidcumb, Emily
Tucker, Andrew
Author_xml – sequence: 1
  givenname: Xin
  surname: Qian
  fullname: Qian, Xin
  email: xqian@physics.unc.edu
  organization: Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 2
  givenname: Andrew
  surname: Tucker
  fullname: Tucker, Andrew
  organization: Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 3
  givenname: Emily
  surname: Gidcumb
  fullname: Gidcumb, Emily
  organization: Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 4
  givenname: Jing
  surname: Shan
  fullname: Shan, Jing
  organization: Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 5
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
  organization: Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 6
  givenname: Xiomara
  surname: Calderon-Colon
  fullname: Calderon-Colon, Xiomara
  organization: Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 7
  givenname: Shabana
  surname: Sultana
  fullname: Sultana, Shabana
  organization: Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 8
  givenname: Jianping
  surname: Lu
  fullname: Lu, Jianping
  organization: Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 and Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 9
  givenname: Otto
  surname: Zhou
  fullname: Zhou, Otto
  email: zhou@email.unc.edu
  organization: Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599; and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
– sequence: 10
  givenname: Derrek
  surname: Spronk
  fullname: Spronk, Derrek
  organization: XinRay Systems, Inc., Research Triangle Park, North Carolina 27709
– sequence: 11
  givenname: Frank
  surname: Sprenger
  fullname: Sprenger, Frank
  organization: XinRay Systems, Inc., Research Triangle Park, North Carolina 27709
– sequence: 12
  givenname: Yiheng
  surname: Zhang
  fullname: Zhang, Yiheng
  organization: Hologic, Inc., Bedford, Massachusetts 01730
– sequence: 13
  givenname: Don
  surname: Kennedy
  fullname: Kennedy, Don
  organization: Hologic, Inc., Bedford, Massachusetts 01730
– sequence: 14
  givenname: Tom
  surname: Farbizio
  fullname: Farbizio, Tom
  organization: Hologic, Inc., Bedford, Massachusetts 01730
– sequence: 15
  givenname: Zhenxue
  surname: Jing
  fullname: Jing, Zhenxue
  organization: Hologic, Inc., Bedford, Massachusetts 01730
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22482630$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/22098818$$D View this record in Osti.gov
BookMark eNqNkU1vEzEQhi1URNPCgT-ALHECaYs_1o73goQqoEhFcICz5Y9JYrSxI9tbyL_HS0IphyJOI8uPH8_Me4ZOYoqA0FNKLiil6hW94HLopVw-QAvWL3nXMzKcoAUhQ9-xnohTdFbKN0KI5II8QqeM9YpJThZovArrDc5Q0jjVkCIu1czV5D32YR2qGbHNYErFNW1T2ce6gRIKnkqI64aUmoOdKnjsTLZNEE1MdbKAf3TZ7HFJU3aATW6Hx-jhyowFnhzrOfr67u2Xy6vu-tP7D5dvrjsnpFh2Eoz3w2pFlSCWSQfOU6IsKNIzOwiqLHes98IpITwX3vWKk0EwAiAHbyU_R68P3t1kt-AdxJrNqHc5bNtcOpmg_76JYaPX6UZzzigRogmeHwSp1KCLCxXcxqUYwVXN2nKVoqpRLw6Uy6mUDKvbHyjRczCa6mMwjX12t6Vb8ncSDegOwPcwwv5-k_74-Sg8zjh39yuy-9_MGes_Ges54yZ4-d-Cf8E3Kd_pbudX_Cc0881e
CODEN MPHYA6
CitedBy_id crossref_primary_10_1016_j_nima_2018_11_039
crossref_primary_10_1016_j_breast_2015_08_012
crossref_primary_10_1088_0031_9155_58_14_4827
crossref_primary_10_1021_nn305949h
crossref_primary_10_1002_smll_201403323
crossref_primary_10_1002_mp_14696
crossref_primary_10_1088_0957_4484_24_8_085201
crossref_primary_10_1093_rpd_ncv078
crossref_primary_10_1007_s12043_019_1718_2
crossref_primary_10_1116_6_0003390
crossref_primary_10_1142_S0219519423400778
crossref_primary_10_1088_0031_9155_61_16_6243
crossref_primary_10_1088_0957_4484_25_24_245704
crossref_primary_10_1109_ACCESS_2014_2351751
crossref_primary_10_1016_j_acra_2014_07_009
crossref_primary_10_1118_1_4860955
crossref_primary_10_1002_mp_12393
crossref_primary_10_1109_TRPMS_2020_2991887
crossref_primary_10_1118_1_4770279
crossref_primary_10_1017_S1431927617005219
crossref_primary_10_1109_TMI_2017_2741259
crossref_primary_10_2217_iim_13_52
crossref_primary_10_1109_TMI_2015_2458983
crossref_primary_10_1002_mp_13394
crossref_primary_10_1002_wnan_1475
crossref_primary_10_1002_mp_15211
crossref_primary_10_1007_s41365_019_0561_y
crossref_primary_10_1016_j_ejmp_2016_06_016
crossref_primary_10_1109_ACCESS_2014_2363949
crossref_primary_10_1148_radiol_14132722
crossref_primary_10_1016_j_ijleo_2019_163648
crossref_primary_10_1088_0031_9155_60_1_81
crossref_primary_10_1002_mp_12022
crossref_primary_10_1021_acs_chemrev_5b00008
crossref_primary_10_1016_j_jddst_2024_105932
crossref_primary_10_3390_electronics12081815
crossref_primary_10_1021_acs_nanolett_5b03035
crossref_primary_10_1259_dmfr_20150098
crossref_primary_10_35848_1347_4065_acb064
crossref_primary_10_1088_1361_6560_ac9a35
crossref_primary_10_1186_s40580_014_0034_2
