Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer's disease

Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment str...

Full description

Saved in:
Bibliographic Details
Published in:Molecular neurodegeneration Vol. 15; no. 1; p. 28
Main Authors: Rayaprolu, Sruti, Gao, Tianwen, Xiao, Hailian, Ramesha, Supriya, Weinstock, Laura D, Shah, Jheel, Duong, Duc M, Dammer, Eric B, Webster, Jr, James A, Lah, James J, Wood, Levi B, Betarbet, Ranjita, Levey, Allan I, Seyfried, Nicholas T, Rangaraju, Srikant
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 07-05-2020
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aβ plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aβ phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.
AbstractList Background Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. Methods We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. Results Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround A[beta] plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased A[beta] phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. Conclusions Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD. Keywords: Microglia, Proteomics, Mass spectrometry, FACS, MACS, Alzheimer's disease
Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aβ plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aβ phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.
Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround A[beta] plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased A[beta] phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.
Background Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. Methods We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer’s disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. Results Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aβ plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aβ phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. Conclusions Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.
Abstract Background Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies. Methods We coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer’s disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies. Results Quantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aβ plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aβ phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction. Conclusions Using FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.
BACKGROUNDProteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However, microglial proteomics studies have been limited by low cellular yield and contamination by non-microglial proteins using existing enrichment strategies.METHODSWe coupled magnetic-activated cell sorting (MACS) and fluorescence activated cell sorting (FACS) of microglia with tandem mass tag-mass spectrometry (TMT-MS) to obtain a highly-pure microglial proteome and identified a core set of highly-abundant microglial proteins in adult mouse brain. We interrogated existing human proteomic data for Alzheimer's disease (AD) relevance of highly-abundant microglial proteins and performed immuno-histochemical and in-vitro validation studies.RESULTSQuantitative multiplexed proteomics by TMT-MS of CD11b + MACS-enriched (N = 5 mice) and FACS-isolated (N = 5 mice), from adult wild-type mice, identified 1791 proteins. A total of 203 proteins were highly abundant in both datasets, representing a core-set of highly abundant microglial proteins. In addition, we found 953 differentially enriched proteins comparing MACS and FACS-based approaches, indicating significant differences between both strategies. The FACS-isolated microglia proteome was enriched with cytosolic, endoplasmic reticulum, and ribosomal proteins involved in protein metabolism and immune system functions, as well as an abundance of canonical microglial proteins. Conversely, the MACS-enriched microglia proteome was enriched with mitochondrial and synaptic proteins and higher abundance of neuronal, oligodendrocytic and astrocytic proteins. From the 203 consensus microglial proteins with high abundance in both datasets, we confirmed microglial expression of moesin (Msn) in wild-type and 5xFAD mouse brains as well as in human AD brains. Msn expression is nearly exclusively found in microglia that surround Aβ plaques in 5xFAD brains. In in-vitro primary microglial studies, Msn silencing by siRNA decreased Aβ phagocytosis and increased lipopolysaccharide-induced production of the pro-inflammatory cytokine, tumor necrosis factor (TNF). In network analysis of human brain proteomic data, Msn was a hub protein of an inflammatory co-expression module positively associated with AD neuropathological features and cognitive dysfunction.CONCLUSIONSUsing FACS coupled with TMT-MS as the method of choice for microglial proteomics, we define a core set of highly-abundant adult microglial proteins. Among these, we validate Msn as highly-abundant in plaque-associated microglia with relevance to human AD.
ArticleNumber 28
Audience Academic
Author Seyfried, Nicholas T
Lah, James J
Wood, Levi B
Rayaprolu, Sruti
Duong, Duc M
Gao, Tianwen
Shah, Jheel
Rangaraju, Srikant
Ramesha, Supriya
Weinstock, Laura D
Dammer, Eric B
Webster, Jr, James A
Xiao, Hailian
Levey, Allan I
Betarbet, Ranjita
Author_xml – sequence: 1
  givenname: Sruti
  surname: Rayaprolu
  fullname: Rayaprolu, Sruti
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
– sequence: 2
  givenname: Tianwen
  surname: Gao
  fullname: Gao, Tianwen
  organization: Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
– sequence: 3
  givenname: Hailian
  surname: Xiao
  fullname: Xiao, Hailian
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
– sequence: 4
  givenname: Supriya
  surname: Ramesha
  fullname: Ramesha, Supriya
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
– sequence: 5
