Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos
The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-¹⁴C₆]glucose or [U-¹⁴C₅]glutamine and measuring their conversion to CO₂, oil, protein and other biomass compounds. The average carbon conversion efficiency...
Saved in:
Published in: | The Plant journal : for cell and molecular biology Vol. 52; no. 2; pp. 296 - 308 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01-10-2007
Blackwell Publishing Ltd Blackwell Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-¹⁴C₆]glucose or [U-¹⁴C₅]glutamine and measuring their conversion to CO₂, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos ( Goffman et al., 2005 ), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-¹⁴C₄]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-¹³C₁]glucose, [2-¹³C₁]glucose, or [U-¹³C₅]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures. |
---|---|
AbstractList | The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose or [U-(14)C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-(14)C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-(13)C1]glucose, [2-(13)C1]glucose, or [U-(13)C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures. Summary The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U‐ 14 C 6 ]glucose or [U‐ 14 C 5 ]glutamine and measuring their conversion to CO 2 , oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos ( Goffman et al. , 2005 ), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U‐ 14 C 4 ]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1‐ 13 C 1 ]glucose, [2‐ 13 C 1 ]glucose, or [U‐ 13 C 5 ]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC‐MS. The fluxes through intermediary metabolism were then quantified by computer‐aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures. The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-¹⁴C₆]glucose or [U-¹⁴C₅]glutamine and measuring their conversion to CO₂, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos ( Goffman et al., 2005 ), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-¹⁴C₄]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-¹³C₁]glucose, [2-¹³C₁]glucose, or [U-¹³C₅]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures. The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-14C6]glucose or [U-14C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U-14C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1-13C1]glucose, [2-13C1]glucose, or [U-13C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC-MS. The fluxes through intermediary metabolism were then quantified by computer-aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures. [PUBLICATION ABSTRACT] Summary The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U‐14C6]glucose or [U‐14C5]glutamine and measuring their conversion to CO2, oil, protein and other biomass compounds. The average carbon conversion efficiency was 50%, which contrasts with a value of over 80% previously observed in Brassica napus embryos (Goffman et al., 2005), in which light and the RuBisCO bypass pathway allow more efficient conversion of hexose to oil. Labeling levels after incubating sunflower embryos with [U‐14C4]malate indicated that some carbon from malate enters the plastidic compartment and contributes to oil synthesis. To test this and to map the underlying pattern of metabolic fluxes, separate experiments were carried out in which embryos were labeled to isotopic steady state using [1‐13C1]glucose, [2‐13C1]glucose, or [U‐13C5]glutamine. The resultant labeling in sugars, starch, fatty acids and amino acids was analyzed by NMR and GC‐MS. The fluxes through intermediary metabolism were then quantified by computer‐aided modeling. The resulting flux map accounted well for the labeling data, was in good agreement with the observed carbon efficiency, and was further validated by testing for agreement with gas exchange measurements. The map shows that the influx of malate into oil is low and that flux through futile cycles (wasting ATP) is low, which contrasts with the high rates previously determined for growing root tips and heterotrophic cell cultures. |
