Crimean–Congo haemorrhagic fever virus uses LDLR to bind and enter host cells
Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean–Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in...
Saved in:
Published in: | Nature microbiology Vol. 9; no. 6; pp. 1499 - 1512 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
2024
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean–Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.
Laboratory and clinical strains of Crimean–Congo haemorrhagic fever virus use LDLR to bind and enter host cells in blood vessel organoids and mice. Infection can also occur through ApoE, possibly present on virus particles. |
---|---|
AbstractList | Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean–Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.
Laboratory and clinical strains of Crimean–Congo haemorrhagic fever virus use LDLR to bind and enter host cells in blood vessel organoids and mice. Infection can also occur through ApoE, possibly present on virus particles. Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean–Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV. Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV. Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean–Congo haemorrhagic fever virus (CCHFV). Here we report that the Low Density Lipoprotein Receptor (LDLR) is a critical receptor for CCHFV cell entry, playing a vital role in CCHFV infection in cell culture and blood vessel organoids. The interaction between CCHFV and LDLR is highly specific, with other members of the LDLR protein family failing to bind to or neutralize the virus. Biosensor experiments demonstrate that LDLR specifically binds the surface glycoproteins of CCHFV. Importantly, mice lacking LDLR exhibit a delay in CCHFV-induced disease. Furthermore, we identified the presence of Apolipoprotein E (ApoE) on CCHFV particles. Our findings highlight the essential role of LDLR in CCHFV infection, irrespective of ApoE presence, when the virus is produced in tick cells. This discovery holds profound implications for the development of future therapies against CCHFV.Laboratory and clinical strains of Crimean–Congo haemorrhagic fever virus use LDLR to bind and enter host cells in blood vessel organoids and mice. Infection can also occur through ApoE, possibly present on virus particles. |
Author | Aastrup, Teodor Monteil, Vanessa M. Monserrat, Nuria Mirazimi, Ali Appelberg, Sofia Weber, Friedemann Kwon, Hyesoo Devignot, Stephanie Abdurahman, Samir Wright, Shane C. Dyczynski, Matheus Pittarokoilis, Ioannis Feldmann, Heinz Michlits, Georg Elder, Elizabeth Ibrahim, Ahmed Bagci, Binnur Youhanna, Sonia Kellner, Max J. Hawman, David W. Bereczky, Sándor Elaldi, Nazif Horn, Moritz Penninger, Josef M. Lauschke, Volker M. Salata, Cristiano Platzer, Sebastian W. Mirandola, Mattia |
Author_xml | – sequence: 1 givenname: Vanessa M. orcidid: 0000-0002-2652-5695 surname: Monteil fullname: Monteil, Vanessa M. organization: Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Public Health Agency of Sweden – sequence: 2 givenname: Shane C. orcidid: 0000-0002-7470-5068 surname: Wright fullname: Wright, Shane C. organization: Department of Physiology and Pharmacology, Karolinska Institutet – sequence: 3 givenname: Matheus surname: Dyczynski fullname: Dyczynski, Matheus organization: Acus Laboratories GmbH, JLP Health GmbH – sequence: 4 givenname: Max J. surname: Kellner fullname: Kellner, Max J. organization: IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna – sequence: 5 givenname: Sofia orcidid: 0000-0002-7381-3606 surname: Appelberg fullname: Appelberg, Sofia organization: Public Health Agency of Sweden – sequence: 6 givenname: Sebastian W. orcidid: 0000-0002-2518-6273 surname: Platzer fullname: Platzer, Sebastian W. organization: IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna – sequence: 7 givenname: Ahmed surname: Ibrahim fullname: Ibrahim, Ahmed organization: Attana AB – sequence: 8 givenname: Hyesoo orcidid: 0000-0003-4637-4609 surname: Kwon fullname: Kwon, Hyesoo organization: National Veterinary Institute – sequence: 9 givenname: Ioannis orcidid: 0009-0008-1510-487X surname: Pittarokoilis fullname: Pittarokoilis, Ioannis organization: Department of Physiology and Pharmacology, Karolinska Institutet – sequence: 10 givenname: Mattia surname: Mirandola fullname: Mirandola, Mattia organization: Department of Molecular Medicine, University of Padova – sequence: 11 givenname: Georg orcidid: 0000-0002-3337-8291 surname: Michlits fullname: Michlits, Georg organization: JLP Health GmbH – sequence: 12 givenname: Stephanie orcidid: 0000-0002-0618-5611 surname: Devignot fullname: Devignot, Stephanie organization: Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Public Health Agency of Sweden – sequence: 13 givenname: Elizabeth orcidid: 0000-0003-1615-2642 surname: Elder