Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism

Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previou...

Full description

Saved in:
Bibliographic Details
Published in:Molecular autism Vol. 8; no. 1; p. 65
Main Authors: Levy, Sebastien, Duda, Marlena, Haber, Nick, Wall, Dennis P
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 19-12-2017
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the clinical population. We assembled a collection of score sheets for two ADOS modules, one for children with phrased speech (Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273 controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust detection of ASD from non-ASD. By applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of 0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features. The resulting models provide improved stability over previous machine learning efforts to minimize the time complexity of autism detection due to regularization and a small parameter space. These robustness techniques yield classifiers that are sparse, interpretable and that have potential to generalize to alternative modes of autism screening, diagnosis and monitoring, possibly including analysis of short home videos.
AbstractList Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the clinical population. We assembled a collection of score sheets for two ADOS modules, one for children with phrased speech (Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273 controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust detection of ASD from non-ASD. By applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of 0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features. The resulting models provide improved stability over previous machine learning efforts to minimize the time complexity of autism detection due to regularization and a small parameter space. These robustness techniques yield classifiers that are sparse, interpretable and that have potential to generalize to alternative modes of autism screening, diagnosis and monitoring, possibly including analysis of short home videos.
Background Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the clinical population. Methods We assembled a collection of score sheets for two ADOS modules, one for children with phrased speech (Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273 controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust detection of ASD from non-ASD. Results By applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of 0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features. Conclusions The resulting models provide improved stability over previous machine learning efforts to minimize the time complexity of autism detection due to regularization and a small parameter space. These robustness techniques yield classifiers that are sparse, interpretable and that have potential to generalize to alternative modes of autism screening, diagnosis and monitoring, possibly including analysis of short home videos. Keywords: Autism, Autism spectrum disorder, ASD, Autism screening, Autism diagnosis, Machine learning, Sparse machine learning
BackgroundAutism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the clinical population. MethodsWe assembled a collection of score sheets for two ADOS modules, one for children with phrased speech (Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273 controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust detection of ASD from non-ASD. ResultsBy applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of 0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features. ConclusionsThe resulting models provide improved stability over previous machine learning efforts to minimize the time complexity of autism detection due to regularization and a small parameter space. These robustness techniques yield classifiers that are sparse, interpretable and that have potential to generalize to alternative modes of autism screening, diagnosis and monitoring, possibly including analysis of short home videos.
Abstract Background Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the clinical population. Methods We assembled a collection of score sheets for two ADOS modules, one for children with phrased speech (Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273 controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust detection of ASD from non-ASD. Results By applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of 0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features. Conclusions The resulting models provide improved stability over previous machine learning efforts to minimize the time complexity of autism detection due to regularization and a small parameter space. These robustness techniques yield classifiers that are sparse, interpretable and that have potential to generalize to alternative modes of autism screening, diagnosis and monitoring, possibly including analysis of short home videos.
Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic Observation Schedule (ADOS). Shorter and potentially mobilized approaches would help to alleviate bottlenecks in the healthcare system. Previous work using machine learning suggested that a subset of the behaviors measured by ADOS can achieve clinically acceptable levels of accuracy. Here we expand on this initial work to build sparse models that have higher potential to generalize to the clinical population. We assembled a collection of score sheets for two ADOS modules, one for children with phrased speech (Module 2; 1319 ASD cases, 70 controls) and the other for children with verbal fluency (Module 3; 2870 ASD cases, 273 controls). We used sparsity/parsimony enforcing regularization techniques in a nested cross validation grid search to select features for 17 unique supervised learning models, encoding missing values as additional indicator features. We augmented our feature sets with gender and age to train minimal and interpretable classifiers capable of robust detection of ASD from non-ASD. By applying 17 unique supervised learning methods across 5 classification families tuned for sparse use of features and to be within 1 standard error of the optimal model, we find reduced sets of 10 and 5 features used in a majority of models. We tested the performance of the most interpretable of these sparse models, including Logistic Regression with L2 regularization or Linear SVM with L1 regularization. We obtained an area under the ROC curve of 0.95 for ADOS Module 3 and 0.93 for ADOS Module 2 with less than or equal to 10 features. The resulting models provide improved stability over previous machine learning efforts to minimize the time complexity of autism detection due to regularization and a small parameter space. These robustness techniques yield classifiers that are sparse, interpretable and that have potential to generalize to alternative modes of autism screening, diagnosis and monitoring, possibly including analysis of short home videos.