Author | Ohlrogge, John B Alonso, Ana P Goffman, Fernando D Shachar-Hill, Yair |
Author_xml | – sequence: 1 fullname: Alonso, Ana P – sequence: 2 fullname: Goffman, Fernando D – sequence: 3 fullname: Ohlrogge, John B – sequence: 4 fullname: Shachar-Hill, Yair |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19153811$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/17683473$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUFv1DAQhS1URLeFvwAWEggOCXYcx8mBA1q1FLQSSLQSN8txxsUrx97am3b33-OwiypxwpcZyd-bGb13hk588IAQpqSk-X1Yl5Q1vGCU7cqKEFESVjFe7p6gxd-PnydoQbqGFKKm1Sk6S2lNCBWsqZ-hUyqaltWCLdBmqWIfPNbB30NMNrdgjNUWvN5j5QeswW-jcniEreqDsxobN-0gYevxAPfgwsb6W5wmb1x4gIjfXYGzym9_TSkP8FMuq_I9hrGP-5Ceo6dGuQQvjvUc3VxeXC-vitW3z1-Wn1aF5k3NC6GAkFbXdVuZdmiM6npRddB1VNUNgG76tlO9EV3b05oMrSZcNIOmvOKMQgXsHL09zN3EcDdB2srRJg3OKQ9hSjIbwDtS1xl8_Q-4DlP0-TZZUcZpNoplqD1AOoaUIhi5iXZUcS8pkXMkci1n5-XsvJwjkX8ikbssfXmcP_UjDI_CYwYZeHMEVNLKmai8tumR6yhnLaWZ-3jgHqyD_X8fIK-_f527rH910BsVpLqNecfNj4pQlo2mlWgp-w00hbMl |
CitedBy_id | crossref_primary_10_1042_BJ20110078 crossref_primary_10_1111_j_1365_3040_2009_01992_x crossref_primary_10_1016_j_biochi_2009_01_004 crossref_primary_10_1016_j_tplants_2013_09_005 crossref_primary_10_1007_s10811_019_01821_w crossref_primary_10_1016_j_postharvbio_2016_10_013 crossref_primary_10_3390_metabo11030148 crossref_primary_10_1186_1752_0509_5_95 crossref_primary_10_1038_s42003_024_05844_z crossref_primary_10_3389_fpls_2022_843764 crossref_primary_10_1111_tpj_12685 crossref_primary_10_1016_j_phytochem_2009_07_012 crossref_primary_10_1093_jxb_erv020 crossref_primary_10_1038_nprot_2014_115 crossref_primary_10_1093_jxb_ers032 crossref_primary_10_1039_C2MB25253H crossref_primary_10_3390_metabo10010030 crossref_primary_10_1007_s00425_010_1219_5 crossref_primary_10_1016_j_orggeochem_2022_104516 crossref_primary_10_1093_jxb_ern266 crossref_primary_10_1016_j_plaphy_2010_09_012 crossref_primary_10_1016_j_ymben_2015_12_001 crossref_primary_10_1111_tpj_14906 crossref_primary_10_1007_s11032_023_01373_5 crossref_primary_10_1007_s11738_013_1264_3 crossref_primary_10_1111_j_1469_8137_2009_03113_x crossref_primary_10_1111_j_1469_8137_2008_02752_x crossref_primary_10_1016_j_ymben_2010_04_002 crossref_primary_10_1016_j_jplph_2010_07_018 crossref_primary_10_3724_SP_J_1259_2011_00379 crossref_primary_10_1016_j_eja_2013_12_002 crossref_primary_10_1111_j_1365_3040_2012_02485_x crossref_primary_10_1104_pp_109_151316 crossref_primary_10_3389_fpls_2023_1116894 crossref_primary_10_3390_ijms19103071 crossref_primary_10_1016_j_jplph_2022_153730 crossref_primary_10_1093_mp_ssp108 crossref_primary_10_1016_j_phytochem_2012_04_001 crossref_primary_10_1111_j_1365_313X_2011_04613_x crossref_primary_10_1111_pce_12105 crossref_primary_10_1016_j_chroma_2017_02_028 crossref_primary_10_3732_ajb_1000200 crossref_primary_10_1104_pp_109_141267 crossref_primary_10_1093_plphys_kiab116 crossref_primary_10_1016_j_plantsci_2012_04_010 crossref_primary_10_1093_pcp_pcu011 crossref_primary_10_1007_s11120_015_0206_x crossref_primary_10_1016_j_bej_2019_107256 crossref_primary_10_3390_metabo10010014 crossref_primary_10_5402_2013_169510 crossref_primary_10_1016_j_plantsci_2018_03_011 crossref_primary_10_1002_pmic_201000644 crossref_primary_10_1016_j_copbio_2008_02_006 crossref_primary_10_1111_pce_12083 crossref_primary_10_3389_fpls_2014_00668 crossref_primary_10_1016_j_phytochem_2015_07_021 crossref_primary_10_1111_tpj_12390 crossref_primary_10_1104_pp_109_144121 crossref_primary_10_1093_jxb_erad343 crossref_primary_10_3389_fpls_2021_681145 crossref_primary_10_1016_j_bbalip_2016_03_017 crossref_primary_10_1016_j_plipres_2020_101051 crossref_primary_10_2135_cropsci2007_11_0645 crossref_primary_10_1134_S1021443714010130 crossref_primary_10_1016_j_plipres_2014_05_001 crossref_primary_10_1093_jxb_err382 crossref_primary_10_1093_jxb_erx126 crossref_primary_10_1105_tpc_113_121418 crossref_primary_10_1016_j_plaphy_2014_08_018 crossref_primary_10_1104_pp_110_158535 crossref_primary_10_1111_tpj_16214 crossref_primary_10_1016_j_tplants_2010_01_003 crossref_primary_10_1093_jxb_eraa060 crossref_primary_10_1186_s13068_017_0820_2 crossref_primary_10_1016_j_plaphy_2016_11_013 crossref_primary_10_1016_j_fcr_2013_05_007 crossref_primary_10_1111_ppl_12279 crossref_primary_10_1242_jeb_129189 crossref_primary_10_1111_j_1399_3054_2010_01407_x crossref_primary_10_4238_vol10_1gmr979 crossref_primary_10_1186_s13068_020_01748_2 crossref_primary_10_3390_metabo9100209 crossref_primary_10_1016_j_indcrop_2013_12_032 crossref_primary_10_1042_BJ20140984 crossref_primary_10_1111_j_1365_313X_2008_03430_x crossref_primary_10_1016_j_tplants_2010_05_006 crossref_primary_10_1105_tpc_113_111740 crossref_primary_10_1080_07352689_2018_1505591 crossref_primary_10_1111_j_1365_313X_2011_04611_x crossref_primary_10_1186_s13068_021_01909_x crossref_primary_10_1186_1471_2229_13_72 crossref_primary_10_1016_j_ymben_2010_10_002 crossref_primary_10_1126_sciadv_abo7683 crossref_primary_10_1104_pp_110_167114 crossref_primary_10_1016_j_ab_2018_02_009 crossref_primary_10_1104_pp_109_141622 crossref_primary_10_1111_ppl_12725 crossref_primary_10_1104_pp_108_125195 crossref_primary_10_1186_s13068_018_1347_x crossref_primary_10_1104_pp_112_203299 crossref_primary_10_3389_fpls_2015_01015 crossref_primary_10_1021_acs_analchem_5b03912 crossref_primary_10_1093_jxb_ers057 crossref_primary_10_1016_j_ymben_2016_09_002 crossref_primary_10_1093_jxb_erp186 crossref_primary_10_1007_s40626_024_00326_3 crossref_primary_10_1186_s13068_016_0671_2 crossref_primary_10_1111_plb_12094 crossref_primary_10_1111_j_1365_313X_2008_03771_x crossref_primary_10_1007_s40626_018_0132_3 crossref_primary_10_1016_j_plantsci_2018_04_007 crossref_primary_10_1111_nph_18967 crossref_primary_10_1093_plphys_kiac599 crossref_primary_10_1111_j_1365_313X_2008_03442_x crossref_primary_10_1371_journal_pone_0036522 |
Cites_doi | 10.1042/bj1460439 10.1093/jxb/eri130 10.1002/(SICI)1097-0290(19970705)55:1<118::AID-BIT13>3.0.CO;2-I 10.1007/BF00194519 10.1074/jbc.M606266200 10.1104/pp.105.062083 10.1006/mben.2001.0188 10.1007/s11103-004-7532-2 10.1034/j.1399-3054.2002.1140103.x 10.1104/pp.59.3.506 10.1104/pp.105.063628 10.1074/jbc.270.22.13147 10.1016/S0163-7827(01)00023-6 10.1104/pp.104.047977 10.1002/(SICI)1097-0290(1999)66:2<69::AID-BIT1>3.0.CO;2-6 10.1021/bp0200292 10.1074/jbc.M303432200 10.1104/pp.106.2.591 10.1016/0031-9422(88)80416-3 10.1105/tpc.012500 10.1104/pp.98.2.723 10.1007/s00425-005-0151-6 10.1074/jbc.M206366200 10.1038/nature03145 10.1104/pp.122.3.767 10.1007/BF00202653 10.1007/BF00397388 10.1017/S1464793104006530 10.1023/A:1021716008869 10.1016/0003-2697(76)90527-3 10.1104/pp.60.3.412 10.1104/pp.107.2.413 10.1046/j.1365-313x.2000.00712.x 10.1007/BF00196575 10.1016/0304-4211(82)90141-9 10.1093/aob/mcl046 10.1016/j.pbi.2004.03.016 10.1002/(SICI)1097-0290(19970705)55:1<101::AID-BIT12>3.0.CO;2-P 10.1016/S0021-9258(18)37752-4 10.1016/S0378-4290(96)01035-0 10.1042/bj1840193 10.1007/BF00198692 10.1104/pp.104.050625 10.1007/BF00193996 10.1002/(SICI)1097-0290(1999)66:2<86::AID-BIT2>3.0.CO;2-A 10.1042/bj2960395 10.1007/BF00201808 10.1007/s00253-002-1009-5 10.1111/j.1365-313X.2005.02649.x 10.1104/pp.98.4.1233 10.1104/pp.77.1.142 10.1128/JB.182.4.1136-1143.2000 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS 2007 The Authors Journal compilation 2007 Blackwell Publishing Ltd |
Copyright_xml | – notice: 2007 INIST-CNRS – notice: 2007 The Authors Journal compilation 2007 Blackwell Publishing Ltd |
DBID | FBQ IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TM 8FD FR3 M7N P64 RC3 7X8 |
DOI | 10.1111/j.1365-313x.2007.03235.x |
DatabaseName | AGRIS Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1365-313X |
EndPage | 308 |
ExternalDocumentID | 1360149571 10_1111_j_1365_313X_2007_03235_x 17683473 19153811 TPJ3235 US201300812781 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Journal Article Feature |
GroupedDBID | --- -DZ .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29O 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABHUG ABJNI ABPTK ABPVW ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA H.T H.X HF~ HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI TR2 UB1 W8V W99 WBKPD WH7 WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 YFH YUY ZZTAW ~IA ~KM ~WT AAHBH AHBTC AITYG HGLYW OIG 08R IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TM 8FD AAMNL FR3 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5645-7ae008c4482f8d6fa9b729e991a46eec6b89abf798b140d8c0576dc152531e2e3 |
