EMG feature evaluation for improving myoelectric pattern recognition robustness

► The medium-term robustness of EMG signals for prosthetic control is investigated. ► The effect of 50 EMG features has been extensively examined. ► A single optimal robust EMG feature is sample entropy. ► Linear discriminant analysis is better than other state-of-the-art classifiers in robustness....

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 40; no. 12; pp. 4832 - 4840
Main Authors: Phinyomark, Angkoon, Quaine, Franck, Charbonnier, Sylvie, Serviere, Christine, Tarpin-Bernard, Franck, Laurillau, Yann
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 15-09-2013
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ► The medium-term robustness of EMG signals for prosthetic control is investigated. ► The effect of 50 EMG features has been extensively examined. ► A single optimal robust EMG feature is sample entropy. ► Linear discriminant analysis is better than other state-of-the-art classifiers in robustness. ► Average accuracy is 98.87% without retraining classifier for EMG recorded for 21days. In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there is a gap between the classification accuracy and the usability of practical applications of myoelectric control, especially the effect of long-term usage. This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21days. The most stable single feature and multiple feature sets are presented with the optimum configuration of myoelectric control, i.e. data segmentation and classifier. The result shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier. The averaged test classification accuracy is 93.37%, when trained in only initial first day. It brings only 2.45% decrease compared with retraining schemes. Increasing number of features to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square and waveform length, increase the classification accuracy to 98.87%. The proposed techniques achieve to maintain the high accuracy without the retraining scheme. Additionally, this continuous classification allows the real-time operation.
AbstractList ► The medium-term robustness of EMG signals for prosthetic control is investigated. ► The effect of 50 EMG features has been extensively examined. ► A single optimal robust EMG feature is sample entropy. ► Linear discriminant analysis is better than other state-of-the-art classifiers in robustness. ► Average accuracy is 98.87% without retraining classifier for EMG recorded for 21days. In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there is a gap between the classification accuracy and the usability of practical applications of myoelectric control, especially the effect of long-term usage. This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21days. The most stable single feature and multiple feature sets are presented with the optimum configuration of myoelectric control, i.e. data segmentation and classifier. The result shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier. The averaged test classification accuracy is 93.37%, when trained in only initial first day. It brings only 2.45% decrease compared with retraining schemes. Increasing number of features to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square and waveform length, increase the classification accuracy to 98.87%. The proposed techniques achieve to maintain the high accuracy without the retraining scheme. Additionally, this continuous classification allows the real-time operation.
In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there is a gap between the classification accuracy and the usability of practical applications of myoelectric control, especially the effect of long-term usage. This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21 days. The most stable single feature and multiple feature sets are presented with the optimum configuration of myoelectric control, i.e. data segmentation and classifier. The result shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier. The averaged test classification accuracy is 93.37%, when trained in only initial first day. It brings only 2.45% decrease compared with retraining schemes. Increasing number of features to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square and waveform length, increase the classification accuracy to 98.87%. The proposed techniques achieve to maintain the high accuracy without the retraining scheme. Additionally, this continuous classification allows the real-time operation.