  givenname: Laura D
  surname: Weinstock
  fullname: Weinstock, Laura D
  organization: Parker H. Petit Institute for Bioengineering and Bioscience, Wallace H. Coulter Department of Biomedical Engineering, and Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
– sequence: 6
  givenname: Jheel
  surname: Shah
  fullname: Shah, Jheel
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
– sequence: 7
  givenname: Duc M
  surname: Duong
  fullname: Duong, Duc M
  organization: Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA
– sequence: 8
  givenname: Eric B
  surname: Dammer
  fullname: Dammer, Eric B
  organization: School of Medicine, Emory University, Atlanta, GA, 30322, USA
– sequence: 9
  givenname: James A
  surname: Webster, Jr
  fullname: Webster, Jr, James A
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
– sequence: 10
  givenname: James J
  surname: Lah
  fullname: Lah, James J
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
– sequence: 11
  givenname: Levi B
  surname: Wood
  fullname: Wood, Levi B
  organization: Parker H. Petit Institute for Bioengineering and Bioscience, Wallace H. Coulter Department of Biomedical Engineering, and Georgia W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
– sequence: 12
  givenname: Ranjita
  surname: Betarbet
  fullname: Betarbet, Ranjita
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
– sequence: 13
  givenname: Allan I
  surname: Levey
  fullname: Levey, Allan I
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA
– sequence: 14
  givenname: Nicholas T
  surname: Seyfried
  fullname: Seyfried, Nicholas T
  email: nseyfri@emory.edu, nseyfri@emory.edu
  organization: Department of Biochemistry, Emory University, Atlanta, GA, 30322, USA. nseyfri@emory.edu
– sequence: 15
  givenname: Srikant
  orcidid: 0000-0003-2765-1500
  surname: Rangaraju
  fullname: Rangaraju, Srikant
  email: srikant.rangaraju@emory.edu
  organization: Department of Neurology, Emory University School of Medicine, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, GA, 30322, USA. srikant.rangaraju@emory.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32381088$$D View this record in MEDLINE/PubMed
BookMark eNptUstuEzEUHaEi-oAfYIEssYDNFD9m7MkGKaooVKrEBtaWx76TOPKMU3smVfpD_CY3SSkpQl7Yuj7nXPvcc16cDHGAonjL6CVjjfyUmaC8KimnJaVCqbJ-UZwxVdOSCS5Pjs6nxXnOK0orRWn9qjgVXDSMNs1Z8es6xPvSbsfYw5i8Jb23KS6CN4HkmEY_LIiN0zqAI_d-XJK7yQyjH83oN0DWKY4QkZKJd4D1zkMmfYTsB2IyMWTpF8uwLU07DQ6Jx_J7MuL2sgkCbMxggYyRzMPDEnwP6UMmzmcwGV4XLzsTMrx53C-Kn9dfflx9K2-_f725mt-WtpZiLDmnpnUgLWuqGZWmtkrObFcZgKp2jKsZs21XU8lqJi04aEAB3qoWoZZycVHcHHRdNCu9Tr43aauj8XpfiGmhDbpiA2inrOKOuaqSdYUt2s4JaCv0m6lOiRq1Ph-01lPbg7NoUDLhmejzm8Ev9SJutOJUqplCgY-PAineTZBH3ftsIQQzQJyy5hWOU9SN2vV6_w90Fac0oFU7FD6RSsH-ohYGP-CHLmJfuxPVc8lVVVHWUERd_geFywGODzPYeaw_I_ADAWebc4Lu6Y-M6l1U9SGqGqOq91HVuxe_O3bnifInm-I3sd7qIw
CitedBy_id crossref_primary_10_1016_j_jbc_2023_105382
crossref_primary_10_1186_s12974_022_02580_1
crossref_primary_10_1186_s40478_022_01356_1
crossref_primary_10_3389_fgene_2023_1057068
crossref_primary_10_3390_biom13060998
crossref_primary_10_1038_s41386_020_00840_3
crossref_primary_10_3389_fnins_2022_902146
crossref_primary_10_3389_fncel_2024_1379717
crossref_primary_10_1016_j_neuropharm_2023_109597
crossref_primary_10_1016_j_mcpro_2023_100546
crossref_primary_10_3389_fnmol_2024_1368905
crossref_primary_10_1038_s41598_022_06411_4
crossref_primary_10_3389_fncel_2020_620020
crossref_primary_10_1515_nipt_2023_0014
crossref_primary_10_1089_omi_2022_0023
crossref_primary_10_1002_prca_202200112
crossref_primary_10_3389_fnmol_2021_749737
crossref_primary_10_3390_cells12091242
crossref_primary_10_1186_s13024_023_00668_7
crossref_primary_10_1007_s00018_022_04614_6
crossref_primary_10_1038_s41467_022_30623_x
crossref_primary_10_1186_s13024_022_00558_4
crossref_primary_10_1016_j_isci_2022_104832
crossref_primary_10_1016_j_ymthe_2023_08_016
crossref_primary_10_1186_s13024_022_00535_x
crossref_primary_10_1002_trc2_12114
crossref_primary_10_1080_14789450_2023_2260955
crossref_primary_10_1093_jn_nxab005
Cites_doi 10.1038/s41467-019-11674-z
10.2174/1567205014666170117141330
10.1182/blood-2018-06-856831
10.1080/13854046.2015.1119312
10.1021/ac502040v
10.1002/pmic.201800469
10.1016/j.jalz.2011.10.007
10.1523/JNEUROSCI.1860-14.2014
10.1016/j.celrep.2017.09.039
10.1042/BJ20090856
10.1016/j.febslet.2009.10.036
10.1016/j.celrep.2017.12.066
10.1038/nrm882
10.1172/JCI90606
10.1016/j.celrep.2013.06.018
10.1038/sdata.2018.36
10.1186/s12974-017-0840-7
10.1038/ng.2802
10.1016/S1474-4422(15)70016-5
10.1038/nmeth.2019
10.1021/ac0262560
10.1101/719930
10.1016/j.cell.2017.05.018
10.1073/pnas.86.19.7611
10.2353/ajpath.2008.080528
10.1007/s11481-011-9287-2
10.1242/jcs.105.4.1025
10.1016/S0014-5793(98)01674-3
10.1172/jci.insight.121109
10.1038/nrg3185
10.1146/annurev-immunol-051116-052358
10.1126/science.aal3222
10.1186/s13024-018-0266-4
10.1016/j.neuron.2019.12.015
10.1016/j.jneumeth.2008.08.016
10.1002/glia.22298
10.1186/s12974-017-0906-6
10.1021/pr400246t
10.1007/s00401-006-0127-z
10.3389/fimmu.2018.00405
10.1016/S0006-8993(98)00489-2
10.1016/j.immuni.2018.11.004
10.1016/j.cell.2013.03.030
10.1038/s41591-020-0815-6
10.1038/s41593-018-0290-2
10.1016/j.cels.2016.11.006
10.1186/s13024-017-0234-4
10.1073/pnas.86.16.6348
10.1038/nn.4160
10.1016/j.jneumeth.2010.11.001
10.1038/ni1039
10.1016/S0022-510X(01)00508-1
10.1371/journal.pone.0085090
10.1101/798215
10.1007/s11745-007-3136-3
10.1186/s13024-018-0254-8
10.1016/0304-3940(90)90748-X
10.1073/pnas.1525528113
10.1002/glia.23678
10.1007/s00401-017-1691-0
10.1016/j.celrep.2018.06.113
10.1186/s13024-017-0184-x
10.1016/j.jneuroim.2020.577185
10.1073/pnas.88.19.8297
10.1038/s41586-019-0924-x
10.15252/emmm.201708202
10.1038/nmeth.1714
10.3389/fnmol.2018.00454
10.1038/nmeth1113
10.1073/pnas.0900345106
10.1016/j.jamda.2013.05.009
ContentType Journal Article
Copyright COPYRIGHT 2020 BioMed Central Ltd.