crossref_primary_10_1063_1674_0068_31_CJCP1806132
crossref_primary_10_1109_ACCESS_2018_2873713
crossref_primary_10_3233_XST_17320
crossref_primary_10_3233_XST_200668
crossref_primary_10_1016_j_acra_2018_12_026
crossref_primary_10_3390_app9051019
crossref_primary_10_3390_nano12234134
crossref_primary_10_1016_j_bspc_2018_08_036
crossref_primary_10_1063_1_4826587
crossref_primary_10_3390_s21041248
crossref_primary_10_1039_D2CS00840H
crossref_primary_10_1016_j_nima_2017_06_035
crossref_primary_10_1116_1_5099697
crossref_primary_10_35784_iapgos_2655
crossref_primary_10_4236_ijmpcero_2018_72016
crossref_primary_10_1021_acsnano_2c02233
crossref_primary_10_1039_C6NR06231H
crossref_primary_10_1117_1_JEI_24_2_023028
crossref_primary_10_1371_journal_pone_0115607
crossref_primary_10_1109_ACCESS_2014_2363367
crossref_primary_10_1088_0031_9155_59_10_2393
crossref_primary_10_1117_1_JMI_4_1_013508
crossref_primary_10_1586_14737140_2014_978293
crossref_primary_10_1118_1_4873683
crossref_primary_10_1088_0957_4484_27_8_082501
crossref_primary_10_1088_0031_9155_59_5_1283
crossref_primary_10_1002_mp_13801
crossref_primary_10_1109_ACCESS_2020_3003308
crossref_primary_10_1118_1_4792296
crossref_primary_10_1088_1674_1056_abff1e
crossref_primary_10_1088_2057_1976_ab3320
crossref_primary_10_1116_6_0002286
crossref_primary_10_1021_acsanm_9b01074
crossref_primary_10_1109_LED_2015_2478157
crossref_primary_10_1016_j_nima_2024_169149
crossref_primary_10_1016_j_net_2020_11_021
Cites_doi 10.1186/bcr429
10.1118/1.1543934
10.1109/42.126908
10.1118/1.2237543
10.2214/AJR.07.2231
10.1117/12.595833
10.1016/S0140-6736(02)08020-0
10.1117/12.601622
10.1063/1.2345829
10.1118/1.1585033
10.1063/1.2041589
10.1117/12.465568
10.1016/S0140-6736(06)69834-6
10.1088/0031-9155/48/19/R01
10.1118/1.1786692
10.1056/NEJM199804163381601
10.1016/S1076-6332(00)80061-6
10.1118/1.3213520
10.1118/1.2558160
10.1118/1.3567497
10.1117/12.770622
10.1007/11783237_23
10.1117/12.844555
10.1063/1.1737074
10.1148/radiology.205.2.9356620
10.2214/ajr.128.3.403
ContentType Journal Article
Copyright American Association of Physicists in Medicine
2012 American Association of Physicists in Medicine
Copyright © 2012 American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine
Copyright_xml – notice: American Association of Physicists in Medicine
– notice: 2012 American Association of Physicists in Medicine
– notice: Copyright © 2012 American Association of Physicists in Medicine 2012 American Association of Physicists in Medicine
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
OTOTI
5PM
DOI 10.1118/1.3694667
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList

MEDLINE



Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
0094-2405
EndPage 2099
ExternalDocumentID 22098818
10_1118_1_3694667
22482630
MP4667
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI
  grantid: R01CA134598
– fundername: NCI
  grantid: U54CA119343
– fundername: UNSPECIFIED
  grantid: BC087505
– fundername: NCI
  funderid: R01CA134598; U54CA119343
– fundername: Department of Defense
  funderid: BC087505
– fundername: NCI NIH HHS
  grantid: R01CA134598
– fundername: NCI NIH HHS
  grantid: U54CA119343
– fundername: NCI NIH HHS
  grantid: U54 CA119343
– fundername: NCI NIH HHS
  grantid: R01 CA134598
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
476
53G
5GY
5RE
5VS
AAHHS
AANLZ
AAQQT
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACSMX
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AHBTC
AIACR
AIAGR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
G8K
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AITYG
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
ABDPE
CITATION
AAJUZ
AAPBV
ABCVL
ABPTK
ADDAD
AEUQT
OTOTI
5PM
ID FETCH-LOGICAL-c5657-6eadd9ff1850b26cecd108be8042b9518b3c24d5c855d35dc48309520ee69db63
IEDL.DBID 33P
ISSN 0094-2405
IngestDate Tue Sep 17 21:16:25 EDT 2024
Thu May 18 18:35:47 EDT 2023
Thu Nov 21 23:57:29 EST 2024
Sat Sep 28 07:50:26 EDT 2024
Sat Aug 24 01:04:59 EDT 2024
Fri Jun 21 00:20:00 EDT 2024
Fri Jun 21 00:28:32 EDT 2024
Sun Jul 14 10:05:20 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords digital breast tomosynthesis
breast cancer
carbon nanotube x-ray
s-DBT
Language English
License 0094-2405/2012/39(4)/2090/10/$30.00
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5657-6eadd9ff1850b26cecd108be8042b9518b3c24d5c855d35dc48309520ee69db63
Notes Current address: The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723.
Current address: Thermo Fisher Scientific, Minneapolis, MN 55433.
Electronic mail
xqian@physics.unc.edu
Current address: AMETEK Instruments India Private Limited, Bengaluru, India.
zhou@email.unc.edu
.
Electronic mail: xqian@physics.unc.edu.
Electronic mail: zhou@email.unc.edu.