ArticleNumber 65
Audience Academic
Author Wall, Dennis P
Levy, Sebastien
Duda, Marlena
Haber, Nick
Author_xml – sequence: 1
  givenname: Sebastien
  surname: Levy
  fullname: Levy, Sebastien
  organization: Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA USA
– sequence: 2
  givenname: Marlena
  surname: Duda
  fullname: Duda, Marlena
  organization: Department of Biomedical Data Science, Stanford University, Stanford, CA USA
– sequence: 3
  givenname: Nick
  surname: Haber
  fullname: Haber, Nick
  organization: Department of Biomedical Data Science, Stanford University, Stanford, CA USA
– sequence: 4
  givenname: Dennis P
  surname: Wall
  fullname: Wall, Dennis P
  organization: Department of Biomedical Data Science, Stanford University, Stanford, CA USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29270283$$D View this record in MEDLINE/PubMed
BookMark eNptkttq3DAQhk1JaQ7NA_SmCAolN051tnVTCKGHQKAXba-FLI92FWxrK8kLefvKcRp2oRKDxOibH2n0n1cnU5igqt4RfE1IKz8lwihVNSZNiRbX8lV1RjHHNWWKnhzsT6vLlB5wGYxwzumb6pQq2mDasrNq_rkzMXn36KcNGo3d-gnQACZOT4nQw5CQ72HKhUEpm24AlOYuQU4oOLSL0Hub_R6QA5PnCAm5EFEHW7P3IZoB9ZChEGFaeDNnn8a31WtnhgSXz-tF9fvrl1-33-v7H9_ubm_uaysky7VtmJVMtEBa0QreCKOs5IJKwL1klFAw3HYAnQIhpJVUOqEoUZTyrgRnF9XdqtsH86B30Y8mPupgvH5KhLjRJmZvB9AUqw5z5giVDVfKGtrRtmgpJ_tWWFa0Pq9au7kbobelJeV1R6LHJ5Pf6k3Ya9EwIRgpAlfPAjH8mSFlPfpkYRjMBGFOmqhGKUkFaQv6YUU3plzNTy4URbvg-kYQJYkgWBXq-j9UmT2M3ha3OF_yRwUfDwq2YIa8TWGYl89JxyBZQRtDShHcyzMJ1ov79Oo-XdynF_dpWWreH_bnpeKf19hf_HLVvA
CitedBy_id crossref_primary_10_2196_33771
crossref_primary_10_1016_j_ibmed_2022_100057
crossref_primary_10_2196_13822
crossref_primary_10_2196_37576
crossref_primary_10_1016_j_ibmed_2022_100056
crossref_primary_10_1038_s41598_020_61607_w
crossref_primary_10_1371_journal_pone_0241690
crossref_primary_10_1038_s41598_021_02370_4
crossref_primary_10_1016_j_scs_2021_103189
crossref_primary_10_1016_j_spen_2020_100803
crossref_primary_10_1088_1741_2552_ac8b39
crossref_primary_10_1136_archdischild_2020_321023
crossref_primary_10_1097_DBP_0000000000001149
crossref_primary_10_2196_39917
crossref_primary_10_5765_jkacap_190027
crossref_primary_10_3390_diagnostics11030574
crossref_primary_10_3390_jpm11040299
crossref_primary_10_1038_s43705_021_00080_6
crossref_primary_10_1080_17538157_2019_1687482
crossref_primary_10_1177_1460458218824711
crossref_primary_10_2196_24972
crossref_primary_10_1016_j_bpsc_2019_11_015
crossref_primary_10_1128_mSystems_00193_20
crossref_primary_10_3390_brainsci10120949
crossref_primary_10_1038_s41598_020_76874_w
crossref_primary_10_1146_annurev_biodatasci_020722_125454
crossref_primary_10_3389_fpsyt_2021_727308
crossref_primary_10_1016_j_ibmed_2023_100102
crossref_primary_10_1111_sms_13461
crossref_primary_10_15406_iratj_2024_10_00278
crossref_primary_10_1002_jcv2_12023
crossref_primary_10_1371_journal_pone_0269773
crossref_primary_10_1002_aur_3080
crossref_primary_10_2196_13174
crossref_primary_10_3389_fpsyt_2022_826043
crossref_primary_10_3390_electronics12030612
crossref_primary_10_3389_fped_2022_1065957
crossref_primary_10_3390_jpm10030086
crossref_primary_10_1038_s41598_021_87059_4
crossref_primary_10_1371_journal_pmed_1002705
crossref_primary_10_1007_s12519_019_00255_1
crossref_primary_10_1038_s41746_022_00598_6
crossref_primary_10_1016_j_ibmed_2024_100134
crossref_primary_10_2196_26760
crossref_primary_10_1016_j_pediatrneurol_2023_01_004
Cites_doi 10.1111/j.2517-6161.1996.tb02080.x
10.1038/tp.2012.10
10.1097/DBP.0000000000000235
10.1371/journal.pone.0043855
10.1007/s10803-007-0427-8
10.1038/tp.2015.221
10.1038/tp.2015.7
10.1016/j.chc.2010.07.005
10.1097/00004703-200604002-00005
10.1177/1362361310379241
10.1007/978-0-387-21606-5
10.1007/s10803-006-0280-1
10.1016/j.jaac.2011.12.009
10.1038/tp.2014.65
10.1023/A:1005592401947
10.1371/journal.pone.0093533
ContentType Journal Article
Copyright COPYRIGHT 2017 BioMed Central Ltd.