2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2020
Copyright_xml – notice: COPYRIGHT 2020 BioMed Central Ltd.
– notice: 2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2020
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7TK
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1186/s13024-020-00377-5
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Neurosciences Abstracts
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Access via ProQuest (Open Access)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest One Academic
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1750-1326
EndPage 28
ExternalDocumentID oai_doaj_org_article_d7c72d1d44654f4abfd3eb413217f735
A627440180
10_1186_s13024_020_00377_5
32381088
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS114130
– fundername: NIA NIH HHS
  grantid: P50 AG025688
– fundername: NIA NIH HHS
  grantid: U01 AG046161
– fundername: NIA NIH HHS
  grantid: R01 AG053960
– fundername: NIA NIH HHS
  grantid: R01 AG057911
– fundername: NIA NIH HHS
  grantid: F32 AG064862
– fundername: NIA NIH HHS
  grantid: RF1 AG057471
– fundername: NINDS NIH HHS
  grantid: K08 NS099474
– fundername: NIA NIH HHS
  grantid: RF1 AG062181
– fundername: NINDS NIH HHS
  grantid: P30 NS055077
– fundername: ;
– fundername: ;
  grantid: F32AG064862
– fundername: ;
  grantid: 37102; 11060
– fundername: ;
  grantid: U01AG046161; RF1AG057471; R01AG057330; RF1AG057470; 5R01AG053960
– fundername: ;
  grantid: K08-NS099474–1; P30 NS055077
– fundername: ;
  grantid: P50 AG025688
GroupedDBID ---
-A0
0R~
123
29M
2WC
3V.
53G
5VS
7X7
88E
8FI
8FJ
AAFWJ
AAJSJ
ABDBF
ABIVO
ABUWG
ACGFO
ACGFS
ACIHN
ACMJI
ACPRK
ACRMQ
ADBBV
ADINQ
ADRAZ
ADUKV
AEAQA
AENEX
AFKRA
AHBYD
AHMBA
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
BPHCQ
BVXVI
C24
C6C
CCPQU
CGR
CS3
CUY
CVF
DIK
DU5
E3Z
EBD
EBLON
EBS
ECM
EIF
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
IHR
INH
INR
IPY
ITC
KQ8
M1P
M48
M~E
NPM
O5R
O5S
OK1
P2P
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
TR2
TUS
UKHRP
WOQ
WOW
~8M
AAYXX
CITATION
7TK
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQUKI
PRINS
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c563t-220abde6c184906a5c769cf4aee45d12791cbf5061516cede8e7e4ae7ba5cc023
IEDL.DBID RPM
ISSN 1750-1326
IngestDate Tue Oct 22 15:11:25 EDT 2024
Tue Sep 17 21:06:24 EDT 2024
Sat Oct 26 05:35:57 EDT 2024
Thu Oct 10 18:47:11 EDT 2024
Tue Nov 19 21:06:54 EST 2024
Tue Nov 12 23:30:24 EST 2024
Thu Nov 21 21:40:01 EST 2024
Sat Nov 02 12:05:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords FACS
Alzheimer’s disease
Mass spectrometry
MACS
Proteomics
Microglia
Language English
License Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c563t-220abde6c184906a5c769cf4aee45d12791cbf5061516cede8e7e4ae7ba5cc023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2765-1500
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206797/
PMID 32381088
PQID 2404460631
PQPubID 55149
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_d7c72d1d44654f4abfd3eb413217f735
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7206797
proquest_miscellaneous_2400535875
proquest_journals_2404460631
gale_infotracmisc_A627440180
gale_infotracacademiconefile_A627440180
crossref_primary_10_1186_s13024_020_00377_5
pubmed_primary_32381088
PublicationCentury 2000
PublicationDate 2020-05-07
PublicationDateYYYYMMDD 2020-05-07
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-07
  day: 07
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle Molecular neurodegeneration
PublicationTitleAlternate Mol Neurodegener
PublicationYear 2020
Publisher BioMed Central Ltd
BioMed Central
BMC
Publisher_xml – name: BioMed Central Ltd
– name: BioMed Central
– name: BMC
References L Ping (377_CR28) 2018; 5
A Thompson (377_CR62) 2003; 75
A Hashemiaghdam (377_CR73) 2020; 341
JC Lambert (377_CR3) 2013; 45
M Berryman (377_CR50) 1993; 105
377_CR39
R Gordon (377_CR36) 2011; 194
BA Durafourt (377_CR9) 2012; 60
LS Perlmutter (377_CR6) 1990; 119
J Schindelin (377_CR35) 2012; 9
377_CR40
BT Hyman (377_CR55) 2012; 8
J Esser (377_CR46) 2009; 425
BA Friedman (377_CR14) 2018; 22
R Marek (377_CR37) 2008; 175
A Shcherbina (377_CR51) 1999; 443
K Sharma (377_CR22) 2015; 18
ME Umoh (377_CR31) 2018; 10
T Maier (377_CR21) 2009; 583
MT Heneka (377_CR1) 2015; 14
S Rangaraju (377_CR18) 2018; 13
AR de Sousa (377_CR19) 2009; 5
MC Janelsins (377_CR69) 2008; 173