OpenAccessLink https://europepmc.org/articles/pmc3321055?pdf=render
PMID 22482630
PageCount 10
ParticipantIDs scitation_primary_10_1118_1_3694667
wiley_primary_10_1118_1_3694667_MP4667
pubmed_primary_22482630
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3321055
crossref_primary_10_1118_1_3694667
scitation_primary_10_1118_1_3694667High_resolution_stat
osti_scitechconnect_22098818
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2012
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References Qian (c28) 2009; 36
Oh (c35) 2004; 87
Zhang (c14) 2006; 33
Ren (c19) 2005; 5745
Poplack (c10) 2007; 189
Badano, Freed, Fang (c38) 2011; 38
Zhou, Zhao, Zhao (c18) 2007; 34
Yorker (c20) 2002; 4682
Wu (c7) 2004; 31
Paci (c3) 2002; 4
Ren (c12) 2010; 7622
Nystrom, Adnersson, Bjurstam (c5) 2002; 359
Cherney (c2) 1999; 98
Moss, Cuckle, Evans (c6) 2006; 368
Zhang (c34) 2005; 76
Tabar, Dean, Tot (c25) 2000; 217
Feig, Shaber, Patchefsky (c26) 1977; 128
Liu (c33) 2006; 89
Dobbins, Godfrey (c23) 2003; 48
Dobbins, Godfrey (c9) 2003; 48
Maidment (c16) 2006; 6142
Wu (c15) 2003; 30
Yang (c29) 2008; 6913
Niklason (c21) 1997; 205
Bushberg (c4) 2003; 30
Bissonnette (c13) 2005; 5745
Suryanarayanan (c22) 2000; 7
Elmore, Barton, Moceri (c8) 1998; 338
Fujita (c37) 1992; 11
Wu, T. 2004; 31
Maidment, A. 2006; 6142
Niklason, L. 1997; 205
Ren, B. 2010; 7622
Zhang, Y. 2006; 33
Liu, Z. 2006; 89
Oh, S. 2004; 87
Zhou, J.; Zhao, B.; Zhao, W. 2007; 34
Yorker, J. 2002; 4682
Paci, E. 2002; 4
Bissonnette, M. 2005; 5745
Feig, S.; Shaber, G.; Patchefsky, A. 1977; 128
Poplack, S. 2007; 189
Nystrom, L.; Adnersson, I.; Bjurstam, N. 2002; 359
Fujita, H. 1992; 11
Wu, T. 2003; 30
Zhang, J. 2005; 76
Cherney, P. 1999; 98
Qian, X. 2009; 36
Elmore, J.; Barton, M.; Moceri, V. 1998; 338
Dobbins, J.; Godfrey, D. 2003; 48
Bushberg, J. 2003; 30
Suryanarayanan, S. 2000; 7
Ren, B. 2005; 5745
Moss, S.; Cuckle, H.; Evans, A. 2006; 368
Yang, G. 2008; 6913
Tabar, L.; Dean, P.; Tot, T. 2000; 217
Badano, A.; Freed, M.; Fang, Y. 2011; 38
2004; 87
2007; 189
2010
2006; 33
2000; 217
2000; 7
2002; 359
1997
1998; 338
2007
2002; 4
2006
1973
2005
1977; 128
2011; 38
1992; 11
2003; 30
2007; 34
2009; 36
2004; 31
1997; 205
2002; 4682
2006; 89
2003; 48
2005; 5745
1999; 98
2005; 76
1980
2006; 368
2008; 6913
2010; 7622
2006; 6142
15487747 - Med Phys. 2004 Sep;31(9):2636-47
9545356 - N Engl J Med. 1998 Apr 16;338(16):1089-96
18218354 - IEEE Trans Med Imaging. 1992;11(1):34-9
17161727 - Lancet. 2006 Dec 9;368(9552):2053-60
17089843 - Med Phys. 2006 Oct;33(10):3781-95
14579853 - Phys Med Biol. 2003 Oct 7;48(19):R65-106
11918907 - Lancet. 2002 Mar 16;359(9310):909-19
11131053 - Acad Radiol. 2000 Dec;7(12):1085-97
10555479 - WMJ. 1999 Jul-Aug;98(4):47-9
12674237 - Med Phys. 2003 Mar;30(3):365-80
21626942 - Med Phys. 2011 Apr;38(4):2095-8
17441255 - Med Phys. 2007 Mar;34(3):1098-109
9356620 - Radiology. 1997 Nov;205(2):399-406
17715109 - AJR Am J Roentgenol. 2007 Sep;189(3):616-23
190908 - AJR Am J Roentgenol. 1977 Mar;128(3):403-8
19928069 - Med Phys. 2009 Oct;36(10):4389-99
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
e_1_2_7_8_1
Kopans D. B. (e_1_2_7_2_1) 1997
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_16_1
e_1_2_7_15_1
e_1_2_7_14_1
FDA (e_1_2_7_32_1) 2010
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Chen Y. (e_1_2_7_18_1) 2007
e_1_2_7_30_1
Maidment A. D. (e_1_2_7_17_1) 2006; 6142
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
Carslaw H. S. (e_1_2_7_33_1) 1973
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
Tabar L. (e_1_2_7_26_1) 2000; 217
e_1_2_7_39_1
Cherney P. R. T. (e_1_2_7_3_1) 1999; 98
References_xml – volume: 87
  start-page: 3738
  year: 2004
  ident: c35
  article-title: Liquid-phase fabrication of patterned carbon nanotube field emission cathodes
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Oh
– volume: 7622
  start-page: 76220B
  year: 2010
  ident: c12
  article-title: A new generation FFDM/tomosynthesis fusion system with selenium detector
  publication-title: Proc. SPIE
  contributor:
    fullname: Ren
– volume: 31
  start-page: 2636
  year: 2004
  ident: c7
  article-title: A comparison of reconstruction algorithms for breast tomosynthesis
  publication-title: Med. Phys.
  contributor:
    fullname: Wu
– volume: 30
  start-page: 365
  year: 2003
  ident: c15
  article-title: Tomographic mammography using a limited number of low-dose cone-beam projection images
  publication-title: Med. Phys.