fullname: Elder, Elizabeth organization: National Veterinary Institute – sequence: 14 givenname: Samir surname: Abdurahman fullname: Abdurahman, Samir organization: Public Health Agency of Sweden – sequence: 15 givenname: Sándor surname: Bereczky fullname: Bereczky, Sándor organization: Public Health Agency of Sweden – sequence: 16 givenname: Binnur surname: Bagci fullname: Bagci, Binnur organization: Department of Nutrition and Dietetics, Faculty of Health Sciences, Sivas Cumhuriyet University – sequence: 17 givenname: Sonia surname: Youhanna fullname: Youhanna, Sonia organization: Department of Physiology and Pharmacology, Karolinska Institutet – sequence: 18 givenname: Teodor surname: Aastrup fullname: Aastrup, Teodor organization: Attana AB – sequence: 19 givenname: Volker M. orcidid: 0000-0002-1140-6204 surname: Lauschke fullname: Lauschke, Volker M. organization: Department of Physiology and Pharmacology, Karolinska Institutet, University Tübingen, Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology – sequence: 20 givenname: Cristiano orcidid: 0000-0002-5136-7406 surname: Salata fullname: Salata, Cristiano organization: Department of Molecular Medicine, University of Padova – sequence: 21 givenname: Nazif orcidid: 0000-0002-9515-770X surname: Elaldi fullname: Elaldi, Nazif organization: Department of Infectious Diseases and Clinical Microbiology, Medical Faculty, Cumhuriyet University – sequence: 22 givenname: Friedemann orcidid: 0000-0001-9737-337X surname: Weber fullname: Weber, Friedemann organization: Institute for Virology, FB10-Veterinary Medicine, Justus-Liebig University – sequence: 23 givenname: Nuria orcidid: 0000-0002-1603-1755 surname: Monserrat fullname: Monserrat, Nuria organization: University of Barcelona, Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA) – sequence: 24 givenname: David W. orcidid: 0000-0001-8233-8176 surname: Hawman fullname: Hawman, David W. organization: Rocky Mountain Laboratories, NIAID/NIH – sequence: 25 givenname: Heinz orcidid: 0000-0001-9448-8227 surname: Feldmann fullname: Feldmann, Heinz organization: Rocky Mountain Laboratories, NIAID/NIH – sequence: 26 givenname: Moritz surname: Horn fullname: Horn, Moritz organization: Acus Laboratories GmbH, JLP Health GmbH – sequence: 27 givenname: Josef M. orcidid: 0000-0002-8194-3777 surname: Penninger fullname: Penninger, Josef M. email: josef.penninger@helmholtz-hzi.de organization: IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Science, Department of Laboratory Medicine, Medical University of Vienna, Helmholtz Centre for Infection Research, Department of Medical Genetics, Life Sciences Institute, University of British Columbia – sequence: 28 givenname: Ali orcidid: 0000-0003-2371-6055 surname: Mirazimi fullname: Mirazimi, Ali email: ali.mirazimi@ki.se organization: Unit of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Public Health Agency of Sweden, National Veterinary Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38548922$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:155371408$$DView record from Swedish Publication Index http://kipublications.ki.se/Default.aspx?queryparsed=id:238548922$$DView record from Swedish Publication Index |
BookMark | eNqdkstuEzEUhi1UREvoC7BAltiwGfBlfJkVQqEFpEiVEKwtz8yZZEpiB3smVXd9h75hn4RTkrYpEiyQbdmyv__Y5_d5Tg5CDEDIS87ecibtu1xypcuCCRxcG1HIJ-RIMGULJYw-2FsfkuOczxlDTGht9TNyKK0qbSXEETmbpn4FPtxcXU9jmEe68LCKKS38vG9oBxtIdNOnMdMxQ6azj7OvdIi07kNLPQ4IAxKLmAfawHKZX5CnnV9mON7NE_L99OTb9HMxO_v0ZfphVjT46qGoO9myVrGy4VKCLJkxXEENJXZttPfKW1VxKwR4W4uqg6YWvGa-M3XLm1JOSLGNmy9gPdZujWn4dOmi791u6weuwGGmshLIV3_l1ym2D6I7obgz6T-0XClpeMksat9vtQisoG3Qr-SXj0M8Ogn9ws3jxnHOleTYJuTNLkKKP0fIg1v1-dZrHyCO2UkmhNJ4m0L09R_oeRxTwH9ASpdGi0oapMSWalLMOUF3_xrO3G1tuW1tOawt97u2nETRq_087iV7JsmdSXgU5pAe7v5H2F_QJ963 |
Cites_doi | 10.1016/j.virol.2009.06.010 10.1016/0092-8674(92)90551-M 10.1099/vir.0.019034-0 10.1038/s41586-018-0858-8 10.1038/nature10348 10.1126/science.1252480 10.1038/s41596-019-0213-z 10.1016/j.stem.2011.10.012 10.3389/fcimb.2021.648077 10.1371/journal.ppat.1009722 10.1038/nature24027 10.1093/ndt/13.6.1391 10.1038/s41422-023-00917-w 10.1089/vbz.2011.0771 10.1371/journal.pntd.0008863 10.1016/j.ebiom.2022.104188 10.1093/infdis/jix215 10.1038/s41467-023-42526-6 10.1126/science.3513311 10.1038/nmeth.3398 10.1186/s13073-022-01013-1 10.1186/1471-2164-15-1016 10.1038/ncomms12178 10.1371/journal.pone.0029712 10.1016/j.cell.2020.04.004 10.1161/01.ATV.20.7.1777 10.1016/j.ttbdis.2022.102112 10.26508/lsa.202302005 10.1186/s12985-022-01860-9 10.1515/cmble-2015-0020 10.1007/s00705-016-2803-1 10.1016/j.virol.2009.08.037 10.1016/j.febslet.2014.06.032 10.18632/oncotarget.24305 10.1073/pnas.96.22.12766 10.1038/nature10380 10.3390/v12060685 10.15252/emmm.202013426 10.1016/j.chest.2018.12.012 10.1038/s41564-018-0141-7 10.15252/emmm.202115230 10.3390/ijms22126236 10.3390/pathogens10020095 10.1016/B978-0-12-800563-7.00017-8 10.1126/science.1233675 10.1038/nchembio.2226 10.1016/0092-8674(84)90188-0 10.1016/j.antiviral.2004.08.001 10.1073/pnas.1214441110 10.1172/JCI114245 10.1016/j.virol.2013.05.030 10.1128/JVI.02070-06 10.1371/journal.ppat.1004390 10.2307/3282757 10.1371/journal.pntd.0005908 10.1002/jcp.21722 10.1038/s41467-018-08135-4 10.1016/j.cell.2021.09.001 10.1016/j.bbrc.2011.06.109 10.1099/vir.0.006387-0 10.1172/JCI116663 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 2024. The Author(s). The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: 2024. The Author(s). – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM ADTPV AOWAS D8T ZZAVC |