J Guergues (377_CR24) 2019; 19
S Faure (377_CR52) 2004; 5
H Keren-Shaul (377_CR13) 2017; 169
AG Efthymiou (377_CR4) 2017; 12
E Drummond (377_CR42) 2017; 133
L Ting (377_CR60) 2011; 8
B Zhang (377_CR41) 2013; 153
EM Reiman (377_CR56) 2009; 106
T Gao (377_CR27) 2019; 67
GC McAlister (377_CR61) 2014; 86
ML Bennett (377_CR10) 2016; 113
377_CR57
T Masuda (377_CR58) 2019; 566
B Decourt (377_CR68) 2017; 14
TR Sairanen (377_CR72) 2001; 186
EB Dammer (377_CR63) 2013; 12
WS Griffin (377_CR5) 1989; 86
IM Chiu (377_CR16) 2013; 4
E Spangenberg (377_CR8) 2019; 10
TR Hammond (377_CR17) 2019; 50
C Vogel (377_CR20) 2012; 13
L Kall (377_CR29) 2007; 4
H Braak (377_CR54) 2006; 112
N Oosterhof (377_CR7) 2018; 24
AP Lieberman (377_CR70) 1989; 86
C Liao (377_CR34) 2018; 132
NT Seyfried (377_CR30) 2017; 4
J Kim (377_CR47) 2014; 9
M Colonna (377_CR45) 2017; 35
S Balsis (377_CR53) 2015; 29
Y Zhang (377_CR11) 2014; 34
B Bai (377_CR44) 2020; 105
H Sarlus (377_CR2) 2017; 127
TG Brock (377_CR48) 2008; 43
A Bretscher (377_CR49) 2002; 3
A Flowers (377_CR23) 2017; 14
C Bottcher (377_CR59) 2019; 22
M Michaud (377_CR67) 2013; 14
S Rangaraju (377_CR38) 2017; 14
WT Lankes (377_CR65) 1991; 88
D Gosselin (377_CR12) 2017; 356
SL Montgomery (377_CR66) 2012; 7
DK Kim (377_CR43) 2018; 13
C Gong (377_CR71) 1998; 801
DR Littman (377_CR33) 2013
J Dai (377_CR32) 2018; 11
H Mathys (377_CR15) 2017; 21
S Rangaraju (377_CR25) 2018; 13
S Rangaraju (377_CR26) 2018; 9
DB Swartzlander (377_CR64) 2018; 3
References_xml – volume: 10
  start-page: 3758
  year: 2019
  ident: 377_CR8
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-11674-z
  contributor:
    fullname: E Spangenberg
– volume: 14
  start-page: 412
  year: 2017
  ident: 377_CR68
  publication-title: Curr Alzheimer Res
  doi: 10.2174/1567205014666170117141330
  contributor:
    fullname: B Decourt
– volume: 132
  start-page: 2580
  year: 2018
  ident: 377_CR34
  publication-title: Blood
  doi: 10.1182/blood-2018-06-856831
  contributor:
    fullname: C Liao
– volume: 29
  start-page: 1002
  year: 2015
  ident: 377_CR53
  publication-title: Clin Neuropsychol
  doi: 10.1080/13854046.2015.1119312
  contributor:
    fullname: S Balsis
– volume: 86
  start-page: 7150
  year: 2014
  ident: 377_CR61
  publication-title: Anal Chem
  doi: 10.1021/ac502040v
  contributor:
    fullname: GC McAlister
– volume: 19
  start-page: e1800469
  year: 2019
  ident: 377_CR24
  publication-title: Proteomics
  doi: 10.1002/pmic.201800469
  contributor:
    fullname: J Guergues
– volume: 8
  start-page: 1
  year: 2012
  ident: 377_CR55
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.10.007
  contributor:
    fullname: BT Hyman
– volume: 34
  start-page: 11929
  year: 2014
  ident: 377_CR11
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.1860-14.2014
  contributor:
    fullname: Y Zhang
– volume: 21
  start-page: 366
  year: 2017
  ident: 377_CR15
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.09.039
  contributor:
    fullname: H Mathys
– volume: 425
  start-page: 265
  year: 2009
  ident: 377_CR46
  publication-title: Biochem J
  doi: 10.1042/BJ20090856
  contributor:
    fullname: J Esser
– volume-title: An inducible cre recombinase driven by Cx3cr1. MGI Direct Data Submission
  year: 2013
  ident: 377_CR33
  contributor:
    fullname: DR Littman
– volume: 583
  start-page: 3966
  year: 2009
  ident: 377_CR21
  publication-title: FEBS Lett
  doi: 10.1016/j.febslet.2009.10.036
  contributor:
    fullname: T Maier
– volume: 22
  start-page: 832
  year: 2018
  ident: 377_CR14
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.12.066
  contributor:
    fullname: BA Friedman
– volume: 3
  start-page: 586
  year: 2002
  ident: 377_CR49
  publication-title: Nat Rev Mol Cell Biol
  doi: 10.1038/nrm882
  contributor:
    fullname: A Bretscher
– volume: 127
  start-page: 3240
  year: 2017
  ident: 377_CR2
  publication-title: J Clin Invest
  doi: 10.1172/JCI90606
  contributor:
    fullname: H Sarlus
– volume: 4
  start-page: 385
  year: 2013
  ident: 377_CR16
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2013.06.018
  contributor:
    fullname: IM Chiu
– volume: 5
  start-page: 180036
  year: 2018
  ident: 377_CR28
  publication-title: Sci Data
  doi: 10.1038/sdata.2018.36
  contributor:
    fullname: L Ping
– volume: 14
  start-page: 96
  year: 2017
  ident: 377_CR23
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-017-0840-7
  contributor:
    fullname: A Flowers
– volume: 45
  start-page: 1452
  year: 2013
  ident: 377_CR3
  publication-title: Nat Genet
  doi: 10.1038/ng.2802
  contributor:
    fullname: JC Lambert
– volume: 14
  start-page: 388
  year: 2015
  ident: 377_CR1
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(15)70016-5
  contributor:
    fullname: MT Heneka
– volume: 9
  start-page: 676
  year: 2012
  ident: 377_CR35
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2019
  contributor:
    fullname: J Schindelin
– volume: 5
  start-page: 1512
  year: 2009
  ident: 377_CR19
  publication-title: Mol BioSyst
  contributor:
    fullname: AR de Sousa
– volume: 75
  start-page: 1895
  year: 2003
  ident: 377_CR62
  publication-title: Anal Chem
  doi: 10.1021/ac0262560
  contributor:
    fullname: A Thompson
– ident: 377_CR57
  doi: 10.1101/719930
– volume: 169
  start-page: 1276
  year: 2017
  ident: 377_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2017.05.018
  contributor:
    fullname: H Keren-Shaul
– volume: 86
  start-page: 7611
  year: 1989
  ident: 377_CR5
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.86.19.7611
  contributor:
    fullname: WS Griffin
– volume: 173
  start-page: 1768
  year: 2008
  ident: 377_CR69
  publication-title: Am J Pathol
  doi: 10.2353/ajpath.2008.080528
  contributor:
    fullname: MC Janelsins
– volume: 7
  start-page: 42
  year: 2012
  ident: 377_CR66
  publication-title: J NeuroImmune Pharmacol
  doi: 10.1007/s11481-011-9287-2
  contributor:
    fullname: SL Montgomery
– volume: 105
  start-page: 1025
  issue: Pt 4
  year: 1993
  ident: 377_CR50
  publication-title: J Cell Sci
  doi: 10.1242/jcs.105.4.1025
  contributor:
    fullname: M Berryman
– volume: 443
  start-page: 31
  year: 1999
  ident: 377_CR51
  publication-title: FEBS Lett
  doi: 10.1016/S0014-5793(98)01674-3
  contributor:
    fullname: A Shcherbina
– volume: 3
  start-page: 121109
  year: 2018
  ident: 377_CR64
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.121109
  contributor:
    fullname: DB Swartzlander
– volume: 13
  start-page: 227
  year: 2012
  ident: 377_CR20
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3185
  contributor:
    fullname: C Vogel
– volume: 35
  start-page: 441
  year: 2017
  ident: 377_CR45
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-051116-052358
  contributor:
    fullname: M Colonna
– volume: 356
  start-page: eaal3222
  year: 2017
  ident: 377_CR12
  publication-title: Science
  doi: 10.1126/science.aal3222
  contributor:
    fullname: D Gosselin
– volume: 13
  start-page: 34
  year: 2018
  ident: 377_CR25
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-018-0266-4
  contributor:
    fullname: S Rangaraju
– volume: 105
  start-page: 975
  year: 2020
  ident: 377_CR44
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.12.015
  contributor:
    fullname: B Bai
– volume: 175
  start-page: 108
  year: 2008
  ident: 377_CR37
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2008.08.016
  contributor:
    fullname: R Marek
– volume: 60
  start-page: 717
  year: 2012
  ident: 377_CR9
  publication-title: Glia
  doi: 10.1002/glia.22298
  contributor:
    fullname: BA Durafourt
– volume: 14
  start-page: 128
  year: 2017
  ident: 377_CR38
  publication-title: J Neuroinflammation
  doi: 10.1186/s12974-017-0906-6
  contributor:
    fullname: S Rangaraju
– volume: 12
  start-page: 3193
  year: 2013
  ident: 377_CR63
  publication-title: J Proteome Res
  doi: 10.1021/pr400246t
  contributor:
    fullname: EB Dammer
– volume: 112
  start-page: 389
  year: 2006
  ident: 377_CR54
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-006-0127-z
  contributor:
    fullname: H Braak
– volume: 9
  start-page: 405
  year: 2018
  ident: 377_CR26
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.00405
  contributor:
    fullname: S Rangaraju
– volume: 801
  start-page: 1
  year: 1998
  ident: 377_CR71
  publication-title: Brain Res
  doi: 10.1016/S0006-8993(98)00489-2
  contributor:
    fullname: C Gong
– volume: 50
  start-page: 253
  year: 2019
  ident: 377_CR17
  publication-title: Immunity
  doi: 10.1016/j.immuni.2018.11.004
  contributor:
    fullname: TR Hammond
– volume: 153
  start-page: 707
  year: 2013
  ident: 377_CR41
  publication-title: Cell
  doi: 10.1016/j.cell.2013.03.030
  contributor:
    fullname: B Zhang
– ident: 377_CR40
  doi: 10.1038/s41591-020-0815-6
– volume: 22
  start-page: 78
  year: 2019
  ident: 377_CR59
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-018-0290-2
  contributor:
    fullname: C Bottcher
– volume: 4
  start-page: 60
  year: 2017
  ident: 377_CR30
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.11.006
  contributor:
    fullname: NT Seyfried
– volume: 13
  start-page: 2
  year: 2018
  ident: 377_CR43
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-017-0234-4
  contributor:
    fullname: DK Kim
– volume: 86
  start-page: 6348
  year: 1989
  ident: 377_CR70
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.86.16.6348
  contributor:
    fullname: AP Lieberman
– volume: 18
  start-page: 1819
  year: 2015
  ident: 377_CR22
  publication-title: Nat Neurosci
  doi: 10.1038/nn.4160
  contributor:
    fullname: K Sharma
– volume: 194
  start-page: 287
  year: 2011
  ident: 377_CR36
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2010.11.001
  contributor:
    fullname: R Gordon
– volume: 5
  start-page: 272
  year: 2004
  ident: 377_CR52
  publication-title: Nat Immunol
  doi: 10.1038/ni1039
  contributor:
    fullname: S Faure
– volume: 186
  start-page: 87
  year: 2001
  ident: 377_CR72
  publication-title: J Neurol Sci
  doi: 10.1016/S0022-510X(01)00508-1
  contributor:
    fullname: TR Sairanen
– volume: 9
  start-page: e85090
  year: 2014
  ident: 377_CR47
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085090
  contributor:
    fullname: J Kim
– ident: 377_CR39
  doi: 10.1101/798215
– volume: 43
  start-page: 161
  year: 2008
  ident: 377_CR48
  publication-title: Lipids
  doi: 10.1007/s11745-007-3136-3
  contributor:
    fullname: TG Brock
– volume: 13
  start-page: 24
  year: 2018
  ident: 377_CR18
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-018-0254-8
  contributor:
    fullname: S Rangaraju
– volume: 119
  start-page: 32
  year: 1990
  ident: 377_CR6
  publication-title: Neurosci Lett
  doi: 10.1016/0304-3940(90)90748-X
  contributor:
    fullname: LS Perlmutter
– volume: 113
  start-page: E1738
  year: 2016
  ident: 377_CR10
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1525528113
  contributor:
    fullname: ML Bennett
– volume: 67
  start-page: 1958
  year: 2019
  ident: 377_CR27
  publication-title: Glia
  doi: 10.1002/glia.23678
  contributor:
    fullname: T Gao
– volume: 133
  start-page: 933
  year: 2017
  ident: 377_CR42
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-017-1691-0
  contributor:
    fullname: E Drummond
– volume: 24
  start-page: 1203
  year: 2018
  ident: 377_CR7
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.06.113
  contributor:
    fullname: N Oosterhof
– volume: 12
  start-page: 43
  year: 2017
  ident: 377_CR4
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-017-0184-x
  contributor:
    fullname: AG Efthymiou
– volume: 341
  start-page: 577185
  year: 2020
  ident: 377_CR73
  publication-title: J Neuroimmunol
  doi: 10.1016/j.jneuroim.2020.577185
  contributor:
    fullname: A Hashemiaghdam
– volume: 88
  start-page: 8297
  year: 1991
  ident: 377_CR65
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.88.19.8297
  contributor:
    fullname: WT Lankes
– volume: 566
  start-page: 388
  year: 2019
  ident: 377_CR58
  publication-title: Nature
  doi: 10.1038/s41586-019-0924-x
  contributor:
    fullname: T Masuda
– volume: 10
  start-page: 48
  year: 2018
  ident: 377_CR31
  publication-title: EMBO Mol Med
  doi: 10.15252/emmm.201708202
  contributor:
    fullname: ME Umoh
– volume: 8
  start-page: 937
  year: 2011
  ident: 377_CR60
  publication-title: Nat Methods
  doi: 10.1038/nmeth.1714
  contributor:
    fullname: L Ting
– volume: 11
  start-page: 454
  year: 2018
  ident: 377_CR32
  publication-title: Front Mol Neurosci
  doi: 10.3389/fnmol.2018.00454
  contributor:
    fullname: J Dai
– volume: 4
  start-page: 923
  year: 2007
  ident: 377_CR29
  publication-title: Nat Methods
  doi: 10.1038/nmeth1113
  contributor:
    fullname: L Kall
– volume: 106
  start-page: 6820
  year: 2009
  ident: 377_CR56
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0900345106
  contributor:
    fullname: EM Reiman
– volume: 14
  start-page: 877
  year: 2013
  ident: 377_CR67
  publication-title: J Am Med Dir Assoc
  doi: 10.1016/j.jamda.2013.05.009
  contributor:
    fullname: M Michaud
SSID ssj0047005
Score 2.443978
Snippet Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation. However,...