The Author(s) 2017
Copyright_xml – notice: COPYRIGHT 2017 BioMed Central Ltd.
– notice: The Author(s) 2017
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1186/s13229-017-0180-6
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2040-2392
EndPage 65
ExternalDocumentID oai_doaj_org_article_209b043f1267499ca2b282199f6d85c3
A519615109
10_1186_s13229_017_0180_6
29270283
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Taiwan
GeographicLocations_xml – name: Taiwan
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: R21 HD091500
– fundername: NIBIB NIH HHS
  grantid: R01 EB025025
– fundername: ;
GroupedDBID ---
-5E
-5G
-A0
-BR
0R~
2VQ
3V.
4.4
53G
5VS
7RV
7X7
88E
8AO
8C1
8FI
8FJ
AAFWJ
AAJSJ
ABDBF
ABUWG
ACGFS
ACIHN
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AHBYD
AHMBA
AHSBF
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
AZQEC
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BKEYQ
BKNYI
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
DIK
DWQXO
E3Z
EBD
EBLON
EBS
EJD
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
IAO
IEA
IHR
IHW
INH
INR
IPNFZ
ITC
K9-
KQ8
M0R
M1P
M2M
M48
M~E
NAPCQ
NPM
O5R
O5S
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
RBZ
RIG
RNS
ROL
RPM
RSV
SMD
SOJ
TR2
TUS
UKHRP
AAYXX
CITATION
AFGXO
AFPKN
7X8
5PM
ID FETCH-LOGICAL-c563t-c73c6358e18585475a9c64526e0d63212ea4cbeeb9e556c626f59219224b22443
IEDL.DBID RPM
ISSN 2040-2392
IngestDate Tue Oct 22 15:13:55 EDT 2024
Tue Sep 17 21:25:49 EDT 2024
Fri Oct 25 22:01:38 EDT 2024
Tue Nov 19 20:56:05 EST 2024
Tue Nov 12 23:25:56 EST 2024
Tue Aug 20 22:09:54 EDT 2024
Tue Oct 29 03:03:02 EDT 2024
Wed Oct 16 01:00:01 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Autism
ASD
Autism diagnosis
Autism screening
Machine learning
Sparse machine learning
Autism spectrum disorder
Language English
License Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-c73c6358e18585475a9c64526e0d63212ea4cbeeb9e556c626f59219224b22443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5735531/
PMID 29270283
PQID 1979962518
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_209b043f1267499ca2b282199f6d85c3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5735531
proquest_miscellaneous_1979962518
gale_infotracmisc_A519615109
gale_infotracacademiconefile_A519615109
gale_healthsolutions_A519615109
crossref_primary_10_1186_s13229_017_0180_6
pubmed_primary_29270283
PublicationCentury 2000
PublicationDate 2017-12-19
PublicationDateYYYYMMDD 2017-12-19
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-19
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Molecular autism
PublicationTitleAlternate Mol Autism
PublicationYear 2017
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References 26859815 - Transl Psychiatry. 2016 Feb 09;6:e732
24740236 - PLoS One. 2014 Apr 16;9(4):e93533
26651088 - J Dev Behav Pediatr. 2016 Jan;37(1):1-8
21056350 - Child Adolesc Psychiatr Clin N Am. 2010 Oct;19(4):855-67
11055457 - J Autism Dev Disord. 2000 Jun;30(3):205-23
17180459 - J Autism Dev Disord. 2007 Apr;37(4):613-27
21339248 - Autism. 2011 Mar;15(2):143-62
25710120 - Transl Psychiatry. 2015 Feb 24;5:e514
17924183 - J Autism Dev Disord. 2008 Apr;38(4):606-15
22365461 - J Am Acad Child Adolesc Psychiatry. 2012 Mar;51(3):249-260.e25
22832900 - Transl Psychiatry. 2012 Apr 10;2:e100
22952789 - PLoS One. 2012;7(8):e43855
25116834 - Transl Psychiatry. 2014 Aug 12;4:e424
16685189 - J Dev Behav Pediatr. 2006 Apr;27(2 Suppl):S79-87
JM Kleinman (180_CR3) 2008; 38
J Kosmicki (180_CR12) 2015; 5
C Lord (180_CR4) 1999
M Duda (180_CR13) 2016; 6
F Pedregosa (180_CR14) 2011; 12
R Bernier (180_CR8) 2010; 19