  contributor:
    fullname: Wu
– volume: 205
  start-page: 399
  year: 1997
  ident: c21
  article-title: Digital tomosynthesis in breast imaging
  publication-title: Radiology
  contributor:
    fullname: Niklason
– volume: 6913
  start-page: 69131A
  year: 2008
  ident: c29
  article-title: Stationary digital breast tomosynthesis system with a multi-beam field emission x-ray source array
  publication-title: Proc. SPIE
  contributor:
    fullname: Yang
– volume: 76
  start-page: 094301
  year: 2005
  ident: c34
  article-title: A nanotube-based field emission x-ray source for micro-computed tomography
  publication-title: Rev. Sci. Instrum.
  contributor:
    fullname: Zhang
– volume: 359
  start-page: 909
  year: 2002
  ident: c5
  article-title: Long-term effects of mammography screening: updated overview of the Swedish randomised trials
  publication-title: Lancet
  contributor:
    fullname: Bjurstam
– volume: 128
  start-page: 403
  year: 1977
  ident: c26
  article-title: Analysis of clinically occult and mammographically occult breast tumors
  publication-title: AJR, Am. J. Roentgenol.
  contributor:
    fullname: Patchefsky
– volume: 11
  start-page: 34
  year: 1992
  ident: c37
  article-title: A simple method for determining the modulation transfer function in digital radiography
  publication-title: IEEE Trans. Med. Imaging
  contributor:
    fullname: Fujita
– volume: 38
  start-page: 2095
  year: 2011
  ident: c38
  article-title: Oblique incidence effect in direct x-ray detectors: A first-order approximation using a physics-based analytical model
  publication-title: Med. Phys.
  contributor:
    fullname: Fang
– volume: 6142
  start-page: 89
  year: 2006
  ident: c16
  article-title: Evaluation of a photon-counting breast tomosynthesis imaging system
  publication-title: Proc. SPIE
  contributor:
    fullname: Maidment
– volume: 30
  start-page: 1936
  year: 2003
  ident: c4
  article-title: The essential physics of medical imaging
  publication-title: Med. Phys.
  contributor:
    fullname: Bushberg
– volume: 189
  start-page: 616
  year: 2007
  ident: c10
  article-title: Digital breast tomosynthesis: Initial experience in 98 women with abnormal digital screening mammography
  publication-title: AJR, Am. J.Roentgenol.
  contributor:
    fullname: Poplack
– volume: 368
  start-page: 2053
  year: 2006
  ident: c6
  article-title: Effect of mammographic screening from age 40 years on breast cancer mortality at 10 years’ follow-up: A randomised controlled trial
  publication-title: Lancet
  contributor:
    fullname: Evans
– volume: 5745
  start-page: 529
  year: 2005
  ident: c13
  article-title: Digital breast tomosynthesis using an amorphous selenium flat panel detector
  publication-title: Proc. SPIE
  contributor:
    fullname: Bissonnette
– volume: 89
  start-page: 103111
  year: 2006
  ident: c33
  article-title: Carbon nanotube based microfocus field emission x-ray source for microcomputed tomography
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Liu
– volume: 34
  start-page: 1098
  year: 2007
  ident: c18
  article-title: A computer simulation platform for the optimization of a breast tomosynthesis system
  publication-title: Med. Phys.
  contributor:
    fullname: Zhao
– volume: 4682
  start-page: 21
  year: 2002
  ident: c20
  article-title: Characterization of a full field digital mammography detector based on direct x-ray conversion in selenium
  publication-title: Proc. SPIE
  contributor:
    fullname: Yorker
– volume: 33
  start-page: 3781
  year: 2006
  ident: c14
  article-title: A comparative study of limited-angle cone-beam reconstruction methods for breast tomosynthesis
  publication-title: Med. Phys.
  contributor:
    fullname: Zhang
– volume: 7
  start-page: 1085
  year: 2000
  ident: c22
  article-title: Comparison of tomosynthesis methods used with digital mammography
  publication-title: Acad. Radiol.
  contributor:
    fullname: Suryanarayanan
– volume: 217
  start-page: 54
  year: 2000
  ident: c25
  article-title: Radiology of minimal breast cancer
  publication-title: Radiology
  contributor:
    fullname: Tot
– volume: 36
  start-page: 4389
  year: 2009
  ident: c28
  article-title: Design and characterization of a spatially distributed multibeam field emission x-ray source for stationary digital breast tomosynthesis
  publication-title: Med. Phys.
  contributor:
    fullname: Qian
– volume: 98
  start-page: 47
  year: 1999
  ident: c2
  article-title: Breast cancer mortality continues decline in Wisconsin
  publication-title: Wisconsin Med. J.
  contributor:
    fullname: Cherney
– volume: 48
  start-page: 65
  year: 2003
  ident: c23
  article-title: Digital x-ray tomosynthesis: Current state of the art and clinical potential
  publication-title: Phys. Med. Biol.
  contributor:
    fullname: Godfrey
– volume: 4
  start-page: 123
  year: 2002
  ident: c3
  article-title: Mammography and beyond: Developing technologies for the early detection of breast cancer
  publication-title: Breast Cancer Res.
  contributor:
    fullname: Paci
– volume: 5745
  start-page: 550
  year: 2005
  ident: c19
  article-title: Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector
  publication-title: Proc. SPIE
  contributor:
    fullname: Ren
– volume: 48
  start-page: R65
  year: 2003
  ident: c9
  article-title: Digital x-ray tomosynthesis: Current state of the art and clinical potential
  publication-title: Phys. Med. Biol.
  contributor:
    fullname: Godfrey
– volume: 338
  start-page: 1089
  year: 1998
  ident: c8
  article-title: Ten-year risk of false positive screening mammograms and clinical breast examinations
  publication-title: N. Engl. J. Med.
  contributor:
    fullname: Moceri
– volume: 205
  start-page: 399-406
  year: 1997
  publication-title: Radiology
  contributor:
    fullname: Niklason, L.