Author Laurillau, Yann
Charbonnier, Sylvie
Serviere, Christine
Quaine, Franck
Phinyomark, Angkoon
Tarpin-Bernard, Franck
Author_xml – sequence: 1
  givenname: Angkoon
  surname: Phinyomark
  fullname: Phinyomark, Angkoon
  email: angkoon.p@hotmail.com, angkoon.phinyomark@gipsa-lab.grenoble-inp.fr
  organization: GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team, University Joseph Fourier, Grenoble, France
– sequence: 2
  givenname: Franck
  surname: Quaine
  fullname: Quaine, Franck
  email: franck.quaine@gipsa-lab.grenoble-inp.fr
  organization: GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team, University Joseph Fourier, Grenoble, France
– sequence: 3
  givenname: Sylvie
  surname: Charbonnier
  fullname: Charbonnier, Sylvie
  email: sylvie.charbonnier@gipsa-lab.grenoble-inp.fr
  organization: GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team, University Joseph Fourier, Grenoble, France
– sequence: 4
  givenname: Christine
  surname: Serviere
  fullname: Serviere, Christine
  email: christine.serviere@gipsa-lab.grenoble-inp.fr
  organization: GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team, University Joseph Fourier, Grenoble, France
– sequence: 5
  givenname: Franck
  surname: Tarpin-Bernard
  fullname: Tarpin-Bernard, Franck
  email: franck.tarpin-bernard@imag.fr
  organization: LIG Laboratory, CNRS UMR 5217, University of Grenoble, Grenoble, France
– sequence: 6
  givenname: Yann
  surname: Laurillau
  fullname: Laurillau, Yann
  email: yann.laurillau@imag.fr
  organization: LIG Laboratory, CNRS UMR 5217, University of Grenoble, Grenoble, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27349214$$DView record in Pascal Francis
https://hal.science/hal-00831643$$DView record in HAL
BookMark eNqNkU1r3DAQhkVJoZu0f6AnXwrtwdvRpyXoJYQ0CWzJpT0LRR6nWrzSVrI35N9XzoYcm8KAQDzzDjPPKTmJKSIhHymsKVD1dbvG8uDWDChfA6vF35AV1R1vVWf4CVmBkV0raCfekdNStgC0A-hW5Pbyx1UzoJvmjA0e3Di7KaTYDCk3YbfP6RDifbN7TDiin3Lwzd5NE-bYZPTpPoYnOqe7uUwRS3lP3g5uLPjh-T0jv75f_ry4bje3VzcX55vWS8Wm1gxSsLs6lzKtOCLtpTbMKMNZxwVTA2PCDUZRaXDotKIIXIEELZnrZQ_8jHw55v52o93nsHP50SYX7PX5xi5_AJpTJfiBVvbzka3r_JmxTHYXisdxdBHTXGw9BQUDwMz_oVwDl6-jknLRMVD8dVQIXUktWEXZEfU5lZJxeFmOgl1U261dVNtFtQVWa8n_9JzvinfjkF30obx0Lic1jIrKfTtyWM0cAmZbfMDosQ_V5mT7FP415i_Dvr3M
CitedBy_id crossref_primary_10_1109_ACCESS_2020_2964678
crossref_primary_10_1016_j_matpr_2020_09_093
crossref_primary_10_1142_S0219843615500115
crossref_primary_10_1007_s13246_015_0399_5
crossref_primary_10_1016_j_eswa_2021_114977
crossref_primary_10_1186_s12938_015_0025_5
crossref_primary_10_1016_j_knosys_2021_108053
crossref_primary_10_1016_j_pmrj_2018_06_015
crossref_primary_10_3390_sym12040541
crossref_primary_10_3390_s22041604
crossref_primary_10_1016_j_jbmt_2020_06_037
crossref_primary_10_1016_j_eswa_2014_11_044
crossref_primary_10_1109_JSEN_2018_2813434
crossref_primary_10_3389_fbioe_2024_1329209
crossref_primary_10_1109_TBME_2022_3140269
crossref_primary_10_1007_s10916_020_01639_x
crossref_primary_10_1166_jmihi_2021_3907
crossref_primary_10_1109_TAI_2020_3046160
crossref_primary_10_1109_TNSRE_2022_3144323
crossref_primary_10_1007_s11062_022_09922_y
crossref_primary_10_15446_ing_investig_106558
crossref_primary_10_1109_TNSRE_2016_2563222
crossref_primary_10_1177_1729881418802138
crossref_primary_10_3390_s17030458
crossref_primary_10_1007_s12553_016_0153_3
crossref_primary_10_1016_j_bspc_2024_106105
crossref_primary_10_1016_j_bspc_2022_104042