DOI | 10.1038/s41564-024-01672-3 |
DatabaseName | SpringerOpen (Open Access) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) SwePub SwePub Articles SWEPUB Freely available online SwePub Articles full text |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2058-5276 |
EndPage | 1512 |
ExternalDocumentID | oai_swepub_ki_se_854392 oai_prod_swepub_kib_ki_se_238548922 oai_prod_swepub_kib_ki_se_155371408 10_1038_s41564_024_01672_3 38548922 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Università degli Studi di Padova (University of Padova) funderid: https://doi.org/10.13039/501100003500 – fundername: Svenska Sällskapet för Medicinsk Forskning (Swedish Society for Medical Research) funderid: https://doi.org/10.13039/501100003748 – fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID) funderid: https://doi.org/10.13039/100006492 – fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020) funderid: https://doi.org/10.13039/100010661 – fundername: Vetenskapsrådet (Swedish Research Council) funderid: https://doi.org/10.13039/501100004359 |
GroupedDBID | 0R~ 53G 8FE 8FH AAEEF AAHBH AARCD AAZLF ABLJU ABVXF ACGFS ADBBV AFBBN AFKRA AFSHS AFWHJ AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ARMCB AXYYD BBNVY BENPR BHPHI BKKNO C6C CCPQU EBS EJD FSGXE FZEXT HCIFZ HZ~ LK8 M7P NNMJJ O9- ODYON R9- RNT SHXYY SIXXV SNYQT TAOOD TBHMF TDRGL TSG AAYZH CGR CUY CVF ECM EIF NPM AAYXX ACBWK CITATION 7X8 5PM ADTPV AOWAS D8T ZZAVC |
ID | FETCH-LOGICAL-c564t-bf3d0d504c133e3407715ebe4be4676aa5a8591822ea8b29fecb21b0af7bd1c43 |
ISSN | 2058-5276 |
IngestDate | Tue Nov 12 03:38:08 EST 2024 Tue Oct 01 22:15:10 EDT 2024 Wed Oct 30 05:05:05 EDT 2024 Tue Sep 17 21:28:54 EDT 2024 Sat Oct 26 04:53:17 EDT 2024 Tue Nov 19 06:01:11 EST 2024 Thu Nov 21 22:52:56 EST 2024 Sat Nov 02 12:29:24 EDT 2024 Fri Oct 11 20:46:44 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2024. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c564t-bf3d0d504c133e3407715ebe4be4676aa5a8591822ea8b29fecb21b0af7bd1c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1615-2642 0000-0002-7470-5068 0000-0002-1140-6204 0000-0002-7381-3606 0000-0001-8233-8176 0009-0008-1510-487X 0000-0002-5136-7406 0000-0001-9737-337X 0000-0002-1603-1755 0000-0002-8194-3777 0000-0001-9448-8227 0000-0002-2518-6273 0000-0003-4637-4609 0000-0002-9515-770X 0000-0003-2371-6055 0000-0002-2652-5695 0000-0002-0618-5611 0000-0002-3337-8291 |
OpenAccessLink | https://link.springer.com/10.1038/s41564-024-01672-3 |
PMID | 38548922 |
PQID | 3064762937 |
PQPubID | 2069616 |
PageCount | 14 |
ParticipantIDs | swepub_primary_oai_swepub_ki_se_854392 swepub_primary_oai_prod_swepub_kib_ki_se_238548922 swepub_primary_oai_prod_swepub_kib_ki_se_155371408 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11153131 proquest_miscellaneous_3022567145 proquest_journals_3064762937 crossref_primary_10_1038_s41564_024_01672_3 pubmed_primary_38548922 springer_journals_10_1038_s41564_024_01672_3 |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature microbiology |
PublicationTitleAbbrev | Nat Microbiol |
PublicationTitleAlternate | Nat Microbiol |
PublicationYear | 2024 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Cases of Crimean–Congo Haemorrhagic Fever in the EU/EEA, 2013–Present (ECDC, 2024); https://www.ecdc.europa.eu/en/crimean-congo-haemorrhagic-fever/surveillance/cases-eu-since-2013 XiaoXFengYZhuZDimitrovDSIdentification of a putative Crimean-Congo hemorrhagic fever virus entry factorBiochem. Biophys. Res. Commun.20114112532581:CAS:528:DC%2BC3MXps1aku7s%3D21723257315588110.1016/j.bbrc.2011.06.109 GrodzkiMGenome-scale CRISPR screens identify host factors that promote human coronavirus infectionGenome Med.2022141:CAS:528:DC%2BB38XisVCjs78%3D35086559879253110.1186/s13073-022-01013-1 Okoro, E. U. TNFα-induced LDL cholesterol accumulation involve elevated LDLR cell surface levels and SR-B1 downregulation in human arterial endothelial cells. Int. J. Mol. Sci.22, 6236 (2021). FongLGBonneyEKosekJCCooperADImmunohistochemical localization of low density lipoprotein receptors in adrenal gland, liver, and intestineJ. Clin. Invest.1989848478561:CAS:528:DyaK3cXltFah276021632972810.1172/JCI114245 HaddockEA cynomolgus