– volume: 6913
  start-page: 69131A
  year: 2008
  publication-title: Proc. SPIE
  contributor:
    fullname: Yang, G.
– volume: 128
  start-page: 403-408
  year: 1977
  publication-title: AJR, Am. J. Roentgenol.
  contributor:
    fullname: Feig, S.; Shaber, G.; Patchefsky, A.
– volume: 4
  start-page: 123
  year: 2002
  publication-title: Breast Cancer Res.
  doi: 10.1186/bcr429
  contributor:
    fullname: Paci, E.
– volume: 48
  start-page: 65-106
  year: 2003
  publication-title: Phys. Med. Biol.
  contributor:
    fullname: Dobbins, J.; Godfrey, D.
– volume: 30
  start-page: 365-380
  year: 2003
  publication-title: Med. Phys.
  doi: 10.1118/1.1543934
  contributor:
    fullname: Wu, T.
– volume: 6142
  start-page: 89-99
  year: 2006
  publication-title: Proc. SPIE
  contributor:
    fullname: Maidment, A.
– volume: 11
  start-page: 34-39
  year: 1992
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.126908
  contributor:
    fullname: Fujita, H.
– volume: 87
  start-page: 3738-3740
  year: 2004
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Oh, S.
– volume: 33
  start-page: 3781-3795
  year: 2006
  publication-title: Med. Phys.
  doi: 10.1118/1.2237543
  contributor:
    fullname: Zhang, Y.
– volume: 98
  start-page: 47-49
  year: 1999
  publication-title: Wisconsin Med. J.
  contributor:
    fullname: Cherney, P.
– volume: 189
  start-page: 616-623
  year: 2007
  publication-title: AJR, Am. J.Roentgenol.
  doi: 10.2214/AJR.07.2231
  contributor:
    fullname: Poplack, S.
– volume: 5745
  start-page: 550
  year: 2005
  publication-title: Proc. SPIE
  doi: 10.1117/12.595833
  contributor:
    fullname: Ren, B.
– volume: 359
  start-page: 909-919
  year: 2002
  publication-title: Lancet
  doi: 10.1016/S0140-6736(02)08020-0
  contributor:
    fullname: Nystrom, L.; Adnersson, I.; Bjurstam, N.
– volume: 5745
  start-page: 529-540
  year: 2005
  publication-title: Proc. SPIE
  doi: 10.1117/12.601622
  contributor:
    fullname: Bissonnette, M.
– volume: 89
  start-page: 103111
  year: 2006
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2345829
  contributor:
    fullname: Liu, Z.
– volume: 30
  start-page: 1936
  year: 2003
  publication-title: Med. Phys.
  doi: 10.1118/1.1585033
  contributor:
    fullname: Bushberg, J.
– volume: 76
  start-page: 094301
  year: 2005
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2041589
  contributor:
    fullname: Zhang, J.
– volume: 4682
  start-page: 21
  year: 2002
  publication-title: Proc. SPIE
  doi: 10.1117/12.465568
  contributor:
    fullname: Yorker, J.
– volume: 368
  start-page: 2053-2060
  year: 2006
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)69834-6
  contributor:
    fullname: Moss, S.; Cuckle, H.; Evans, A.
– volume: 48
  start-page: R65-R106
  year: 2003
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/48/19/R01
  contributor:
    fullname: Dobbins, J.; Godfrey, D.
– volume: 31
  start-page: 2636-2647
  year: 2004
  publication-title: Med. Phys.
  doi: 10.1118/1.1786692
  contributor:
    fullname: Wu, T.
– volume: 7622
  start-page: 76220B
  year: 2010
  publication-title: Proc. SPIE
  contributor:
    fullname: Ren, B.
– volume: 338
  start-page: 1089-1096
  year: 1998
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199804163381601
  contributor:
    fullname: Elmore, J.; Barton, M.; Moceri, V.
– volume: 217
  start-page: 54
  year: 2000
  publication-title: Radiology
  contributor:
    fullname: Tabar, L.; Dean, P.; Tot, T.
– volume: 7
  start-page: 1085-1097
  year: 2000
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(00)80061-6
  contributor:
    fullname: Suryanarayanan, S.
– volume: 36
  start-page: 4389-4399
  year: 2009
  publication-title: Med. Phys.
  doi: 10.1118/1.3213520
  contributor:
    fullname: Qian, X.
– volume: 34
  start-page: 1098-1108
  year: 2007
  publication-title: Med. Phys.
  doi: 10.1118/1.2558160
  contributor:
    fullname: Zhou, J.; Zhao, B.; Zhao, W.
– volume: 38
  start-page: 2095-2098
  year: 2011
  publication-title: Med. Phys.
  doi: 10.1118/1.3567497
  contributor:
    fullname: Badano, A.; Freed, M.; Fang, Y.
– year: 2006
  article-title: Lesion visibility in low dose tomosynthesis
– volume: 33
  start-page: 3781
  issue: 10
  year: 2006
  end-page: 3795
  article-title: A comparative study of limited‐angle cone‐beam reconstruction methods for breast tomosynthesis
  publication-title: Med. Phys.
– volume: 89
  start-page: 103111
  year: 2006
  article-title: Carbon nanotube based microfocus field emission x‐ray source for microcomputed tomography
  publication-title: Appl. Phys. Lett.
– volume: 7622
  start-page: 76220B
  year: 2010
  article-title: A new generation FFDM/tomosynthesis fusion system with selenium detector
  publication-title: Proc. SPIE
– volume: 34
  start-page: 1098
  issue: 3
  year: 2007
  end-page: 1108
  article-title: A computer simulation platform for the optimization of a breast tomosynthesis system
  publication-title: Med. Phys.