crossref_primary_10_1016_j_biosystemseng_2019_04_021
crossref_primary_10_3390_s24092702
crossref_primary_10_1016_j_bspc_2019_101774
crossref_primary_10_3389_fnins_2019_00437
crossref_primary_10_1007_s42235_022_00171_7
crossref_primary_10_3390_app13179546
crossref_primary_10_3934_mbe_2021177
crossref_primary_10_1016_j_medengphy_2023_104060
crossref_primary_10_1016_j_bspc_2019_02_010
crossref_primary_10_1016_j_bspc_2019_02_011
crossref_primary_10_1155_2021_6693206
crossref_primary_10_1016_j_sna_2024_115687
crossref_primary_10_1109_TNSRE_2020_2999505
crossref_primary_10_3389_fnins_2017_00379
crossref_primary_10_3389_fnbot_2021_699174
crossref_primary_10_1007_s10916_017_0843_z
crossref_primary_10_1007_s12555_021_0277_8
crossref_primary_10_1109_TBME_2016_2641584
crossref_primary_10_3389_fnins_2022_1020086
crossref_primary_10_1109_LRA_2021_3097257
crossref_primary_10_1007_s13042_019_00966_x
crossref_primary_10_1016_j_ifacol_2017_08_1602
crossref_primary_10_1080_01691864_2020_1750480
crossref_primary_10_1109_ACCESS_2022_3212146
crossref_primary_10_3390_s22093380
crossref_primary_10_1080_01691864_2014_957723
crossref_primary_10_1186_1475_925X_13_8
crossref_primary_10_1109_JIOT_2022_3218739
crossref_primary_10_3233_JIFS_179549
crossref_primary_10_3390_s22228733
crossref_primary_10_1109_ACCESS_2020_3027497
crossref_primary_10_1109_JSEN_2022_3165988
crossref_primary_10_3390_s21227681
crossref_primary_10_1007_s11517_019_02073_z
crossref_primary_10_1016_j_bspc_2015_02_009
crossref_primary_10_1016_j_compag_2018_08_033
crossref_primary_10_3390_s24072063
crossref_primary_10_1162_comj_a_00672
crossref_primary_10_3390_app7101050
crossref_primary_10_1007_s10439_018_02126_8
crossref_primary_10_3390_app10207144
crossref_primary_10_3390_bioengineering10020219
crossref_primary_10_3390_s18051388
crossref_primary_10_1088_1741_2560_12_4_046005
crossref_primary_10_3390_s21030763
crossref_primary_10_1007_s12652_021_03284_9
crossref_primary_10_1016_j_eswa_2017_08_024
crossref_primary_10_1007_s12065_020_00441_5
crossref_primary_10_3390_s24123970
crossref_primary_10_1142_S021951942340033X
crossref_primary_10_1007_s11517_015_1443_z
crossref_primary_10_1109_ACCESS_2020_2983608
crossref_primary_10_1109_TMRB_2019_2930352
crossref_primary_10_3389_fnins_2022_977328
crossref_primary_10_1088_1742_6596_1780_1_012035
crossref_primary_10_1109_JSEN_2023_3266872
crossref_primary_10_1142_S0219843619500130
crossref_primary_10_3389_fnbot_2022_923164
crossref_primary_10_1109_TBME_2019_2899222
crossref_primary_10_1088_1741_2552_abd461
crossref_primary_10_3390_s22207984
crossref_primary_10_1016_j_bspc_2023_105445
crossref_primary_10_1007_s11062_024_09948_4
crossref_primary_10_1016_j_medengphy_2024_104131
crossref_primary_10_1109_TNSRE_2023_3346462
crossref_primary_10_1016_j_engappai_2017_10_017
crossref_primary_10_1016_j_bbe_2017_11_001
crossref_primary_10_1016_j_bspc_2019_101588
crossref_primary_10_1080_1448837X_2021_1969729
crossref_primary_10_1142_S2424905X17400037
crossref_primary_10_3390_s19081864
crossref_primary_10_1007_s12541_021_00546_6
crossref_primary_10_1142_S0219843619410044
crossref_primary_10_2139_ssrn_4183382
crossref_primary_10_1016_j_eswa_2023_121635
crossref_primary_10_1007_s00339_018_2187_z
crossref_primary_10_1142_S0219843620500255
crossref_primary_10_1109_TIM_2023_3277930
crossref_primary_10_1016_j_bspc_2016_08_017
crossref_primary_10_1016_j_eswa_2013_11_009
crossref_primary_10_2174_0115743624268804231222042118
crossref_primary_10_1109_THMS_2022_3175408