macaque model for Crimean-Congo haemorrhagic feverNat. Microbiol.201835565621:CAS:528:DC%2BC1cXnsVGrtro%3D29632370671765210.1038/s41564-018-0141-7 GanaieSSLrp1 is a host entry factor for Rift Valley fever virusCell202118451635178.e241:CAS:528:DC%2BB3MXitFSmur%2FJ34559985878621810.1016/j.cell.2021.09.001 SpenglerJRCrimean-Congo hemorrhagic fever in humanized mice reveals glial cells as primary targets of neurological infectionJ. Infect. Dis.2017216138613971:CAS:528:DC%2BC1cXisV2qs7fL2848200110.1093/infdis/jix215 MonteilVSalataCAppelbergSMirazimiAHazara virus and Crimean-Congo Hemorrhagic Fever Virus show a different pattern of entry in fully-polarized Caco-2 cell linePLoS Negl. Trop. Dis.202014e00088631:CAS:528:DC%2BB3cXisFymtr%2FF33232320772324910.1371/journal.pntd.0008863 GarrisonARCrimean-Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathwayVirology201344445541:CAS:528:DC%2BC3sXpslKqsr8%3D2379122710.1016/j.virol.2013.05.030 Földes, K., Aligholipour Farzani, T., Ergünay, K. & Ozkul, A. Differential growth characteristics of Crimean-Congo hemorrhagic fever virus in kidney cells of human and bovine origin. Viruses12, 685 (2020). GillinghamELMedlockJMMacintyreHPhalkeyRModelling the current and future temperature suitability of the UK for the vector Hyalomma marginatum (Acari: Ixodidae)Ticks Tick Borne Dis.2023143663447010.1016/j.ttbdis.2022.102112 TréguierYThe envelope protein of Zika virus interacts with apolipoprotein E early in the infectious cycle and this interaction is conserved on the secreted viral particlesVirol. J.20221912435902969933158310.1186/s12985-022-01860-9 WimmerRALeopoldiAAichingerMKerjaschkiDPenningerJMGeneration of blood vessel organoids from human pluripotent stem cellsNat. Protoc.201914308231001:CAS:528:DC%2BC1MXhvVCmurjN3155495510.1038/s41596-019-0213-z Connolly-AndersenAMDouagiIKrausAAMirazimiACrimean Congo hemorrhagic fever virus infects human monocyte-derived dendritic cellsVirology20093901571621:CAS:528:DC%2BD1MXosV2isLc%3D1957056110.1016/j.virol.2009.06.010 MatterKHunzikerWMellmanIBasolateral sorting of LDL receptor in MDCK cells: the cytoplasmic domain contains two tyrosine-dependent targeting determinantsCell1992717417531:CAS:528:DyaK3sXpvVOjsw%3D%3D142362910.1016/0092-8674(92)90551-M Fernández-Ruiz, N. & Estrada-Peña, A. Towards new horizons: climate trends in Europe increase the environmental suitability for permanent populations of Hyalomma marginatum (Ixodidae). Pathogens10, 95 (2021). BereczkySCrimean-Congo hemorrhagic fever virus infection is lethal for adult type I interferon receptor-knockout miceJ. Gen. Virol.201091147314771:CAS:528:DC%2BC3cXnsFKhtbo%3D2016426310.1099/vir.0.019034-0 BasnetSPalmenbergACGernJERhinoviruses and their receptorsChest20191551018102530659817653345110.1016/j.chest.2018.12.012 WhitehouseCACrimean-Congo hemorrhagic feverAntiviral Res.2004641451601:CAS:528:DC%2BD2cXhtVSrtbzO1555026810.1016/j.antiviral.2004.08.001 LeventhalSSReplicating RNA vaccination elicits an unexpected immune response that efficiently protects mice against lethal Crimean-Congo hemorrhagic fever virus challengeEBioMedicine2022821:CAS:528:DC%2BB38Xit1yitr7L35907368933536010.1016/j.ebiom.2022.104188 GierensHInterleukin-6 stimulates LDL receptor gene expression via activation of sterol-responsive and Sp1 binding elementsArterioscler. Thromb. Vasc. Biol.200020177717831:CAS:528:DC%2BD3cXlsFGnsbc%3D1089481610.1161/01.ATV.20.7.1777 JaeLTVirus entry. Lassa virus entry requires a trigger-induced receptor switchScience2014344150615101:CAS:528:DC%2BC2cXhtVaks7zN24970085423999310.1126/science.1252480 FinkelshteinDWermanANovickDBarakSRubinsteinMLDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virusProc. Natl Acad. Sci. USA2013110730673111:CAS:528:DC%2BC3sXos1Oitrk%3D23589850364552310.1073/pnas.1214441110 YamamotoTThe human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNACell19843927381:CAS:528:DyaL2MXlslSnsQ%3D%3D609191510.1016/0092-8674(84)90188-0 CaretteJEEbola virus entry requires the cholesterol transporter Niemann–Pick C1Nature20114773403431:CAS:528:DC%2BC3MXhtFersLzK21866103317532510.1038/nature10348 SimonMJohanssonCMirazimiACrimean-Congo hemorrhagic fever virus entry and replication is clathrin-, pH- and cholesterol-dependentJ. Gen. Virol.2009902102151:CAS:528:DC%2BD1MXlsV2itA%3D%3D1908829110.1099/vir.0.006387-0 MonteilVIdentification of CCZ1 as an essential lysosomal trafficking regulator in Marburg and Ebola virus infectionsNat. Commun.2023141:CAS:528:DC%2BB3sXit1Cgur%2FF378802471060020310.1038/s41467-023-42526-6 ShtankoONikitinaRAAltuntasCZChepurnovAADaveyRACrimean-Congo hemorrhagic fever virus entry into host cells occurs through the multivesicular body and requires ESCRT regulatorsPLoS Pathog.201410e100439025233119416949010.1371/journal.ppat.1004390 TokunagaMSimulation and estimation of gene number in a biological pathway using almost complete saturation mutagenesis screening of haploid mouse cellsBMC Genomics20141525418962430188010.1186/1471-2164-15-1016 GarrisonARA DNA vaccine for Crimean-Congo hemorrhagic fever protects against disease and death in two lethal mouse modelsPLoS Negl. Trop. Dis.201711e000590828922426561983910.1371/journal.pntd.0005908 RodriguesRParanhos-BaccalàGVernetGPeyrefitteCNCrimean-Congo hemorrhagic fever virus-infected hepatocytes induce ER-stress and apoptosis crosstalkPLoS ONE20127e297121:CAS:528:DC%2BC38XhtFOqu7s%3D22238639325308810.1371/journal.pone.0029712 JaeLTDeciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entryScience20133404794831:CAS:528:DC%2BC3sXmt1yrsL0%3D23519211391913810.1126/science.1233675 Patel, M. R. & Kratzke, R. A. in Translating Gene Therapy to the Clinic (eds Laurence, J. & Franklin, M.) 261–279 (Academic Press, 2015). OwenDMHuangHYeJGaleMJr.Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptorVirology2009394991081:CAS:528:DC%2BD1MXhtlWhurfI1975194310.1016/j.virol.2009.08.037 LiYLuoGHuman low-density lipoprotein receptor plays an important role in hepatitis B virus infectionPLoS Pathog.202117e10097221:CAS:528:DC%2BB3MXhslKrsbjI34293069834586010.1371/journal.ppat.1009722 CoteMSmall molecule inhibitors reveal Niemann–Pick C1 is essential for Ebola virus infectionNature20114773443481:CAS:528:DC%2BC3MXhtFers7%2FI21866101323031910.1038/nature10380 EllingUPenningerJMGenome wide functional genetics in haploid cellsFEBS Lett.2014588241524211:CAS:528:DC%2BC2cXhtVOnsbnI2495042710.1016/j.febslet.2014.06.032 AgnelloVAbelGElfahalMKnightGBZhangQXHepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptorProc. Natl Acad. Sci. USA19999612766127711:CAS:528:DyaK1MXnt1yqsbY%3D105359972309010.1073/pnas.96.22.12766 BurtFJImmunohistochemical and in situ localization of Crimean-Congo hemorrhagic fever (CCHF) virus in human tissues and implications for CCHF pathogenesisArch. Pathol. Lab. Med.19971218398461:STN:280:DyaK2svisVCquw%3D%3D9278612 SudaYAnalysis of the entry mechanism of Crimean-Congo hemorrhagic fever virus, using a vesicular stomatitis virus pseudotyping systemArch. Virol.2016161144714541:CAS:528:DC%2BC28XjsFequr4%3D26935918708723510.1007/s00705-016-2803-1 FlintMA genome-wide CRISPR screen identifies N-acetylglucosamine-1-phosphate transferase as a potential antiviral target for Ebola virusNat. Commun.20191030655525633679710.1038/s41467-018-08135-4 EllingUForward and reverse genetics through derivation of haploid mouse embryonic stem cellsCell Stem Cell201195635741:CAS:528:DC%2BC3MXhsFOns7jK22136931400872410.1016/j.stem.2011.10.012 StoddartLAApplication of BRET to monitor ligand binding to GPCRsNat. Methods2015126616631:CAS:528:DC%2BC2MXhtFWqtbbI26030448448838710.1038/nmeth.3398 XuZSLDLR is an entry receptor for Crimean-Congo hemorrhagic fever virusCell Res.2024341401501:CAS:528:DC%2BB2cXnvFOjug%3D%3D381828871083720510.1038/s41422-023-00917-w Connolly-AndersenAMMagnussonKEMirazimiABasolateral entry and release of Crimean-Congo hemorrhagic fever virus in polarized MDCK-1 cellsJ. Virol.200781215821641:CAS:528:DC%2BD2sXitVOhu70%3D1716689810.1128/JVI.02070-06 MonteilVInhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2Cell2020181905913.e71:CAS:528:DC%2BB3cXotVCnsLY%3D32333836718199810.1016/j.cell.2020.04.004 Bell-SakyiLContinuous cell lines from the tick Hyalomma anatolicum anatolicumJ. Parasitol.199177100610081:STN:280:DyaK387jvFahsw%3D%3D177927910.2307/3282757 BrownMSGoldsteinJLA receptor-mediated pathway for cholesterol homeostasisScience198623234471:CAS:528:DyaL28Xhs1GrtbY%3D351331110.1126/science.3513311 LubranoVGabrieleMPuntoniMRLongoVPucciLRelationship among IL-6, LDL cholesterol and lipid peroxidationCell. Mol. Biol. Lett.2015203103221:CAS:528:DC%2BC2MXptFKku7w%3D2620441010.1515/cmble-2015-0020 Devignot, S. et al. Low-density lipoprotein receptor-related protein 1 (LRP1) as an auxiliary host fa AM Connolly-Andersen (1672_CR50) 2007; 81 MS Brown (1672_CR45) 1986; 232 V Lubrano (1672_CR56) 2015; 20 U Elling (1672_CR27) 2017; 550 S Ishibashi (1672_CR62) 1993; 92 1672_CR37 Y Suda (1672_CR14) 2016; 161 V Monteil (1672_CR51) 2020; 14 JE Carette (1672_CR19) 2011; 477 JR Spengler (1672_CR12) 2017; 216 1672_CR30 RA Wimmer (1672_CR38) 2019; 565 H Gierens (1672_CR57) 2000; 20 RA Wimmer (1672_CR61) 2019; 14 X Xiao (1672_CR13) 2011; 411 V Monteil (1672_CR34) 2021; 13 LG Fong (1672_CR53) 1989; 84 M Grodzki (1672_CR16) 2022; 14 M Flint (1672_CR15) 2019; 10 FJ Burt (1672_CR40) 1997; 121 V Agnello (1672_CR46) 1999; 96 LA Stoddart (1672_CR31) 2015; 12 AM Connolly-Andersen (1672_CR9) 2009; 390 S Bereczky (1672_CR42) 2010; 91 K Matter (1672_CR52) 1992; 71 XZ Ruan (1672_CR54) 1998; 13 DM Owen (1672_CR47) 2009; 394 A Estrada-Peña (1672_CR2) 2012; 12 CA Whitehouse (1672_CR41) 2004; 64 M Horn (1672_CR26) 2018; 9 LT Jae (1672_CR23) 2013; 340 AR Garrison (1672_CR43) 2017; 11 Y Li (1672_CR48) 2021; 17 M Simon (1672_CR5) 2009; 90 C Salata (1672_CR60) 2009; 219 V Monteil (1672_CR21) 2023; 14 LT Jae (1672_CR22) 2014; 344 E Haddock (1672_CR39) 2018; 3 SS Ganaie (1672_CR29) 2021; 184 M Cote (1672_CR20) 2011; 477 M Tokunaga (1672_CR24) 2014; 15 S Dai (1672_CR8) 2021; 11 1672_CR10 1672_CR1 V Monteil (1672_CR36) 2020; 181 1672_CR55 Y Namkung (1672_CR33) 2016; 7 1672_CR3 S Basnet (1672_CR49) 2019; 155 Y Tréguier (1672_CR44) 2022; 19 R Rodrigues (1672_CR11) 2012; 7 AR Garrison (1672_CR6) 2013; 444 V Monteil (1672_CR35) 2022; 14 ZS Xu (1672_CR58) 2024; 34 U Elling (1672_CR17) 2014; 588 JV Forment (1672_CR25) 2017; 13 D Finkelshtein (1672_CR28) 2013; 110 L Bell-Sakyi (1672_CR59) 1991; 77 O Shtanko (1672_CR7) 2014; 10 T Yamamoto (1672_CR32) 1984; 39 U Elling (1672_CR18) 2011; 9 EL Gillingham (1672_CR4) 2023; 14 SS Leventhal (1672_CR63) 2022; 82 |
References_xml | – volume: 390 start-page: 157 year: 2009 ident: 1672_CR9 publication-title: Virology doi: 10.1016/j.virol.2009.06.010 contributor: fullname: AM Connolly-Andersen – volume: 71 start-page: 741 year: 1992 ident: 1672_CR52 publication-title: Cell doi: 10.1016/0092-8674(92)90551-M contributor: fullname: K Matter – volume: 91 start-page: 1473 year: 2010 ident: 1672_CR42 publication-title: J. Gen. Virol. doi: 10.1099/vir.0.019034-0 contributor: fullname: S Bereczky – volume: 565 start-page: 505 year: 2019 ident: 1672_CR38 publication-title: Nature doi: 10.1038/s41586-018-0858-8 contributor: fullname: RA Wimmer – volume: 477 start-page: 340 year: 2011 ident: 1672_CR19 publication-title: Nature doi: 10.1038/nature10348 contributor: fullname: JE Carette – volume: 344 start-page: 1506 year: 2014 ident: 1672_CR22 publication-title: Science doi: 10.1126/science.1252480 contributor: fullname: LT Jae – volume: 14 start-page: 3082 year: 2019 ident: 1672_CR61 publication-title: Nat. Protoc. doi: 10.1038/s41596-019-0213-z contributor: fullname: RA Wimmer – volume: 9 start-page: 563 year: 2011 ident: 1672_CR18 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2011.10.012 contributor: fullname: U Elling – volume: 11 year: 2021 ident: 1672_CR8 publication-title: Front. Cell. Infect. Microbiol doi: 10.3389/fcimb.2021.648077 contributor: fullname: S Dai – volume: 17 start-page: e1009722 year: 2021 ident: 1672_CR48 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1009722 contributor: fullname: Y Li – volume: 550 start-page: 114 year: 2017 ident: 1672_CR27 publication-title: Nature doi: 10.1038/nature24027 contributor: fullname: U Elling – volume: 13 start-page: 1391 year: 1998 ident: 1672_CR54 publication-title: Nephrol. Dial. Transplant. doi: 10.1093/ndt/13.6.1391 contributor: fullname: XZ Ruan – volume: 34 start-page: 140 year: 2024 ident: 1672_CR58 publication-title: Cell Res. doi: 10.1038/s41422-023-00917-w contributor: fullname: ZS Xu – volume: 12 start-page: 758 year: 2012 ident: 1672_CR2 publication-title: Vector Borne Zoonotic Dis. doi: 10.1089/vbz.2011.0771 contributor: fullname: A Estrada-Peña – volume: 14 start-page: e0008863 year: 2020 ident: 1672_CR51 publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0008863 contributor: fullname: V Monteil – volume: 82 year: 2022 ident: 1672_CR63 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2022.104188 contributor: fullname: SS Leventhal – volume: 216 start-page: 1386 year: 2017 ident: 1672_CR12 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix215 contributor: fullname: JR Spengler – volume: 14 year: 2023 ident: 1672_CR21 publication-title: Nat. Commun. doi: 10.1038/s41467-023-42526-6 contributor: fullname: V Monteil – volume: 232 start-page: 34 year: 1986 ident: 1672_CR45 publication-title: Science doi: 10.1126/science.3513311 contributor: fullname: MS Brown – volume: 12 start-page: 661 year: 2015 ident: 1672_CR31 publication-title: Nat. Methods doi: 10.1038/nmeth.3398 contributor: fullname: LA Stoddart – volume: 14 year: 2022 ident: 1672_CR16 publication-title: Genome Med. doi: 10.1186/s13073-022-01013-1 contributor: fullname: M Grodzki – volume: 15 year: 2014 ident: 1672_CR24 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-1016 contributor: fullname: M Tokunaga – volume: 7 year: 2016 ident: 1672_CR33 publication-title: Nat. Commun. doi: 10.1038/ncomms12178 contributor: fullname: Y Namkung – volume: 121 start-page: 839 year: 1997 ident: 1672_CR40 publication-title: Arch. Pathol. Lab. Med. contributor: fullname: FJ Burt – volume: 7 start-page: e29712 year: 2012 ident: 1672_CR11 publication-title: PLoS ONE doi: 10.1371/journal.pone.0029712 contributor: fullname: R Rodrigues – volume: 181 start-page: 905 year: 2020 ident: 1672_CR36 publication-title: Cell doi: 10.1016/j.cell.2020.04.004 contributor: fullname: V Monteil – volume: 20 start-page: 1777 year: 2000 ident: 1672_CR57 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/01.ATV.20.7.1777 contributor: fullname: H Gierens – volume: 14 year: 2023 ident: 1672_CR4 publication-title: Ticks Tick Borne Dis. doi: 10.1016/j.ttbdis.2022.102112 contributor: fullname: EL Gillingham – ident: 1672_CR30 doi: 10.26508/lsa.202302005 – volume: 19 start-page: 124 year: 2022 ident: 1672_CR44 publication-title: Virol. J. doi: 10.1186/s12985-022-01860-9 contributor: fullname: Y Tréguier – volume: 20 start-page: 310 year: 2015 ident: 1672_CR56 publication-title: Cell. Mol. Biol. Lett. doi: 10.1515/cmble-2015-0020 contributor: fullname: V Lubrano – volume: 161 start-page: 1447 year: 2016 ident: 1672_CR14 publication-title: Arch. Virol. doi: 10.1007/s00705-016-2803-1 contributor: fullname: Y Suda – volume: 394 start-page: 99 year: 2009 ident: 1672_CR47 publication-title: Virology doi: 10.1016/j.virol.2009.08.037 contributor: fullname: DM Owen – volume: 588 start-page: 2415 year: 2014 ident: 1672_CR17 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2014.06.032 contributor: fullname: U Elling – volume: 9 start-page: 9838 year: 2018 ident: 1672_CR26 publication-title: Oncotarget doi: 10.18632/oncotarget.24305 contributor: fullname: M Horn – ident: 1672_CR1 – volume: 96 start-page: 12766 year: 1999 ident: 1672_CR46 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.22.12766 contributor: fullname: V Agnello – volume: 477 start-page: 344 year: 2011 ident: 1672_CR20 publication-title: Nature doi: 10.1038/nature10380 contributor: fullname: M Cote – ident: 1672_CR10 doi: 10.3390/v12060685 – volume: 13 year: 2021 ident: 1672_CR34 publication-title: EMBO Mol. Med. doi: 10.15252/emmm.202013426 contributor: fullname: V Monteil – volume: 155 start-page: 1018 year: 2019 ident: 1672_CR49 publication-title: Chest doi: 10.1016/j.chest.2018.12.012 contributor: fullname: S Basnet – volume: 3 start-page: 556 year: 2018 ident: 1672_CR39 publication-title: Nat. Microbiol. doi: 10.1038/s41564-018-0141-7 contributor: fullname: E Haddock – volume: 14 year: 2022 ident: 1672_CR35 publication-title: EMBO Mol. Med. doi: 10.15252/emmm.202115230 contributor: fullname: V Monteil – ident: 1672_CR55 doi: 10.3390/ijms22126236 – ident: 1672_CR3 doi: 10.3390/pathogens10020095 – ident: 1672_CR37 doi: 10.1016/B978-0-12-800563-7.00017-8 – volume: 340 start-page: 479 year: 2013 ident: 1672_CR23 publication-title: Science doi: 10.1126/science.1233675 contributor: fullname: LT Jae – volume: 13 start-page: 12 year: 2017 ident: 1672_CR25 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2226 contributor: fullname: JV Forment – volume: 39 start-page: 27 year: 1984 ident: 1672_CR32 publication-title: Cell doi: 10.1016/0092-8674(84)90188-0 contributor: fullname: T Yamamoto – volume: 64 start-page: 145 year: 2004 ident: 1672_CR41 publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2004.08.001 contributor: fullname: CA Whitehouse – volume: 110 start-page: 7306 year: 2013 ident: 1672_CR28 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1214441110 contributor: fullname: D Finkelshtein – volume: 84 start-page: 847 year: 1989 ident: 1672_CR53 publication-title: J. Clin. Invest. doi: 10.1172/JCI114245 contributor: fullname: LG Fong – volume: 444 start-page: 45 year: 2013 ident: 1672_CR6 publication-title: Virology doi: 10.1016/j.virol.2013.05.030 contributor: fullname: AR Garrison – volume: 81 start-page: 2158 year: 2007 ident: 1672_CR50 publication-title: J. Virol. doi: 10.1128/JVI.02070-06 contributor: fullname: AM Connolly-Andersen – volume: 10 start-page: e1004390 year: 2014 ident: 1672_CR7 publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1004390 contributor: fullname: O Shtanko – volume: 77 start-page: 1006 year: 1991 ident: 1672_CR59 publication-title: J. Parasitol. doi: 10.2307/3282757 contributor: fullname: L Bell-Sakyi – volume: 11 start-page: e0005908 year: 2017 ident: 1672_CR43 publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0005908 contributor: fullname: AR Garrison – volume: 219 start-page: 698 year: 2009 ident: 1672_CR60 publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21722 contributor: fullname: C Salata – volume: 10 year: 2019 ident: 1672_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-018-08135-4 contributor: fullname: M Flint – volume: 184 start-page: 5163 year: 2021 ident: 1672_CR29 publication-title: Cell doi: 10.1016/j.cell.2021.09.001 contributor: fullname: SS Ganaie – volume: 411 start-page: 253 year: 2011 ident: 1672_CR13 publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2011.06.109 contributor: fullname: X Xiao – volume: 90 start-page: 210 year: 2009 ident: 1672_CR5 publication-title: J. Gen. Virol. doi: 10.1099/vir.0.006387-0 contributor: fullname: M Simon – volume: 92 start-page: 883 year: 1993 ident: 1672_CR62 publication-title: J. Clin. Invest. doi: 10.1172/JCI116663 contributor: fullname: S Ishibashi |
SSID | ssj0001626686 |
Score | 2.308134 |