– volume: 31
  start-page: 2636
  year: 2004
  end-page: 2647
  article-title: A comparison of reconstruction algorithms for breast tomosynthesis
  publication-title: Med. Phys.
– volume: 359
  start-page: 909
  issue: 9310
  year: 2002
  end-page: 919
  article-title: Long‐term effects of mammography screening: updated overview of the Swedish randomised trials
  publication-title: Lancet
– year: 2007
– volume: 7
  start-page: 1085
  issue: 12
  year: 2000
  end-page: 1097
  article-title: Comparison of tomosynthesis methods used with digital mammography
  publication-title: Acad. Radiol.
– volume: 189
  start-page: 616
  issue: 3
  year: 2007
  end-page: 623
  article-title: Digital breast tomosynthesis: Initial experience in 98 women with abnormal digital screening mammography
  publication-title: AJR, Am. J.Roentgenol.
– year: 1973
– volume: 76
  start-page: 094301
  year: 2005
  article-title: A nanotube‐based field emission x‐ray source for micro‐computed tomography
  publication-title: Rev. Sci. Instrum.
– volume: 36
  start-page: 4389
  issue: 10
  year: 2009
  end-page: 4399
  article-title: Design and characterization of a spatially distributed multibeam field emission x‐ray source for stationary digital breast tomosynthesis
  publication-title: Med. Phys.
– volume: 11
  start-page: 34
  issue: 1
  year: 1992
  end-page: 39
  article-title: A simple method for determining the modulation transfer function in digital radiography
  publication-title: IEEE Trans. Med. Imaging
– volume: 87
  start-page: 3738
  issue: 19
  year: 2004
  end-page: 3740
  article-title: Liquid‐phase fabrication of patterned carbon nanotube field emission cathodes
  publication-title: Appl. Phys. Lett.
– volume: 368
  start-page: 2053
  issue: 9552
  year: 2006
  end-page: 2060
  article-title: Effect of mammographic screening from age 40 years on breast cancer mortality at 10 years' follow‐up: A randomised controlled trial
  publication-title: Lancet
– volume: 5745
  start-page: 529
  year: 2005
  end-page: 540
  article-title: Digital breast tomosynthesis using an amorphous selenium flat panel detector
  publication-title: Proc. SPIE
– year: 2010
– volume: 5745
  start-page: 550
  year: 2005
  article-title: Design and performance of the prototype full field breast tomosynthesis system with selenium based flat panel detector
  publication-title: Proc. SPIE
– volume: 4
  start-page: 123
  issue: 3
  year: 2002
  article-title: Mammography and beyond: Developing technologies for the early detection of breast cancer
  publication-title: Breast Cancer Res.
– volume: 30
  start-page: 1936
  year: 2003
  article-title: The essential physics of medical imaging
  publication-title: Med. Phys.
– volume: 4682
  start-page: 21
  year: 2002
  article-title: Characterization of a full field digital mammography detector based on direct x‐ray conversion in selenium
  publication-title: Proc. SPIE
– volume: 338
  start-page: 1089
  issue: 16
  year: 1998
  end-page: 1096
  article-title: Ten‐year risk of false positive screening mammograms and clinical breast examinations
  publication-title: N. Engl. J. Med.
– volume: 6142
  start-page: 89
  year: 2006
  end-page: 99
  article-title: Evaluation of a photon‐counting breast tomosynthesis imaging system
  publication-title: Proc. SPIE
– year: 1980
– volume: 38
  start-page: 2095
  year: 2011
  end-page: 2098
  article-title: Oblique incidence effect in direct x‐ray detectors: A first‐order approximation using a physics‐based analytical model
  publication-title: Med. Phys.
– year: 1997
– volume: 217
  start-page: 54
  year: 2000
  article-title: Radiology of minimal breast cancer
  publication-title: Radiology
– volume: 6913
  start-page: 69131A
  year: 2008
  article-title: Stationary digital breast tomosynthesis system with a multi‐beam field emission x‐ray source array
  publication-title: Proc. SPIE
– volume: 128
  start-page: 403
  year: 1977
  end-page: 408
  article-title: Analysis of clinically occult and mammographically occult breast tumors
  publication-title: AJR, Am. J. Roentgenol.
– volume: 98
  start-page: 47
  issue: 4
  year: 1999
  end-page: 49
  article-title: Breast cancer mortality continues decline in Wisconsin
  publication-title: Wisconsin Med. J.
– volume: 30
  start-page: 365
  issue: 3
  year: 2003
  end-page: 380
  article-title: Tomographic mammography using a limited number of low‐dose cone‐beam projection images
  publication-title: Med. Phys.
– volume: 48
  start-page: R65
  year: 2003
  end-page: R106
  article-title: Digital x‐ray tomosynthesis: Current state of the art and clinical potential
  publication-title: Phys. Med. Biol.
– start-page: 80
  year: 2005
  article-title: Medical electrical equipment—X‐ray tube assemblies for medical diagnosis
– volume: 205
  start-page: 399
  issue: 2
  year: 1997
  end-page: 406
  article-title: Digital tomosynthesis in breast imaging
  publication-title: Radiology
– volume: 48
  start-page: 65
  year: 2003
  end-page: 106
  article-title: Digital x‐ray tomosynthesis: Current state of the art and clinical potential
  publication-title: Phys. Med. Biol.
– volume-title: Breast Imaging
  year: 1997
  ident: e_1_2_7_2_1
  contributor:
    fullname: Kopans D. B.