crossref_primary_10_3390_app11104678
crossref_primary_10_3390_s24082383
crossref_primary_10_1109_JSEN_2024_3377247
crossref_primary_10_1049_iet_spr_2020_0315
crossref_primary_10_3390_s21113872
crossref_primary_10_1109_JBHI_2022_3159792
crossref_primary_10_3390_s20030672
crossref_primary_10_1109_TNSRE_2020_3024947
crossref_primary_10_1109_TNSRE_2022_3194246
crossref_primary_10_3389_fnins_2021_621885
crossref_primary_10_3390_math10224387
crossref_primary_10_1109_TBME_2019_2900415
crossref_primary_10_3389_fnins_2021_733359
crossref_primary_10_1109_TNSRE_2021_3086401
crossref_primary_10_1016_j_bspc_2018_06_012
crossref_primary_10_1080_02522667_2014_961782
crossref_primary_10_1016_j_bbe_2019_07_007
crossref_primary_10_3390_s20041201
crossref_primary_10_1155_2022_8125186
crossref_primary_10_1109_TNSRE_2019_2936622
crossref_primary_10_1007_s40747_020_00232_6
crossref_primary_10_1155_2022_9594521
crossref_primary_10_1177_09544119221139593
crossref_primary_10_1109_JSEN_2021_3119074
crossref_primary_10_1109_TNSRE_2018_2870152
crossref_primary_10_3389_fnins_2021_704603
crossref_primary_10_1007_s11517_023_02917_9
crossref_primary_10_1109_ACCESS_2023_3279735
crossref_primary_10_1007_s12046_019_1231_9
crossref_primary_10_3390_s19204457
crossref_primary_10_1109_TNSRE_2016_2562180
crossref_primary_10_1016_j_bspc_2021_102587
crossref_primary_10_1109_TIM_2022_3217868
crossref_primary_10_1016_j_eswa_2016_05_031
crossref_primary_10_1080_10255842_2020_1861256
crossref_primary_10_1088_1741_2552_aafabc
crossref_primary_10_1590_2446_4740_08516
crossref_primary_10_1016_j_heliyon_2024_e33133
crossref_primary_10_1016_j_bspc_2018_02_006
crossref_primary_10_1016_j_bspc_2019_101791
crossref_primary_10_1016_j_engappai_2014_07_009
crossref_primary_10_1088_1742_6596_2025_1_012006
crossref_primary_10_3390_bdcc2030021
crossref_primary_10_1109_ACCESS_2019_2946256
crossref_primary_10_3390_s23010263
crossref_primary_10_1007_s12553_019_00315_6
crossref_primary_10_1016_j_jii_2018_09_001
crossref_primary_10_1016_j_neucom_2021_10_126
crossref_primary_10_1145_3287039
crossref_primary_10_1109_TIM_2020_3036654
crossref_primary_10_1080_10255842_2024_2310726
crossref_primary_10_1109_ACCESS_2022_3214531
crossref_primary_10_1016_j_patcog_2020_107393
crossref_primary_10_1016_j_bspc_2020_101981
crossref_primary_10_1109_JSEN_2017_2778243
crossref_primary_10_1016_j_bspc_2021_102577
crossref_primary_10_1109_JSEN_2021_3099744
crossref_primary_10_3389_fbioe_2018_00164
crossref_primary_10_3390_s20061613
crossref_primary_10_1109_ACCESS_2024_3377111
crossref_primary_10_1109_LRA_2022_3142721
crossref_primary_10_1002_mus_28023
crossref_primary_10_1002_cpe_6903
crossref_primary_10_3390_s16081304
crossref_primary_10_1109_THMS_2022_3146053
crossref_primary_10_1109_TNSRE_2021_3095298
crossref_primary_10_1007_s42835_019_00083_3
crossref_primary_10_1016_j_iswa_2021_200045
crossref_primary_10_1088_1757_899X_745_1_012020
crossref_primary_10_4028_p_9cplm1
crossref_primary_10_1007_s13246_015_0395_9
crossref_primary_10_1016_j_asoc_2020_106616
crossref_primary_10_3390_app11041526
crossref_primary_10_1109_TCYB_2020_3016595
crossref_primary_10_1016_j_imu_2017_10_006
crossref_primary_10_1109_JBHI_2014_2380454
crossref_primary_10_1016_j_health_2022_100126
crossref_primary_10_1109_JSEN_2015_2450211
crossref_primary_10_1007_s00779_019_01285_2
crossref_primary_10_1109_TNSRE_2019_2896269
crossref_primary_10_1016_j_bspc_2022_104303
crossref_primary_10_1016_j_bspc_2022_104546
crossref_primary_10_1155_2017_8943850
crossref_primary_10_1016_j_eswa_2017_11_049
crossref_primary_10_1109_JBHI_2018_2864335
crossref_primary_10_1109_TII_2018_2869394
crossref_primary_10_1088_1741_2552_ad38dd
crossref_primary_10_1109_JBHI_2022_3205058
crossref_primary_10_3233_JIFS_169794
crossref_primary_10_3390_mi13020191
crossref_primary_10_1109_ACCESS_2022_3170483
crossref_primary_10_1109_TNSRE_2023_3295658
crossref_primary_10_1109_TNSRE_2022_3196622
crossref_primary_10_3390_mi14030546
crossref_primary_10_3390_s23136233
crossref_primary_10_3390_s23052413
crossref_primary_10_1016_j_bspc_2023_104936
crossref_primary_10_1109_TBME_2023_3329826
crossref_primary_10_1007_s00521_019_04147_3
crossref_primary_10_1109_TBME_2023_3239687
crossref_primary_10_3389_fnins_2021_783539
crossref_primary_10_1109_TNSRE_2019_2959243
crossref_primary_10_1007_s40998_020_00353_1
crossref_primary_10_1177_0954411920935741
crossref_primary_10_1371_journal_pone_0192938
crossref_primary_10_1007_s00521_018_3909_z
crossref_primary_10_34133_2021_9863761
crossref_primary_10_1109_THMS_2019_2925191
crossref_primary_10_3389_fbioe_2020_00158
crossref_primary_10_20965_jaciii_2022_p0269
crossref_primary_10_1002_aisy_202300207
crossref_primary_10_1016_j_bspc_2022_103487
crossref_primary_10_3390_s21227713
crossref_primary_10_3389_fnins_2022_666173
crossref_primary_10_3390_s19163548
crossref_primary_10_1016_j_eswa_2023_120445
crossref_primary_10_1109_JBHI_2019_2926307
crossref_primary_10_1007_s40010_014_0148_2
crossref_primary_10_3390_s20041031
crossref_primary_10_1109_TNSRE_2019_2946625
crossref_primary_10_1142_S0219843619410068
crossref_primary_10_1098_rsif_2017_0734
crossref_primary_10_1088_1741_2552_aae9d4
crossref_primary_10_1016_j_irbm_2023_100773
crossref_primary_10_3389_fnins_2023_1174760
crossref_primary_10_1016_j_array_2023_100277
crossref_primary_10_3390_electronics8111244
crossref_primary_10_1007_s12652_020_01980_6
crossref_primary_10_1016_j_bspc_2014_05_007
crossref_primary_10_1016_j_procs_2021_05_043
crossref_primary_10_1109_TIE_2015_2497212
crossref_primary_10_1109_TNSRE_2021_3059741
crossref_primary_10_3390_s18082497
crossref_primary_10_1016_j_eswa_2022_117785
crossref_primary_10_1016_j_heliyon_2022_e11931
crossref_primary_10_1109_JBHI_2020_3009383
crossref_primary_10_1109_TNSRE_2014_2305111
crossref_primary_10_1109_JBHI_2015_2490718
crossref_primary_10_3389_fnins_2023_1168888
crossref_primary_10_1016_j_jelekin_2018_04_004
crossref_primary_10_1016_j_cmpb_2020_105721
crossref_primary_10_1109_TII_2020_3041618
crossref_primary_10_3390_fractalfract7080620
crossref_primary_10_1142_S0219519420500542
crossref_primary_10_1109_LRA_2022_3191238
crossref_primary_10_3389_fnins_2015_00416
crossref_primary_10_3389_fnhum_2023_1101938
crossref_primary_10_1016_j_bspc_2023_105600
crossref_primary_10_1016_j_bspc_2018_05_036
crossref_primary_10_1109_TNSRE_2024_3383156
crossref_primary_10_1016_j_eswa_2020_113281
crossref_primary_10_3389_fnbot_2018_00058
crossref_primary_10_1016_j_bspc_2016_01_011
crossref_primary_10_3390_app12073374
crossref_primary_10_1038_s41598_024_54677_7
crossref_primary_10_1016_j_bspc_2021_102603
crossref_primary_10_1007_s11063_021_10738_w
crossref_primary_10_1109_ACCESS_2022_3206436
crossref_primary_10_3390_sym9080147
crossref_primary_10_1142_S0129065718500259
crossref_primary_10_3233_JIFS_220811
crossref_primary_10_1016_j_promfg_2020_02_254
crossref_primary_10_1016_j_jelekin_2018_10_004
crossref_primary_10_1016_j_medengphy_2020_05_009
crossref_primary_10_1142_S0129065718500399
crossref_primary_10_3390_s20164359
crossref_primary_10_1109_TNSRE_2017_2687520
crossref_primary_10_3390_s19153309
crossref_primary_10_1109_TNSRE_2021_3077413
crossref_primary_10_1016_j_bspc_2020_101920
crossref_primary_10_1016_j_bspc_2022_104088
crossref_primary_10_1186_s12984_016_0183_0
crossref_primary_10_1016_j_bspc_2021_103134
crossref_primary_10_1016_j_bspc_2021_103005
crossref_primary_10_1109_ACCESS_2024_3384258
crossref_primary_10_1007_s11517_018_1807_2
crossref_primary_10_3390_bioengineering11050458
crossref_primary_10_1007_s11042_024_19130_x
crossref_primary_10_3390_s22218134
crossref_primary_10_1049_csy2_12009
crossref_primary_10_3390_s18051615
crossref_primary_10_1016_j_engappai_2023_105853
crossref_primary_10_1109_JSEN_2020_3042540
crossref_primary_10_1109_ACCESS_2020_2994829
crossref_primary_10_3389_frobt_2021_710806
crossref_primary_10_1109_TNSRE_2022_3204781
crossref_primary_10_1016_j_medengphy_2024_104198
crossref_primary_10_1109_TMRB_2020_3046847
crossref_primary_10_1016_j_bspc_2023_104731
crossref_primary_10_1007_s13042_021_01482_7
crossref_primary_10_1109_TII_2020_3001612
crossref_primary_10_1109_TNSRE_2021_3082551
crossref_primary_10_1111_exsy_12381
crossref_primary_10_3389_fnhum_2022_911204
crossref_primary_10_1007_s10586_017_0985_2
crossref_primary_10_1186_s12938_020_00840_w
crossref_primary_10_1088_1741_2560_13_4_046011
crossref_primary_10_1088_1741_2552_ac387f
crossref_primary_10_3233_JIFS_234196
crossref_primary_10_1002_jsid_749
crossref_primary_10_1109_TNSRE_2018_2807360
crossref_primary_10_1016_j_ergon_2019_102905
crossref_primary_10_1016_j_compbiomed_2017_09_013
crossref_primary_10_1016_j_cmpb_2014_06_013
crossref_primary_10_1088_1742_6596_1450_1_012118
crossref_primary_10_3390_s23052715
crossref_primary_10_1109_JSEN_2024_3389963
crossref_primary_10_1016_j_health_2023_100296
crossref_primary_10_1080_08839514_2021_1990525
crossref_primary_10_1109_LRA_2021_3091698
crossref_primary_10_1111_exsy_12274
crossref_primary_10_1155_2014_781769
crossref_primary_10_1016_j_bspc_2023_105014
crossref_primary_10_1109_TNSRE_2020_3038374
crossref_primary_10_1115_1_4033835
crossref_primary_10_1155_2022_6414664
crossref_primary_10_1007_s42600_020_00080_w
crossref_primary_10_1177_2055668320938588
crossref_primary_10_1016_j_eswa_2023_121224
crossref_primary_10_21307_ijssis_2017_906
crossref_primary_10_3389_fbioe_2023_1238210
Cites_doi 10.1109/CISP.2011.6100025
10.1007/s13246-011-0079-z
10.1016/S1386-5056(97)00029-4
10.1109/BioRob.2012.6290901
10.1682/JRRD.2010.08.0161
10.1109/10.914793
10.1109/TNSRE.2011.2163529
10.1142/S0219477512500289
10.1016/j.jelekin.2012.06.005
10.1109/TBME.2009.2039480
10.1016/0165-0270(94)00164-C
10.1109/10.204774
10.1109/CCECE.1998.685635
10.1109/IEMBS.2010.5627288
10.1142/S0219843612500077
10.1615/CritRevBiomedEng.v30.i456.80
10.1023/A:1010933404324
10.1007/11754336_6
10.1016/j.compeleceng.2012.08.009
10.1109/86.481972
10.1109/IROS.2006.282425
10.1007/s10439-011-0438-7
10.5755/j01.eee.122.6.1816
10.1109/ROBIO.2006.340150
10.1016/j.brainresbull.2012.09.012
10.1016/j.bspc.2007.07.009
10.1145/1731903.1731924
10.1016/j.cap.2010.11.051
10.2478/v10178-011-0061-9
10.1109/TBME.2011.2177662
10.1109/ICRA.2012.6225047
10.1016/j.eswa.2012.03.039
10.1016/j.jelekin.2008.05.004
10.1145/1622176.1622208
10.1109/TBME.2011.2159216
10.1109/TBME.2008.919734
10.1016/j.eswa.2012.01.102
10.1007/978-3-540-77413-6_11