Snippet | Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean–Congo haemorrhagic fever virus... Climate change and population densities accelerated transmission of highly pathogenic viruses to humans, including the Crimean-Congo haemorrhagic fever virus... |
SourceID | swepub pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1499 |
SubjectTerms | 13/1 13/31 14/63 631/326/596/2555 631/326/596/2557 64/60 96/10 Animals Apolipoprotein E Apolipoproteins E - genetics Apolipoproteins E - metabolism Biomedical and Life Sciences Biosensors Blood vessels Cell culture Climate change Crimean hemorrhagic fever Fever Glycoproteins Hemorrhagic Fever Virus, Crimean-Congo - genetics Hemorrhagic Fever Virus, Crimean-Congo - physiology Hemorrhagic Fever, Crimean - metabolism Hemorrhagic Fever, Crimean - virology Humans Infections Infectious Diseases LDLR protein Life Sciences Low density lipoprotein Low density lipoprotein receptors Medical Microbiology Medicin och hälsovetenskap Mice Mice, Knockout Microbiology Organoids Parasitology Population density Receptor density Receptors, LDL - genetics Receptors, LDL - metabolism Receptors, Virus - metabolism Ticks - metabolism Ticks - virology Virology Virus Internalization Viruses |
Title | Crimean–Congo haemorrhagic fever virus uses LDLR to bind and enter host cells |
URI | https://link.springer.com/article/10.1038/s41564-024-01672-3 https://www.ncbi.nlm.nih.gov/pubmed/38548922 https://www.proquest.com/docview/3064762937 https://www.proquest.com/docview/3022567145 https://pubmed.ncbi.nlm.nih.gov/PMC11153131 http://kipublications.ki.se/Default.aspx?queryparsed=id:155371408 http://kipublications.ki.se/Default.aspx?queryparsed=id:238548922 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe6TUi8IP5TGMhIiBeTEdtpnDxCWzSxrZPYhniLnMalFSJFTYMoT3wHviGfhDvnb9eB6ANSGlX2JbZzv5zvLvYdIc-UO8EAAL4TGh06Xhx7jlY8cRI_UIlnRMBt-rbDMzX6EAyG3rDTqdJzNWX_ldNQBrzGnbNbcLu-KRTAf-A5nIHrcP4nvmOeLqPTahGD7M_Tj3M21biidjHVIOjYxMCo2NfZIs9YnpmMHQ-O36ESClayjdzKMFDnguEGEIae_aytwo5sKFD2edaEcKq5hqGuCqfye40yVLOTg00_wNkUKlm_rhmsxt9XVQLtE1RJ8-YTEzRf7sk50d_Y24O2m0I0DsqyV5e9auyicOMaK-uE2wvAJi5SwVSCOWzhry1kwagLWxM26ixXTgZF6PcMTVTPgS45uOVCOLKZ-uoFifZTvAyigjgC4sgSR3KH7AmQYSBC914fHY1OGwcemIJ-4JcbseDil5strSs7GxbM5kLc-mv8pci1Vts5v0lulGYKfVXg6xbpmPQ2uVYkLl3dIaclyn79-GnxRdv4ohZf1OKLIr4o4osu5xTxRQFf1OKLIr6oxdddcvFmeN4_dMrUHM4Yhrh04olM3KTnemMupZGeqxTvgTzw4PCVr3VPY2BE0D6NDmIRTsw4Fjx29UTFCR978h7ZTeepeUAoNxyIfZFIjKTkJrEIEm2SWCqplOaiS1j1DKMvRQSW6M_s6pL96jFH5VuZRWhlw6QPmniXPK2rQY7iEAHx8xxpYGbzFfd6XXK_4ErdnAzArg8FdCVY41dNgDHa12vS2dTGagdVAmY5ybvkRcXapl9_G4Yo2L_eBOhUUVn-aYa_KDMRZv7CsJvBNheJZkzPr7iopkdaoAQr6uF2I3hEroviTYBjn-wuF7l5THayJH9Svkm_AZNh8qM |
link.rule.ids | 230,315,782,786,887,4029,27933,27934,27935,48347,48348,49652,49653 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6xXSG48H4EFjAS4gLRxnYau0fYh4pauhIsEjfLqR1arZSsmgaJG_-Bf8gvYSavquwKaZGcSzKWPR57HrH9DcArFWUEAJCEI29HYZymcWgVd6FLtHKxF5rX6dvGn9Xsqz48IpicuLsLU59277Yka03dXAzX-yWFGnGINiWko_MilDuwS2jnYgC77yeT2cnm3wp66YlO2jsyl1fetkMXnMuLZyT7jdK_QEVrQ3R8-_9YuAO3WseTvWtmyl245vN7cL1JRfnjPpxQfi9v898_fx0U-beCLSydwV0tLKpGlnmc8ez7clWVrCp9yaaH009sXTCMqx2z-BC054rRlRFGewHlA_hyfHR6MA7bZAvhHPu0DtNMusgNo3iOUauXGOcpPkQJx1gSlVg7tAR1h_6EtzoVo8zPU8HTyGYqdXwey4cwyIvcPwbGPUfiRDhJ2DiRS4V21rtUKqmU5SKAN93Qm_MGU8PUe-FSm2aIDA6RqYfIyAD2OumYdn2VhuImVOPoWwXwsv-MK4NYtLkvKqJBXZUoHg8DeNQIs29OaozURgK7orfE3BMQ6vb2l3y5qNG30Tig3pI8gLedkDf9-hcbopk1202glTTt-7MlPab0hnI5EZCivkolseHp9SWVenqiRUr0i59cjYMXcGN8-nFqph9mk6dwUzTTGMseDNaryj-DndJVz9vF-AegtDLs |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-xTSBe-A8rDDAS4gWsxXYau4-wrhpq1SH-SLxZTu3QalIyNQ0Sb3wHviGfhLskTVU2IU1I8Utyln0-23cX-34H8FJHGQEAJHwQ3IDHaRpzp4XnPjHax0EaUadvO_mkp1_N8Jhgcroo_vq2-_pIsolpIJSmfHV47rM2SNwcluR2xBz1C6dr9JKrHdij32Lofu29G4-np5v_LGixJyZp42Uur7ytky4YmhfvS3aHpn8BjNZKaXT7_9m5A7dag5S9bWbQXbgW8ntwvUlR-eM-nFLer-Dy3z9_HRX5t4LNHd3NXc4dbpksC7gS2PfFsipZVYaSTYaTj2xVMPS3PXNYCPJzySiUhNEZQfkAvoyOPx-d8DYJA59hn1Y8zZSPfD-KZ-jNBoX-nxZ9lHyMT6IT5_qOIPDQzgjOpHKQhVkqRRq5TKdezGL1EHbzIg_7wEQQSJxIrwgzJ_KpNN4FnyqttHZC9uD1Wgz2vMHasPUZuTK2GSKLQ2TrIbKqBwdrSdl23ZWW_Cnc3tHm6sGL7jOuGGLR5aGoiAb3sESLuN-DR41gu-aUQQ9uILErZkvkHQGhcW9_yRfzGpUblQbuZ0r04M1a4Jt-_YsN2cyg7SZQe9r2_dmCii2DpRxPBLBorlJJbnh6dUmljp5okRLt5cdX4-A53PgwHNnJ--n4CdyUzSzG5wB2V8sqPIWd0lfP2nX5BwG2O84 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crimean%E2%80%93Congo+haemorrhagic+fever+virus+uses+LDLR+to+bind+and+enter+host+cells&rft.jtitle=Nature+microbiology&rft.au=Monteil%2C+Vanessa+M.&rft.au=Wright%2C+Shane+C.&rft.au=Dyczynski%2C+Matheus&rft.au=Kellner%2C+Max+J.&rft.date=2024&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2058-5276&rft.volume=9&rft.issue=6&rft.spage=1499&rft.epage=1512&rft_id=info:doi/10.1038%2Fs41564-024-01672-3&rft.externalDocID=10_1038_s41564_024_01672_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-5276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-5276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-5276&client=summon |