– ident: e_1_2_7_24_1
  doi: 10.1088/0031-9155/48/19/R01
– ident: e_1_2_7_37_1
– ident: e_1_2_7_30_1
  doi: 10.1117/12.770622
– ident: e_1_2_7_14_1
  doi: 10.1117/12.601622
– ident: e_1_2_7_21_1
  doi: 10.1117/12.465568
– ident: e_1_2_7_8_1
  doi: 10.1118/1.1786692
– ident: e_1_2_7_23_1
  doi: 10.1016/S1076-6332(00)80061-6
– ident: e_1_2_7_38_1
  doi: 10.1109/42.126908
– ident: e_1_2_7_25_1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_29_1
  doi: 10.1118/1.3213520
– ident: e_1_2_7_16_1
  doi: 10.1118/1.1543934
– ident: e_1_2_7_11_1
  doi: 10.2214/AJR.07.2231
– ident: e_1_2_7_12_1
  doi: 10.1007/11783237_23
– ident: e_1_2_7_5_1
  doi: 10.1118/1.1585033
– ident: e_1_2_7_39_1
  doi: 10.1118/1.3567497
– ident: e_1_2_7_4_1
  doi: 10.1186/bcr429
– volume: 217
  start-page: 54
  year: 2000
  ident: e_1_2_7_26_1
  article-title: Radiology of minimal breast cancer
  publication-title: Radiology
  contributor:
    fullname: Tabar L.
– volume-title: Conduction of Heat in Solids
  year: 1973
  ident: e_1_2_7_33_1
  contributor:
    fullname: Carslaw H. S.
– volume: 98
  start-page: 47
  issue: 4
  year: 1999
  ident: e_1_2_7_3_1
  article-title: Breast cancer mortality continues decline in Wisconsin
  publication-title: Wisconsin Med. J.
  contributor:
    fullname: Cherney P. R. T.
– ident: e_1_2_7_15_1
  doi: 10.1118/1.2237543
– volume-title: Digital Breast Tomosynthesis (DBT)—A Novel Imaging Technology to Improve Early Breast Cancer Detection: Implementation, Comparison and Optimization
  year: 2007
  ident: e_1_2_7_18_1
  contributor:
    fullname: Chen Y.
– ident: e_1_2_7_13_1
  doi: 10.1117/12.844555
– ident: e_1_2_7_7_1
  doi: 10.1016/S0140-6736(06)69834-6
– ident: e_1_2_7_36_1
  doi: 10.1063/1.1737074
– ident: e_1_2_7_34_1
  doi: 10.1063/1.2345829
– ident: e_1_2_7_10_1
  doi: 10.1088/0031-9155/48/19/R01
– volume-title: Radiological Health‐Performance Standards for Ionzing Radiation Emitting Products
  year: 2010
  ident: e_1_2_7_32_1
  contributor:
    fullname: FDA
– ident: e_1_2_7_35_1
  doi: 10.1063/1.2041589
– ident: e_1_2_7_6_1
  doi: 10.1016/S0140-6736(02)08020-0
– ident: e_1_2_7_9_1
  doi: 10.1056/NEJM199804163381601
– ident: e_1_2_7_22_1
  doi: 10.1148/radiology.205.2.9356620
– ident: e_1_2_7_27_1
  doi: 10.2214/ajr.128.3.403
– ident: e_1_2_7_19_1
  doi: 10.1118/1.2558160
– volume: 6142
  start-page: 89
  year: 2006
  ident: e_1_2_7_17_1
  article-title: Evaluation of a photon‐counting breast tomosynthesis imaging system
  publication-title: Proc. SPIE
  contributor:
    fullname: Maidment A. D.
– ident: e_1_2_7_20_1
  doi: 10.1117/12.595833
– ident: e_1_2_7_31_1
SSID ssj0006350
Score 2.4685292
Snippet Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia...
The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia Dimensions...
Purpose: The purpose of this study is to investigate the feasibility of increasing the system spatial resolution and scanning speed of Hologic Selenia...
SourceID pubmedcentral
osti
crossref
pubmed
wiley
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
Enrichment Source
StartPage 2090
SubjectTerms Anodes
BEAMS
biological tissues
BIOMEDICAL RADIOGRAPHY
breast cancer
carbon nanotube x-ray
CARBON NANOTUBES
CATHODE RAY TUBES
Cathodes
Computer-Aided Design
Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
DETECTION
Devices sensitive to very short wavelength, e.g. x‐rays, gamma‐rays or corpuscular radiation
diagnostic radiography
digital breast tomosynthesis
Digital computing or data processing equipment or methods, specially adapted for specific applications
Digital radiography
Digital tomosynthesis mammography
Equipment Design
Equipment Failure Analysis
field emission
Image data processing or generation, in general
Image Enhancement - instrumentation
Image enhancement or restoration, e.g. from bit‐mapped to bit‐mapped creating a similar image
IMAGE PROCESSING
image reconstruction
image resolution
image restoration
IMAGE SCANNERS