Background Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation....
BACKGROUNDProteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of neuroinflammation....
Abstract Background Proteomic characterization of microglia provides the most proximate assessment of functionally relevant molecular mechanisms of...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 28
SubjectTerms Advertising executives
Alzheimer Disease - metabolism
Alzheimer's disease
Analysis
Animals
Brain
Brain - metabolism
CD11b antigen
Cognitive ability
Cognitive Dysfunction - pathology
Contamination
Disease Models, Animal
Endoplasmic reticulum
Endoplasmic Reticulum - metabolism
FACS
Flow cytometry
Flow Cytometry - methods
Fluorescence
Genetic aspects
Humans
Immune system
Inflammation
Laboratory animals
Lipopolysaccharides
Macrophages - metabolism
MACS
Mass spectrometry
Mass spectroscopy
Mice
Microfilament Proteins - metabolism
Microglia
Microglia - metabolism
Mitochondria
Mitogens
Moesin
Molecular modelling
Neurodegenerative diseases
Neurons
Pathogenesis
Pathology
Peptides
Phagocytosis
Phosphatase
Physiological aspects
Protein turnover
Proteins
Proteomes
Proteomics
Proteomics - methods
Ribosomal proteins
Senile plaques
siRNA
Tumor necrosis factor
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV29jtQwELbgKhoEHD-BAxkJQYGsi53EdsoFbnUVDSDRWfFP7lbKJneXjdBS8Ro8Aq_FkzDjZFcbUdDQ7kyySebzeCaZ-YaQV6LUIfW2YlpYx3IuOLMp18xpJKEUde3iOJ_zT-rjV_3hDGly9qO-sCZspAceH9ypV04Jz30k_qrzytY-CxZcL8TStcpG9tJU7ZKp0QfnCsC1a5HR8rTHz3M5w1QJCVcUK2bbUGTr_9snH2xK84LJgx1oeY_cnUJHuhgv-T65FdoH5HjRQtq83tLXNBZzxrfkx-TXsum-MbcFEY7McnSNhXcXDaCN9h0yB1xQ1w1XTfAUX8XS66FqY78ZeD8ayRuwXbmnKz-WE4WerrvQr1pa9bSiyHLcbFllsZGk3RyePh4MevG0OJIlFhnQTUcXzffLsFqHm98_fvZ0-jT0kHxZnn1-f86mqQzMFTLbMCHSyvogHeSGZSqrwilZOrBMCHnhuVAld7YuYqgkXfBBBxVAqiyoOggRHpGjtmvDE0JtpjjPFGBFylxaX3qIfkRmi8yWUomQkLc7I5mrkXzDxKRFSzOa1IBJTTSpKRLyDu2410Ti7PgDwMlMcDL_glNC3iAKDC5vMLWrpi4FuGAkyjILGSkVuU4TcjLThGXp5uIdjszkFnoD4RP8MUSFPCEv92I8Ekvd2tANUQc5dyCPTMjjEXb7W8owwIJ9ISFqBsjZPc8l7eoykoYr5Okv1dP_8ZCekTsirqWCpeqEHG1uhvCc3O798CIuwz-kxju_
  priority: 102
  providerName: Directory of Open Access Journals
Title Flow-cytometric microglial sorting coupled with quantitative proteomics identifies moesin as a highly-abundant microglial protein with relevance to Alzheimer's disease
URI https://www.ncbi.nlm.nih.gov/pubmed/32381088
https://www.proquest.com/docview/2404460631
https://search.proquest.com/docview/2400535875
https://pubmed.ncbi.nlm.nih.gov/PMC7206797
https://doaj.org/article/d7c72d1d44654f4abfd3eb413217f735