M Duda (180_CR11) 2014; 4
C Lord (180_CR5) 2000; 30
PF Bolton (180_CR2) 2012; 51
D Wall (180_CR10) 2012; 2
DP Wall (180_CR9) 2012; 7
CA Molloy (180_CR17) 2011; 15
LD Wiggins (180_CR7) 2006; 27
DL Christensen (180_CR1) 2016; 37
K Gotham (180_CR6) 2007; 37
T Hastie (180_CR16) 2001
VA Fusaro (180_CR18) 2014; 9
R Tibshirani (180_CR15) 1996; 58
References_xml – volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 180_CR15
  publication-title: J R Stat Soc Ser B Stat Methodol
  doi: 10.1111/j.2517-6161.1996.tb02080.x
  contributor:
    fullname: R Tibshirani
– volume: 2
  start-page: 100
  issue: 4
  year: 2012
  ident: 180_CR10
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2012.10
  contributor:
    fullname: D Wall
– volume: 37
  start-page: 1
  year: 2016
  ident: 180_CR1
  publication-title: J Dev Behav Pediatr
  doi: 10.1097/DBP.0000000000000235
  contributor:
    fullname: DL Christensen
– volume: 7
  start-page: 43855
  issue: 8
  year: 2012
  ident: 180_CR9
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0043855
  contributor:
    fullname: DP Wall
– volume: 38
  start-page: 606
  issue: 4
  year: 2008
  ident: 180_CR3
  publication-title: J Autism Dev Disord
  doi: 10.1007/s10803-007-0427-8
  contributor:
    fullname: JM Kleinman
– volume: 6
  start-page: 732
  issue: 2
  year: 2016
  ident: 180_CR13
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2015.221
  contributor:
    fullname: M Duda
– volume: 5
  start-page: 514
  issue: 2
  year: 2015
  ident: 180_CR12
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2015.7
  contributor:
    fullname: J Kosmicki
– volume: 19
  start-page: 855
  issue: 4
  year: 2010
  ident: 180_CR8
  publication-title: Child Adolesc Psychiatr Clin N Am
  doi: 10.1016/j.chc.2010.07.005
  contributor:
    fullname: R Bernier
– volume: 27
  start-page: 79
  issue: 2
  year: 2006
  ident: 180_CR7
  publication-title: J Dev Behav Pediatr
  doi: 10.1097/00004703-200604002-00005
  contributor:
    fullname: LD Wiggins
– volume: 15
  start-page: 143
  issue: 2
  year: 2011
  ident: 180_CR17
  publication-title: Autism
  doi: 10.1177/1362361310379241
  contributor:
    fullname: CA Molloy
– volume-title: Autism diagnostic observation schedule-wps (ados-wps)
  year: 1999
  ident: 180_CR4
  contributor:
    fullname: C Lord
– volume-title: The Elements of Statistical Learning
  year: 2001
  ident: 180_CR16
  doi: 10.1007/978-0-387-21606-5
  contributor:
    fullname: T Hastie
– volume: 37
  start-page: 613
  issue: 4
  year: 2007
  ident: 180_CR6
  publication-title: J Autism Dev Disord
  doi: 10.1007/s10803-006-0280-1
  contributor:
    fullname: K Gotham
– volume: 51
  start-page: 249
  issue: 3
  year: 2012
  ident: 180_CR2
  publication-title: J Am Acad Child Adolesc Psychiatry
  doi: 10.1016/j.jaac.2011.12.009
  contributor:
    fullname: PF Bolton
– volume: 4
  start-page: 424
  issue: 8
  year: 2014
  ident: 180_CR11
  publication-title: Transl Psychiatry
  doi: 10.1038/tp.2014.65
  contributor:
    fullname: M Duda
– volume: 30
  start-page: 205
  issue: 3
  year: 2000
  ident: 180_CR5
  publication-title: J Autism Dev Disord
  doi: 10.1023/A:1005592401947
  contributor:
    fullname: C Lord
– volume: 9
  start-page: 93533
  issue: 4
  year: 2014
  ident: 180_CR18
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0093533
  contributor:
    fullname: VA Fusaro
– volume: 12
  start-page: 2825
  year: 2011
  ident: 180_CR14
  publication-title: J Mach Learn Res
  contributor:
    fullname: F Pedregosa
SSID ssj0000314442
Score 2.3953743
Snippet Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism Diagnostic...
Background Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism...
BackgroundAutism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the Autism...
Abstract Background Autism spectrum disorder (ASD) diagnosis can be delayed due in part to the time required for administration of standard exams, such as the...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 65
SubjectTerms Analysis
ASD
Autism
Autism diagnosis
Autism screening
Autism spectrum disorder
Diagnosis
Machine learning
Pervasive developmental disorders
Psychological aspects
Social aspects
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagJy6IileggCshISFFxE78OhZo1ROXFombZTtjsRLNrprdA_--M066bMSBC4dc4jnE8_DMl3mYsfdO5Z7SQ3VWgf5WNX1tYzS1w_BZuNzIXlFz8uWV-fbDfj2nMTn7q76oJmwaDzwxDsG5i03XZiG1weg8BRkRJQjnsu6tStOcz0YfgKlyBrcIFDo5pzGF1Z9Ggl1UGkSVlhYh08IRlXn9f5_KB25pWTJ54IMunrDHc_DIz6aPPmYPYHjKdlcbBKer0q_Eb0ptJPD5Mgh8QTfdjHxV-nHzb47BYPwFfMTzArYjX2e-uaVcDZ16PEMZ8zlyjGT5nwZ-3sO2VGwNRB9QVcebZ-z7xfn1l8t6vkyhTkq32zqZNmFwYUFQJrAzKrhESU0NTa9bdGAQuhQBogOldEKck5VDPqOLj_h07XN2NKwHeMk4jQQEp0DmkLvciAidCcjjYJDr0siKfbznrN9MMzN8wRpW-0kMHsXgSQxeV-wz8X5PSOOuywtUAj8rgf-XElTsHUnOT72je6P1ZxifUsjWuIp9KBRktijAFObuA9wRDcBaUJ4sKNHc0mL59F47PC1RjdoA693oBWVIEU4KW7EXk7bsdyUd9f1Z_FCz0KPFtpcrw-pnmfatDIaErXj1P_j0mj2SZAFC1sKdsKPt7Q7esIdjv3tb7OcObJEcpA
  priority: 102
  providerName: Directory of Open Access Journals
Title Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism
URI https://www.ncbi.nlm.nih.gov/pubmed/29270283
https://search.proquest.com/docview/1979962518
https://pubmed.ncbi.nlm.nih.gov/PMC5735531
https://doaj.org/article/209b043f1267499ca2b282199f6d85c3
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfoTlwQaHyEjeFJSEhIWWM7tuPjNjbtMoQ0kLhZsWNDpTWtmvbAf897TlIacePQS_wi1X6fv7wPE_LByNhgeiiPssavVUWTV87p3ED4zEwseCOxOfnuQX_5UX2-wTE5cuyFSUX73i0u2sflRbv4lWor10s_H-vE5l_vr6UGLynYfEZmEBseQPRkfgVghJIPGUxWqXmHiAurgrDIsgK0hBOADTZiVWLijtLU_n9t84FzmhZOHnii2-fk2RBC0sv-r74gT0J7THYPa4Coi9S1RJepQjLQ4UoIeID33XR0kbpy428KIaF7DLQDqxG2HV1Fut5gxgZtH40hDfvsKMSz9G8bP23CNtVttUhfg8B2y5fk--3Nt-u7fLhSIfdSiW3utfAQYlSBYT6w1LI2HlObKhSNEuDGQl16F4IzQUrlAe1EacCogaN38CvFK3LUrtrwhlAcDBiMDDzWsYwFc6HUNRx3rYEBXPOMfBpP1q77yRk2IY5K2Z4jFjhikSNWZeQKz35PiEOv04PV5qcdWG95YVxRisi40gDUfM0dAEZmTFRNJb3IyHvknO07SPeqay8hSsXArTAZ-ZgoUHmBgb4eehBgRzgGa0J5OqEEpfOT5fNROiwuYaVaG1a7zjLMkwKoZFVGXvfSst_VKHQZ0RM5mmx7ugIqkGZ-DyL_9r_fPCFPOWoA4zkzp-Rou9mFd2TWNbuz9B3iLGnRHzQIH2g
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcCFh3iFFmokJCSkdG0njuNjKa0W0VZILRI3K3ZsWKmbXW12D_z7zjjJshG3HvYSTw7eeXi-zMxnQj5qGWosD6VBVvi1itVpaa1KNaTPXAcmaonDydNrdfWr_HqGNDlymIWJTfvOzo6b2_lxM_sTeyuXczcZ-sQmPy5PpYJTMuOTPfIQ_JWxHZAeA3AGKCEXfQ2Tl8WkRcyFfUHYZlkCXkIOYI2jWGU2OpAib___0XnneBq3Tu6cRedP77mLZ-RJn3zSk275OXngmxdkc70EcDuL8050HnsrPe0vk4AHeFNOS2dxnjf8pZBM2ltPW4g3ft3SRaDLFdZ6MGrS4CNNaEshE6b_CABo7dex46tB-QpMvZ2_JD_Pz25Op2l_GUPqZJGtU6cyB8lJ6TlWEnMlK-2wKFp4VhcZHIC-yp313movZeEAJwWpIRxCimDhl2evyH6zaPwbQpFS0GvpRahCHhi3PlcVqKlSoDihREI-Dxoxy45zw0SsUham06QBTRrUpCkS8gV1thVEuuz4YLH6bfq_2wimLcuzwEWhAOK5SliAmlzrUNSldFlCjlDjpps93Tq9OYH8FlM-phPyKUqg24PiXdVPL8COkEBrJHk4kgR3daPlD4NVGVzCHrfGLzat4VhhBTjKy4S87qxsu6vBWBOiRvY32vZ4BcwusoX3Zvb23m8ekUfTm8sLc_Ht6vsBeSzQi7hIuT4k--vVxr8je229eR998A4fiTP4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRAXCuIVWlojISEhpYmdOI6Ppe2qCKgqFSRuVuzYZaVuNtrsHvrvO-Nkl4240cNe4snBOw_Pl5n5TMhHJXyN5aHYiwq_VqV1XBojYwXpM1M-5bXA4eSLa3n5uzw7R5qczVVfoWnfmulxczs7bqZ_Qm9lO7PJuk8sufpxKiSckhlL2tonO-Qx-GzKt4B6CMIZIIWcD3VMVhZJh7gLe4Ow1bIEzIQ8wArHscpsdCgF7v5_I_TWETVun9w6jyZ7D9jJc_JsSELpSS_ygjxyzUuyum4B5E7D3BOdhR5LR4dLJeAB3pjT0WmY6_V3FJJKc-toB3HHLTs697RdYM0Hoyf1LtCFdhQyYvqXCIDWbhk6vxqUr8Dku9kr8mty_vP0Ih4uZYitKLJlbGVmIUkpHcOKYi5FpSwWRwuX1kUGB6GrcmucM8oJUVjAS14oCIuQKhj45dlrstvMG_eWUKQWdEo47iuf-5QZl8sKVFVJUB6XPCKf11rRbc-9oQNmKQvda1ODNjVqUxcR-YJ62wgibXZ4MF_c6OEv1zxVJs0zz3ghAerZihuAnEwpX9SlsFlEjlDrup9B3Ti_PoE8F1O_VEXkU5BA9wfl22qYYoAdIZHWSPJgJAlua0fLH9aWpXEJe90aN191mmGlFWApKyPypre0za7WBhsRObLB0bbHK2B6gTV8MLV3__3mEXlydTbR379eftsnTzk6EuMxUwdkd7lYufdkp6tXh8EN7wHHRTZ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsifying+machine+learning+models+identify+stable+subsets+of+predictive+features+for+behavioral+detection+of+autism&rft.jtitle=Molecular+autism&rft.au=Levy%2C+Sebastien&rft.au=Duda%2C+Marlena&rft.au=Haber%2C+Nick&rft.au=Wall%2C+Dennis+P&rft.date=2017-12-19&rft.eissn=2040-2392&rft.volume=8&rft.spage=65&rft.epage=65&rft_id=info:doi/10.1186%2Fs13229-017-0180-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2392&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2392&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2392&client=summon