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
INTERFACES
LIFETIME
MAMMARY GLANDS
mammography
Mammography - instrumentation
medical image processing
Medical imaging
Medical X‐ray imaging
Nanotube devices
Nanotubes, Carbon
Nano‐structures
NEOPLASMS
phantoms
Phantoms, Imaging
RADIATION DOSES
Radiation Imaging Physics
RADIOLOGY AND NUCLEAR MEDICINE
READOUT SYSTEMS
Reconstruction
Reproducibility of Results
s-DBT
Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
Segmentation
Sensitivity and Specificity
SIMULATION
SPATIAL RESOLUTION
STABILITY
Tomography, X-Ray Computed - instrumentation
Transforming x‐rays
Vacuum tubes
X RADIATION
X-RAY SOURCES
X-RAY TUBES
X-Rays
X‐ray detectors
X‐ray optics
X‐ray technique
Title High resolution stationary digital breast tomosynthesis using distributed carbon nanotube x-ray source array
URI http://dx.doi.org/10.1118/1.3694667
https://onlinelibrary.wiley.com/doi/abs/10.1118%2F1.3694667
https://www.ncbi.nlm.nih.gov/pubmed/22482630
https://www.osti.gov/biblio/22098818
https://pubmed.ncbi.nlm.nih.gov/PMC3321055
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB61kfq4lJaW4kKrFUW9uTi7trNRTxUPcaFCKpW4rfZlyAEb2Q6CGz-hv7G_pDNeY5oKKqTmYkXZnTj-Zne-yTwWYNPgS0uTxY77FB0Un8Ra5Cb2SGYLmUofwgX73yffjuXOLrXJ-XJTCxP6Qwx_uNHK6PZrWuDa9KeQjClxffxZ5NQcnSrJ0UvoyjfE4bALoyEN5SfTlCIIWd9VCOduDTMXbNGowjX1hx36O0fyGZqkEB1f5LGdIdpb-q-f8BJe9PyTfQ0K8woe-XIZnh70EfZleNKlhNrmNZSUAsLQG--VkzXhvvDrmJud0GEjzFBKe8va6qxqrkrkks2sYZRKf4JDmnCYlnfM6tqggFKXVTs3nl3-uv5Z6ysWIgdM1_jmDfzY2z3a3o_70xliS6HSOEcddNOiQIOfGJ5bb904kcZL3AYM8jZphOWpy6zMMicyZ1MpEHieeJ9PncnFCozKqvSrwDh3vtCoLMIRQcwNFYIVBkVbjQxTRrBxg5M6D004VHBepBqr_hlGsE4IKoLJ21NLeUK2VZwnU4msJIK3AdBBApIX9K1EEsFkAephAHXeXvyknJ12HbgFVT5lWQQfB6X4141NHjCKMFW3mCrC9E75F1V9O0uduyKCT52S3S9bHRzS5d1DB67Bc-SFPCQorcOoref-PTxu3PxDt8h-Ax9tKlQ
link.rule.ids 230,315,782,786,887,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB7RIGgvPAptXQqsAHFzcXZtZyNxQdAqiKaqRJG4rbwPtznUrmynam_9CfxGfklnvK5LEKBK5BJF2R07-WZ2vvU8FuCNxlcmdRJa7mLcoLgozESqQ4dkNpexdD5cMPk62v8uP-1Qm5z317Uwvj9E_8CNLKNdr8nA6YF0Z-WUuT7cFil1Rx8twd04RUWkAg5x0K_D6Ep9Aco4phhC0vUVwsnv-qkL3mhQolX94ol-z5JcRqfk4-OLTLZ1RbsP_-9HPIIHHQVlH7zOPIY7rliF-9MuyL4K99qsUFM_gYKyQBhuyDv9ZLW_Mbwes7MjOm-Eacpqb1hTnpT1RYF0sp7VjLLpj3BI7c_TcpaZrNIooMiKsplrx85_Xv6osgvmgwcsq_DDU_i2u3P4cRJ2BzSEhqKlYYpqaMd5jj4_0jw1zthhJLWTuBJopG5SC8NjmxiZJFYk1sRSIPY8ci4dW52KNRgUZeE2gHFuXZ6hvghLHDHVVAuWaxRtMiSZMoBX10CpU9-HQ_n9i1RD1f2HAWwRhIpwcubYUKqQaRTn0VgiMQlg3SPaS0D-gtsrEQUwWsC6H0DNtxe_KWbHbRNuQcVPSRLA614r_nVjo1uMIkzVDaaKMP2j_LOyupmlTm0ewNtWy_4uW00P6G3ztgNfwvLkcLqn9j7vf3kGK0gTuc9X2oJBU83dc1iq7fxFa3FX02MufA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9RAEJ_AEdEXUBQtom7U-Fbp7ba9vfBkgAtGIZeoiW-b7p_CPdiStmfkzY_gZ_STMNMthSNqSLyX5nK7073-ZnZ-25mdBXit8ZNJnYSWuxgXKC4KM5Hq0CGZzWUsnQ8XHH4aHX-V-wdUJmf3ci-Mrw_Rv3Ajy2jnazLwM5t3Rk6J68O3IqXi6KNlWImRhlPhfCGm_TSMntTvPxnHFEJIurJC2Hmn77rgjAYlGtU1R3QzSfIu-iQfHl8ksq0nmqz_13-4D2sdAWXvvMY8gCVXbMDqURdi34A7bU6oqR9CQTkgDJfjnXay2o8Lb8fs7IROG2Gactob1pTfyvq8QDJZz2pGufQn2KT2p2k5y0xWaRRQZEXZzLVjP37__FVl58yHDlhW4ZdH8GVy8HnvMOyOZwgNxUrDFJXQjvMcPX6keWqcscNIaidxHtBI3KQWhsc2MTJJrEisiaVA5HnkXDq2OhWbMCjKwj0Bxrl1eYbaIiwxxFTTTrBco2iTIcWUAby8xEmd-Socyq9epBqq7hkGsE0IKoLJmVNDiUKmUZxHY4m0JIDHHtBeArIXXFyJKIDRAtR9Ayq9vfhLMTttS3AL2vqUJAG86pXiXwMb3aIVYaquMFWE6R_lfy-rq14KFSqAN62S_V22OprSZeu2DV_A6nR_oj6-P_7wFO4hR-Q-WWkbBk01d89gubbz5629XQAH-C0i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+resolution+stationary+digital+breast+tomosynthesis+using+distributed+carbon+nanotube+x%E2%80%90ray+source+array&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Qian%2C+Xin&rft.au=Tucker%2C+Andrew&rft.au=Gidcumb%2C+Emily&rft.au=Shan%2C+Jing&rft.date=2012-04-01&rft.pub=American+Association+of+Physicists+in+Medicine&rft.issn=0094-2405&rft.eissn=2473-4209&rft.volume=39&rft.issue=4&rft.spage=2090&rft.epage=2099&rft_id=info:doi/10.1118%2F1.3694667&rft.externalDBID=10.1118%252F1.3694667&rft.externalDocID=MP4667
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon