Phylogenetic Relationships, Divergence Time Estimation, and Global Biogeographic Patterns of Calopterygoid Damselflies (Odonata, Zygoptera) Inferred from Ribosomal DNA Sequences

The calopterygoid superfamily (Calopterygidae + Hetaerinidae) is composed of more than twenty genera in two families: the Calopterygidae (at least 17) and the Hetaerinidae (at least 4). Here, 62 calopterygoid (ingroup) taxa representing 18 genera and 15 outgroup taxa are subjected to phylogenetic an...

Full description

Saved in:
Bibliographic Details
Published in:Systematic biology Vol. 54; no. 3; pp. 347 - 362
Main Authors: Dumont, Henri J., Vanfleteren, Jacques R., De Jonckheere, Johan F., Weekers, Peter H. H., Kjer, Karl
Format: Journal Article
Language:English
Published: England Society of Systematic Zoology 01-06-2005
Taylor & Francis
Oxford University Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The calopterygoid superfamily (Calopterygidae + Hetaerinidae) is composed of more than twenty genera in two families: the Calopterygidae (at least 17) and the Hetaerinidae (at least 4). Here, 62 calopterygoid (ingroup) taxa representing 18 genera and 15 outgroup taxa are subjected to phylogenetic analysis using the ribosomal 18S and 5.8S genes and internal transcribed spacers (ITS1, ITS2). The five other families of calopterid affinity (Polythoridae, Dicteriadidae, Amphipterygidae, Euphaeidae, and Chlorocyphidae) are included in the outgroup. For phylogenetic inference, we applied maximum parsimony, maximum likelihood, and the Bayesian inference methods. A molecular phylogeny combined with a geographic analysis produced a well-supported phylogenetic hypothesis that partly confirms the traditional taxonomy and describes distributional patterns. A monophyletic origin of the calopterygoids emerges, revealing the Hetaerinid clade as sister group to the Calopterygidae sensu strictu. Within Calopterygidae, seven clades of subfamily rank are recognized. Phylogenetic dating was performed with semiparametric rate smoothing by penalized likelihood, using seven reference fossils for calibration. Divergence time based on the ribosomal genes and spacers and fossil constraints indicate that Calopteryginae (10 genera, approximately 50% of all Calopterygid taxa studied here), Vestalinae (1 genus), and Hetaerinidae (1 genus out of 4 studied here) started radiating around 65 Mya (K/T boundary). The South American Iridictyon (without distinctive morphology except for wing venation) and Southeast Asian Noguchiphaea (with distinctive morphology) are older (about 86 My) and may be survivors of old clades with a Gondwanian range that went extinct at the K/T boundary. The same reasoning (and an even older age, ca. 150 My) applies to the amphipterygids Rimanella and Pentaphlebia (South America–Africa). The extant Calopterygidae show particular species and genus richness between west China and Japan, with genera originating between the early Oligocene and Pleistocene. Much of that richness probably extended much wider in preglacial times. The Holarctic Calopteryx, of Miocene age, was deeply affected by the climatic cooling of the Pliocene and by the Pleistocene glaciations. Its North American and Japanese representatives are of Miocene and Pliocene age, respectively, but its impoverished Euro-Siberian taxa are late Pliocene-Pleistocene, showing reinvasion, speciation, and introgression events. The five other calopterid families combine with the Calopterygidae and Hetaerinidae to form the monophyletic cohort Caloptera, with Polythoridae, Dicteriadidae, and Amphipterygidae sister group to Calopterygoidea. The crown node age of the latter three families has an age of about 157 My, but the Dicteriadidae and Polythoridae themselves are of Eocene age, and the same is true for the Euphaeidae and Chlorocyphidae. The cohort Caloptera itself, with about 197 My of age, goes back to the early Jurassic.
Bibliography:Present address: Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology, Avenue Hippocrate 74–75, B-1200 Brussels, Belgium
ark:/67375/HXZ-0NK39BNZ-4
istex:49438A0EBDB074B58776AD86EB2A42A61F0B4391
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1063-5157
1076-836X
DOI:10.1080/10635150590949869