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbonrggYHlkWVZGQnBA3uZpJ8fustVeQIiHhLhY8SPdSnmUphUqJ_4GP4G_xS9hxklKI25ceojHrqOZ8cw4M98Q8jzMUusblbM0VJrFQRgw5Qcp0ymCUIZFoV07n-sP4u3n9PUVwuQkQy2MS9rXanlel9V5vbxxuZWrSk-HPLHpuzeXAjHHMzGdkAn4hkOI3h2_sQC5GqpjUj5t8ctczDBKQqwVwbBXTYSGynfdVv4aI4fZ_-_JfGCaxmmTB3Zofpfc6R1IOus2eo_csvV9cjyrIXiudvQFdSmd7q78mPyal803pncwhI2zNK0w_W5RgszRtkH8gAXVzXZVWkPxQpZ-3ea1qzqDM5A6CAcsWm7p0nRJRbalVWPbZU3zluYUsY7LHcsVlpPUm8Pl3WSgc8tiYxaXakA3DZ2V32_ssrLr3z9-trT_QPSAfJpffby8Zn1vBqYTHm1YGPq5MpZriBAzn-eJFjzTRZxbGycmCEUWaFUkzmHi2hqbWmFhVCgg1eAoPCRHdVPbx4SqSARBJEBiOI-5MpkBHyiMVBKpjIvQeuTVwCS56iA4pAtdUi477krgrnTclYlHLpCPe0qEz3YPmvVC9kIkjdAiNIFxaHKwaVWYyCqw5xCgFSKCRV6iFEhUcmC1zvtaBdgwwmXJGXfAikHqe-R0RAnKqcfDgxzJ_nBoJThR8MfgGwYeebYfxpmY8FbbZutoEHkHokmPPOrEbv9Kg_R6RIwEcvTO4xHQJAcd3mvOyX_PfEJuh06XEuaLU3K0WW_tUzJpzfbMXWfA7_uLL2dOJf8AS5U-OQ
link.rule.ids 230,315,729,782,786,866,887,2107,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbY5QAX_haWwAJGQnBA3iZOYifHsmxVxO4KiUXiZsU_6VbKT2laoXLiNXgEXosnYewkpRG3vXbGbix_Hs8kM98g9IqmifG1zEhCpSJRQAMi_SAhKrEklDTPlWvnM_3ML74m708tTU7c18K4pH0l58dVUR5X8yuXW7ko1ajPExt9Oj_hlnM85aM9dBPOq0_7IL01wBEHZPX1MQkbNfbbXERsnGTZVjix3WpCe1X5rt_Kv-vIsfb_b5t3Lqdh4uTOTTS5e8013EN3OtcTj1vxfXTDVA_QwbiCsLvc4NfYJYO6t-wH6PekqL8TtQGRbbmlcGkT92YFoBU3tWUemGFVrxeF0di-ysXf1lnl6tXAemJH_mDLnRs81206kmlwWZtmXuGswRm2LMnFhmTSFqJUq93p3WDQc9Pali4uSQGvajwuflyZeWmWf37-anD3aekh-jI5vTyZkq6rA1ExC1eEUj-T2jAFsWXqsyxWnKUqjzJjolgHlKeBknnsXC2mjDaJ4QakXIKqAhfjEdqv6so8RliGPAhCDlhjLGJSpxq8JxrKOJQp49R46G2_uWLRkncIF_QkTLSoEIAK4VAhYg-9s_u_1bTE2-6HejkT3dYJzRWnOtCOhw4eWuY6NBI8AQjtch7CJG8seoQ1DwARlXVVDvDAlmhLjJmjZAwS30NHA0041moo7vEnOrPSCHC_4I_Bqww89HIrtiNtqlxl6rXTsZw9EId66LCF63ZJPeo9xAdAHqx5KAH8OtLxDq9Prj3yBbo1vTw_E2cfLj4-RbepO48x8fkR2l8t1-YZ2mv0-rk7yn8B1ixRxQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELbYRUJceC2PwAJGQnBA3uZpJ8eyu9UiYLUSIHGz4ke6lfIoTStUTvwNfgJ_i1_CjJOUVtzgmhk7sfJ5PJPMfEPI8zBLrW9UztJQaRYHYcCUH6RMp0hCGRaFdu18zj6I88_pySnS5Gxafbmkfa1mR3VZHdWzS5dbOa_0aMgTG128PxbIOZ6J0dwUoz1yFfasHw-BemeEYwHoGmpkUj5q8f9czDBWQsYVwbBjTYTHle96rvw5khxz_9_2eeuA2k2e3DqNJjf_Yx23yI3eBaXjTuU2uWLrO-RgXEP4Xa3pC-qSQt3X9gPyc1I2X5legwhbb2laYQLftATU0rZBBoIp1c1qXlpD8ZMu_bLKa1e3BlaUOhIILHtu6cx0aUm2pVVj21lN85bmFNmSyzXLFRak1Mvt6d1g0HPTYmsXl6xAlw0dl98u7ayyi1_ff7S0_8V0l3yanH48PmN9dwemEx4tWRj6uTKWa4gxM5_niRY800WcWxsnJghFFmhVJM7l4toam1phQSoUqGpwNe6R_bqp7QNCVSSCIBKAOc5jrkxmwIsKI5VEKuMitB55NbxgOe9IPKQLflIuO2RIQIZ0yJCJR14jBjaaSMDtLjSLqexfnzRCi9AExvHRwUOrwkRWgUcAIV4hIpjkJSJIopkAmOi8r3aAB0bCLTnmjpoxSH2PHO5owvbWu-IBg7I3L60ENwxuDN5l4JFnGzGOxJS52jYrp4PcPRCPeuR-B9nNkgbke0TsgHlnzbsSwLAjH-8x-_CfRz4l1y5OJvLdm_O3j8j10G3JhPnikOwvFyv7mOy1ZvXE7ebfLRxURQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flow-cytometric+microglial+sorting+coupled+with+quantitative+proteomics+identifies+moesin+as+a+highly-abundant+microglial+protein+with+relevance+to+Alzheimer%E2%80%99s+disease&rft.jtitle=Molecular+neurodegeneration&rft.au=Rayaprolu%2C+Sruti&rft.au=Gao%2C+Tianwen&rft.au=Xiao%2C+Hailian&rft.au=Ramesha%2C+Supriya&rft.date=2020-05-07&rft.pub=BioMed+Central&rft.eissn=1750-1326&rft.volume=15&rft.spage=1&rft_id=info:doi/10.1186%2Fs13024-020-00377-5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1750-1326&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1750-1326&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1750-1326&client=summon