IEDL.DBID | 33P |
ISSN | 0960-7412 |
IngestDate | Sat Aug 17 01:33:07 EDT 2024 Tue Nov 19 07:15:45 EST 2024 Fri Aug 23 02:57:44 EDT 2024 Sat Sep 28 07:44:05 EDT 2024 Sun Oct 22 16:07:02 EDT 2023 Sat Aug 24 01:05:01 EDT 2024 Wed Dec 27 18:51:56 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Seeds metabolic flux analysis Root sunflower embryo Starch Carbon dioxide Biomass Compositae Metabolism Fatty acids oilseed filling Helianthus annuus isotopic labeling fatty acid synthesis Cruciferae carbon conversion efficiency Dicotyledones Aminoacid Angiospermae Brassica napus Spermatophyta Gas exchange ATP EC 4.1.1.39 |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5645-7ae008c4482f8d6fa9b729e991a46eec6b89abf798b140d8c0576dc152531e2e3 |
Notes | http://dx.doi.org/10.1111/j.1365-313X.2007.03235.x Present address: UMR5504, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, CNRS, INRA, INSA, F‐31400 Toulouse, France. Present address: Philip Morris International, R&D Department, Quai Jeanrenaud 56, 2000 Neuchatel, Switzerland. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1365-313X.2007.03235.x |
PMID | 17683473 |
PQID | 213518343 |
PQPubID | 31702 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_68359044 proquest_journals_213518343 crossref_primary_10_1111_j_1365_313X_2007_03235_x pubmed_primary_17683473 pascalfrancis_primary_19153811 wiley_primary_10_1111_j_1365_313X_2007_03235_x_TPJ3235 fao_agris_US201300812781 |
PublicationCentury | 2000 |
PublicationDate | October 2007 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: October 2007 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | The Plant journal : for cell and molecular biology |
PublicationTitleAlternate | Plant J |
PublicationYear | 2007 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Science |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Science |
References | 2002; 59 2006; 97 2002; 18 1994; 192 1994; 193 2000; 22 2002; 114 2005; 138 2002; 277 2004a; 432 2003; 15 1999; 66 1990; 180 1997; 49 2005; 80 1988; 263 1995; 197 1992; 98 2003; 278 1995; 270 1977; 60 1985; 166 1991; 185 1982; 27 1994; 106 2004; 136 2002; 29 1977; 59 2006; 45 2002; 41 1997; 55 2004b; 7 1976; 72 1988; 27 2000; 182 1995; 107 1996; 199 2001; 3 2000; 122 2006; 281 1985; 77 1975; 146 1979; 184 1993; 296 2005; 56 2005; 57 2006; 223 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 Salon C. (e_1_2_6_41_1) 1988; 263 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 Hatzfeld W.D. (e_1_2_6_15_1) 1990; 180 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 66 start-page: 86 year: 1999 end-page: 103 article-title: Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments publication-title: Biotechnol. Bioeng. – volume: 263 start-page: 12278 year: 1988 end-page: 12287 article-title: Quantification of carbon fluxes through the tricarboxylic‐acid cycle in early germinating lettuce embryos publication-title: J. Biol. Chem. – volume: 146 start-page: 439 year: 1975 end-page: 445 article-title: Fractionation of fatty‐acid synthetase activities of avocado mesocarp plastids publication-title: Biochem. J. – volume: 136 start-page: 2700 year: 2004 end-page: 2709 article-title: The capacity of green oilseeds to utilize photosynthesis to drive biosynthetic processes publication-title: Plant Physiol. – volume: 277 start-page: 43948 year: 2002 end-page: 43960 article-title: The metabolic architecture of plant cells. Stability of central metabolism and flexibility of anabolic pathways during the growth cycle of tomato cells publication-title: J. Biol. Chem. – volume: 223 start-page: 948 year: 2006 end-page: 964 article-title: Primary metabolic pathways and signal transduction in sunflower ( L.): comparison of transcriptional profiling in leaves and immature embryos using cDNA microarrays publication-title: Planta – volume: 29 start-page: 555 year: 2002 end-page: 558 article-title: Respiration of mitochondria in developing sunflower seeds publication-title: Biol. Bulletin – volume: 281 start-page: 34040 year: 2006 end-page: 34047 article-title: Mitochondrial metabolism in developing embryos of publication-title: J. Biol. Chem. – volume: 114 start-page: 13 year: 2002 end-page: 20 article-title: Temperature and oxygen regulation of oleate desaturation in developing sunflower ( ) seeds publication-title: Physiol. Plant. – volume: 49 start-page: 147 year: 1997 end-page: 157 article-title: Maintenance respiration coefficient for sunflower grains is less than that for the entire capitulum publication-title: Field Crops Res. – volume: 97 start-page: 999 year: 2006 end-page: 1010 article-title: Achene structure, development and lipid accumulation in sunflower cultivars differing in oil content at maturity publication-title: Ann. Bot. – volume: 66 start-page: 69 year: 1999 end-page: 85 article-title: Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems publication-title: Biotechnol. Bioeng. – volume: 166 start-page: 74 year: 1985 end-page: 80 article-title: Fatty‐acid synthesis in plastids from maturing safflower and linseed cotyledons publication-title: Planta – volume: 45 start-page: 490 year: 2006 end-page: 511 article-title: Measuring multiple fluxes through plant metabolic networks publication-title: Plant J. – volume: 185 start-page: 91 year: 1991 end-page: 96 article-title: Evidence that glucose‐6‐phosphate is imported as the substrate for starch synthesis by the plastids of developing pea embryos publication-title: Planta – volume: 270 start-page: 13147 year: 1995 end-page: 13159 article-title: Quantification of compartmented metabolic fluxes in maize root tips using isotope distribution from 13C‐ or 14C‐labeled glucose publication-title: J. Biol. Chem. – volume: 122 start-page: 767 year: 2000 end-page: 774 article-title: Coordinate changes in carbon partitioning and plastidial metabolism during the development of oilseed rape embryo publication-title: Plant Physiol. – volume: 184 start-page: 193 year: 1979 end-page: 202 article-title: Control of long‐chain fatty acid synthesis in isolated intact spinach ( ) chloroplasts publication-title: Biochem. J. – volume: 192 start-page: 52 year: 1994 end-page: 60 article-title: Fluxes of carbohydrate‐metabolism in ripening bananas publication-title: Planta – volume: 22 start-page: 39 year: 2000 end-page: 50 article-title: Understanding carbon precursor supply for fatty acid synthesis in leaf tissue publication-title: Plant J. – volume: 59 start-page: 303 year: 2002 end-page: 309 article-title: Use of carbon and energy balances in the study of the anaerobic metabolism of at variable starting glucose concentrations publication-title: Appl. Microbiol. Biotechnol. – volume: 432 start-page: 779 year: 2004a end-page: 782 article-title: Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds publication-title: Nature – volume: 107 start-page: 413 year: 1995 end-page: 419 article-title: The utilization of glycolytic‐intermediates as precursors for fatty‐acid biosynthesis by pea root plastids publication-title: Plant Physiol. – volume: 180 start-page: 198 year: 1990 end-page: 204 article-title: A study of the rate of recycling of triose phosphates in heterotrophic cells, potato‐tubers, and maize endosperm publication-title: Planta – volume: 138 start-page: 2220 year: 2005 end-page: 2232 article-title: A new substrate cycle in plants. evidence for a high glucose‐phosphate‐to‐glucose turnover from steady‐state and pulse‐labeling experiments with [C‐13] glucose and [C‐14] glucose publication-title: Plant Physiol. – volume: 57 start-page: 255 year: 2005 end-page: 270 article-title: Comparative analysis of early embryonic sunflower cDNA libraries publication-title: Plant Mol. Biol. – volume: 3 start-page: 265 year: 2001 end-page: 283 article-title: A universal framework for C‐13 metabolic flux analysis publication-title: Metab. Eng. – volume: 106 start-page: 591 year: 1994 end-page: 600 article-title: Modeling carbon export out of mature peach leaves publication-title: Plant Physiol. – volume: 193 start-page: 320 year: 1994 end-page: 325 article-title: The activity of acetyl‐CoA carboxylase is not correlated with the rate of lipid‐synthesis during development of oilseed rape ( L) embryos publication-title: Planta – volume: 18 start-page: 1400 year: 2002 end-page: 1407 article-title: Carbon mass balance evaluation of cellulase production on soluble and insoluble substrates publication-title: Biotechnol. Prog. – volume: 72 start-page: 248 year: 1976 end-page: 254 article-title: Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding publication-title: Anal. Biochem. – volume: 41 start-page: 182 year: 2002 end-page: 196 article-title: Carbon flux and fatty acid synthesis in plants publication-title: Progr. Lipid Res. – volume: 7 start-page: 309 year: 2004b end-page: 317 article-title: Understanding flux in plant metabolic networks publication-title: Curr. Opin. Plant Biol. – volume: 278 start-page: 29442 year: 2003 end-page: 29453 article-title: A flux model of glycolysis and the oxidative pentosephosphate pathway in developing embryos publication-title: J. Biol. Chem. – volume: 296 start-page: 395 year: 1993 end-page: 401 article-title: Purification of highly intact plastids from various heterotrophic plant‐tissues – analysis of enzymatic equipment and precursor dependency for starch biosynthesis publication-title: Biochem. J. – volume: 197 start-page: 313 year: 1995 end-page: 323 article-title: The effect of hypoxia on the control of carbohydrate‐metabolism in ripening bananas publication-title: Planta – volume: 136 start-page: 3043 year: 2004 end-page: 3057 article-title: Quantification of compartmented metabolic fluxes in developing soybean embryos by employing biosynthetically directed fractional C‐13 labeling, [C‐13, H‐1] two‐dimensional nuclear magnetic resonance, and comprehensive isotopomer balancing publication-title: Plant Physiol. – volume: 80 start-page: 27 year: 2005 end-page: 43 article-title: Revealing metabolic phenotypes in plants: inputs from NMR analysis publication-title: Biol. Rev. – volume: 56 start-page: 1297 year: 2005 end-page: 1303 article-title: The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower ( L.) embryos publication-title: J. Exp. Bot. – volume: 59 start-page: 506 year: 1977 end-page: 510 article-title: Nutrition of a developing legume fruit – functional economy in terms of carbon, nitrogen, water publication-title: Plant Physiol. – volume: 27 start-page: 1627 year: 1988 end-page: 1629 article-title: Turnover of starch and sucrose in roots of publication-title: Phytochemistry – volume: 15 start-page: 2140 year: 2003 end-page: 2151 article-title: Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells publication-title: Plant Cell – volume: 55 start-page: 101 year: 1997 end-page: 117 article-title: Bidirectional reaction steps in metabolic networks. 1. Modeling and simulation of carbon isotope labeling experiments publication-title: Biotechnol. Bioeng. – volume: 98 start-page: 723 year: 1992 end-page: 727 article-title: Energy‐requirements for fatty‐acid and glycerolipid biosynthesis from acetate by isolated pea root plastids publication-title: Plant Physiol. – volume: 77 start-page: 142 year: 1985 end-page: 147 article-title: Economy of water, carbon, and nitrogen in the developing cowpea fruit publication-title: Plant Physiol. – volume: 27 start-page: 129 year: 1982 end-page: 135 article-title: Compositional analysis of in vitro matured soybean seeds publication-title: Plant Sci. Lett. – volume: 199 start-page: 321 year: 1996 end-page: 327 article-title: Metabolism of glucose‐6‐phosphate and utilization of multiple metabolites for fatty acid synthesis by plastids from developing oilseed rape embryos publication-title: Planta – volume: 182 start-page: 1136 year: 2000 end-page: 1143 article-title: The metabolic network of : distribution of C‐14‐labeled substrates between catabolic and anabolic pathways publication-title: J. Bacteriol. – volume: 55 start-page: 118 year: 1997 end-page: 135 article-title: Bidirectional reaction steps in metabolic networks. 2. Flux estimation and statistical analysis publication-title: Biotechnol. Bioeng. – volume: 60 start-page: 412 year: 1977 end-page: 418 article-title: Significance of photosynthetic and respiratory exchanges in carbon economy of developing pea fruit publication-title: Plant Physiol. – volume: 98 start-page: 1233 year: 1992 end-page: 1238 article-title: Malate‐dependent and pyruvate‐dependent fatty‐acid synthesis in leukoplastids from developing castor endosperm publication-title: Plant Physiol. – volume: 138 start-page: 2269 year: 2005 end-page: 2279 article-title: Light enables a very high efficiency of carbon storage in developing embryos of rapeseed publication-title: Plant Physiol. – ident: e_1_2_6_48_1 doi: 10.1042/bj1460439 – ident: e_1_2_6_31_1 doi: 10.1093/jxb/eri130 – ident: e_1_2_6_50_1 doi: 10.1002/(SICI)1097-0290(19970705)55:1<118::AID-BIT13>3.0.CO;2-I – ident: e_1_2_6_19_1 doi: 10.1007/BF00194519 – ident: e_1_2_6_45_1 doi: 10.1074/jbc.M606266200 – ident: e_1_2_6_2_1 doi: 10.1104/pp.105.062083 – ident: e_1_2_6_52_1 doi: 10.1006/mben.2001.0188 – ident: e_1_2_6_4_1 doi: 10.1007/s11103-004-7532-2 – ident: e_1_2_6_11_1 doi: 10.1034/j.1399-3054.2002.1140103.x – ident: e_1_2_6_29_1 doi: 10.1104/pp.59.3.506 – ident: e_1_2_6_13_1 doi: 10.1104/pp.105.063628 – ident: e_1_2_6_8_1 doi: 10.1074/jbc.270.22.13147 – ident: e_1_2_6_36_1 doi: 10.1016/S0163-7827(01)00023-6 – ident: e_1_2_6_39_1 doi: 10.1104/pp.104.047977 – ident: e_1_2_6_51_1 doi: 10.1002/(SICI)1097-0290(1999)66:2<69::AID-BIT1>3.0.CO;2-6 – ident: e_1_2_6_40_1 doi: 10.1021/bp0200292 – ident: e_1_2_6_42_1 doi: 10.1074/jbc.M303432200 – ident: e_1_2_6_25_1 doi: 10.1104/pp.106.2.591 – ident: e_1_2_6_14_1 doi: 10.1016/0031-9422(88)80416-3 – ident: e_1_2_6_12_1 doi: 10.1105/tpc.012500 – ident: e_1_2_6_23_1 doi: 10.1104/pp.98.2.723 – ident: e_1_2_6_16_1 doi: 10.1007/s00425-005-0151-6 – ident: e_1_2_6_37_1 doi: 10.1074/jbc.M206366200 – ident: e_1_2_6_43_1 doi: 10.1038/nature03145 – ident: e_1_2_6_9_1 doi: 10.1104/pp.122.3.767 – ident: e_1_2_6_18_1 doi: 10.1007/BF00202653 – ident: e_1_2_6_6_1 doi: 10.1007/BF00397388 – ident: e_1_2_6_34_1 doi: 10.1017/S1464793104006530 – ident: e_1_2_6_53_1 doi: 10.1023/A:1021716008869 – ident: e_1_2_6_5_1 doi: 10.1016/0003-2697(76)90527-3 – ident: e_1_2_6_10_1 doi: 10.1104/pp.60.3.412 – ident: e_1_2_6_33_1 doi: 10.1104/pp.107.2.413 – ident: e_1_2_6_3_1 doi: 10.1046/j.1365-313x.2000.00712.x – ident: e_1_2_6_21_1 doi: 10.1007/BF00196575 – ident: e_1_2_6_20_1 doi: 10.1016/0304-4211(82)90141-9 – ident: e_1_2_6_24_1 doi: 10.1093/aob/mcl046 – ident: e_1_2_6_44_1 doi: 10.1016/j.pbi.2004.03.016 – ident: e_1_2_6_49_1 doi: 10.1002/(SICI)1097-0290(19970705)55:1<101::AID-BIT12>3.0.CO;2-P – volume: 263 start-page: 12278 year: 1988 ident: e_1_2_6_41_1 article-title: Quantification of carbon fluxes through the tricarboxylic‐acid cycle in early germinating lettuce embryos publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)37752-4 contributor: fullname: Salon C. – ident: e_1_2_6_32_1 doi: 10.1016/S0378-4290(96)01035-0 – ident: e_1_2_6_38_1 doi: 10.1042/bj1840193 – ident: e_1_2_6_17_1 doi: 10.1007/BF00198692 – ident: e_1_2_6_47_1 doi: 10.1104/pp.104.050625 – volume: 180 start-page: 198 year: 1990 ident: e_1_2_6_15_1 article-title: A study of the rate of recycling of triose phosphates in heterotrophic Chenopodium rubrum cells, potato‐tubers, and maize endosperm publication-title: Planta doi: 10.1007/BF00193996 contributor: fullname: Hatzfeld W.D. – ident: e_1_2_6_26_1 doi: 10.1002/(SICI)1097-0290(1999)66:2<86::AID-BIT2>3.0.CO;2-A – ident: e_1_2_6_27_1 doi: 10.1042/bj2960395 – ident: e_1_2_6_22_1 doi: 10.1007/BF00201808 – ident: e_1_2_6_7_1 doi: 10.1007/s00253-002-1009-5 – ident: e_1_2_6_35_1 doi: 10.1111/j.1365-313X.2005.02649.x – ident: e_1_2_6_46_1 doi: 10.1104/pp.98.4.1233 – ident: e_1_2_6_30_1 doi: 10.1104/pp.77.1.142 – ident: e_1_2_6_28_1 doi: 10.1128/JB.182.4.1136-1143.2000 |
SSID | ssj0017364 |
Score | 2.3413153 |
Snippet | The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-¹⁴C₆]glucose or... Summary The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with... The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-(14)C6]glucose... Summary The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U‐ 14 C 6... The efficiency with which developing sunflower embryos convert substrates into seed storage reserves was determined by labeling embryos with [U-14C6]glucose or... |
SourceID | proquest crossref pubmed pascalfrancis wiley fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 296 |
SubjectTerms | Agronomy. Soil science and plant productions Biochemistry Biological and medical sciences Botany Carbon Carbon - metabolism carbon conversion efficiency Carbon Radioisotopes Cellular biology Economic plant physiology Embryo development. Germination fatty acid synthesis Fatty Acids - biosynthesis Fundamental and applied biological sciences. Psychology Growth and development Helianthus - embryology Helianthus - metabolism isotopic labeling metabolic flux analysis Metabolism oilseed filling Plant Oils - metabolism Seeds - metabolism Staining and Labeling sunflower embryo Tissue Culture Techniques |
Title | Carbon conversion efficiency and central metabolic fluxes in developing sunflower (Helianthus annuus L.) embryos |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-313X.2007.03235.x https://www.ncbi.nlm.nih.gov/pubmed/17683473 https://www.proquest.com/docview/213518343 https://search.proquest.com/docview/68359044 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZoxYELb2goFB84wCFVE7u2c4Q-VApCldpKvVl2Mi6Vtkm13kjtv2fGye6yqAeEuCSRkljyPDzf2PNg7AOaAESxUuQmoLsqvStyX0qVQx3IfwAtUuH5o1P948LsH1CZnON5LsxQH2Kx4UaakdZrUnDn46qSU4SWKMTFWIlQlGJ3m_AkOg0pm0OcLA4UtBgqSSFgz9GI_hHUc-9AK5ZqLbiO4iZdRNKFoefFfaB0FeMmI3X45H9O7yl7PEJV_nmQrWfsAbTP2cMvHcLJuxfsZs9NfdfyFLae9tw4pHIUlMvJXdvwMe6TX8MMJW1yVfMw6W8h8quWL3O1eOzbMKFebfwj2kCU1tnPPnLKYMbb9-1PHK799K6LL9n54cHZ3lE-tm_IaypRk2sHCDBq9P_KYBoVXOURyQMCUicVQK28qZwPujIeGdaYGqGjampqyCQKKEG8Yutt18IG49o5SpcA8uQlqMIZj6672hVS7TSNrDNWzFllb4YqHfY37wYJaYmQ1HNT20RIe5uxDeSpdZe4mNrz05KOcBEfldoUGdtaYfRyzIoMRIEfbM45b0edj7akZodGSJGx94u3qKx0AuNa6PpoFeLdakfKjL0exGU5Mrp9Qmr8VyWp-Otp2LOTY3p6868_brJHab86BSi-ZeuzaQ_v2Fps-q2kQnjd__rtF0UCFhc |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VWqlcoG9SKPjQQ3sIIrGxnWPLQ9uyRUgsEjfLSewWaUnQZiPBv--Mk93tIg5V1VMiJbbk8Yznm_E8AD6iCkAUK3isPZqrIrdJnKdCxq7wZD84xUPh-cGFOrvSR8dUJud0lgvT1YeYO9xIMsJ5TQJODullKacQLZ7wq74UIU_5wR4CyqdCioz6OHB-Pr9SULyrJYWQPUY1-iCs59GZlnTVirc1RU7aBonnu64Xj8HSZZQb1NTJxn9d4AtY79Eq-9Kx10t44qpX8OxrjYjy_jXcHtpJXlcsRK4HtxtzoSIFpXMyW5WsD_1kN26KzDa-Lpgft3euYdcVW6Rrsaat_JjatbFPqAaRYae_2oZREjM-hnufmbvJJ_d18wYuT45Hh4O47-AQF1SlJlbWIcYo0ARMvS6lt1mOYN4hJrVCOlfIXGc29yrTORp6pS4QPcqyoJ5MPHGp429htaortwlMWUsZE46MeeFkYnWO1rs84ELul6UoIkhme2Vuu0Id5g8DBwlpiJDUdlOZQEhzF8EmbqqxP_E8NZcXKd3iIkRKlU4i2Fna6cWcGemIBH_Ymm296cW-MSn1O9Rc8Ah2519RXukSxlaubhsjEfJm-0JE8K7jl8XMaPlxoXCsDGzx18swo_Pv9Pb-XwfuwvPB6MfQDL-dnW7BWnBfh3jFbVidTlr3AVaast0J8vQbPxIZPw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4VWlVcoG9SKPjQQ3sIIrGxk2MLrChFaCVA4mbZid0iLclqs5Hg33fGye6yiENV9ZRIiS15Hp5v7HkAfEYTgChW8Djz6K4Ka5LYpkLGrvDkPzjFQ-H5kwt1fp0dHVOZnNNZLkxXH2J-4EaaEfZrUvBx6ZeVnCK0eMKv-0qEPOUHe4gnnwtC5ZTOwYfzGwXFu1JSiNhjtKKPonqenGnJVK14U1PgpGmQdr5revEUKl0GucFKDTb-5_pewXqPVdm3TrhewzNXvYEX32vEk_dvYXxoJrauWIhbD4duzIV6FJTMyUxVsj7wk926KYra6KZgftTeuYbdVGyRrMWatvIjatbGvqARRHGd_m4bRinM-Djb-8rcrZ3c1807uBocXx6exH3_hrigGjWxMg4RRoEOYOqzUnqTW4TyDhGpEdK5QtosN9arPLPo5pVZgdhRlgV1ZOKJSx1_D6tVXblNYMoYypdw5MoLJxOTWfTd5QFHVpelKCJIZqzS465Mh37g3iAhNRGSmm4qHQip7yLYRJ5q8wt3U311kdIdLgKkVGVJBDtLjF7MmZOFSPCHrRnnda_0jU6p22HGBY9gd_4VtZWuYEzl6rbREgFvvi9EBB86cVnMjH4fFwrHyiAVf70MfTk8pbeP_zpwF14Ojwb67Mf5zy1YC2fXIVhxG1ank9Z9gpWmbHeCNv0Bw40X7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+conversion+efficiency+and+central+metabolic+fluxes+in+developing+sunflower+%28Helianthus+annuus+L.%29+embryos&rft.jtitle=The+Plant+journal+%3A+for+cell+and+molecular+biology&rft.au=Alonso%2C+Ana+P.&rft.au=Goffman%2C+Fernando+D.&rft.au=Ohlrogge%2C+John+B.&rft.au=Shachar%E2%80%90Hill%2C+Yair&rft.date=2007-10-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0960-7412&rft.eissn=1365-313X&rft.volume=52&rft.issue=2&rft.spage=296&rft.epage=308&rft_id=info:doi/10.1111%2Fj.1365-313X.2007.03235.x&rft.externalDBID=10.1111%252Fj.1365-313X.2007.03235.x&rft.externalDocID=TPJ3235 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-7412&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-7412&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-7412&client=summon |