ContentType Journal Article
Copyright 2013 Elsevier Ltd
2014 INIST-CNRS
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2013 Elsevier Ltd
– notice: 2014 INIST-CNRS
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID IQODW
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.eswa.2013.02.023
DatabaseName Pascal-Francis
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Physics
EISSN 1873-6793
EndPage 4840
ExternalDocumentID oai_HAL_hal_00831643v1
10_1016_j_eswa_2013_02_023
27349214
S0957417413001395
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
08R
29G
AAAKG
AALMO
AAPBV
AAQXK
ABKBG
ABPIF
ABPTK
ACNNM
ADALY
ADJOM
ASPBG
AVWKF
AZFZN
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
IPNFZ
IQODW
PQEST
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
AAXKI
AAYXX
ADMUD
AFJKZ
AKRWK
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c562t-9f542bfea12863ee1d58929693273426f224af96159ef7861e036050852ad5d03
ISSN 0957-4174
IngestDate Tue Oct 15 15:52:28 EDT 2024
Fri Oct 25 08:34:00 EDT 2024
Fri Oct 25 07:02:00 EDT 2024
Fri Oct 25 08:32:28 EDT 2024
Fri Oct 25 09:56:05 EDT 2024
Thu Sep 26 16:49:34 EDT 2024
Fri Nov 25 01:08:14 EST 2022
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Myoelectric control
Sample entropy
Feature extraction
Linear discriminant analysis
Electromyography (EMG)
Segmentation
Time allowed
High precision
Continuous time
Entropy
Modeling
Optimization
Classification
Selection criterion
Electromyography
Robustness
Root mean square value
Pattern extraction
Discriminant analysis
Pattern recognition
Real time
Long term
Spectral analysis
Cepstrum
Usability
Language English
License CC BY 4.0
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c562t-9f542bfea12863ee1d58929693273426f224af96159ef7861e036050852ad5d03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0003-4108-045X
0000-0003-3295-0871
PQID 1448720842
PQPubID 23500
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_00831643v1
proquest_miscellaneous_1701090029
proquest_miscellaneous_1701038035
proquest_miscellaneous_1513472063
proquest_miscellaneous_1448720842
crossref_primary_10_1016_j_eswa_2013_02_023
pascalfrancis_primary_27349214
elsevier_sciencedirect_doi_10_1016_j_eswa_2013_02_023
PublicationCentury 2000
PublicationDate 2013-09-15
PublicationDateYYYYMMDD 2013-09-15
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Oskoei, Hu (b0125) 2008; 55
Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R., Turner, J., & Landay, J. A. (2009). Enabling always-available input with muscle-computer interfaces. In
Zhao, J., Jiang, L., Cai, H., Liu, H., & Hirzinger, G. (2006a). A novel EMG motion pattern classifier based on wavelet transform and nonlinearlity analysis method. In
(pp. 83–90).
Jain, S., Singhal, G., Smith, R. J., Kaliki, R., & Thakor, N. (2012). Improving long term myoelectric decoding, using an adaptive classifier with label correction. In
Hariharan, Fook, Sindhu, Ilias, Yaacob (b0065) 2012; 38
(pp. 167–176).
Geethanjali, Ray (b0050) 2011; 34
Gitter, Czerniecki (b0055) 1995; 58
Kendell, Lemaire, Losier, Chan, Hudgins (b0090) 2012; 9
Zhao, J., Xie, Z., Jiang, L., Cai, H., Liu, H., & Hirzinger, G. (2006b). EMG control for a five-fingered underactuated prosthetic hand based on wavelet transform and sample entropy. In
Phinyomark, Phukpattaranont, Limsakul (b0150) 2012; 39
(pp. 866–869).
Anatomy of the human body [Image] (1918). Retrieved November 4, 2012, from Wikipedia.
(pp. 1494–1499).
.
Fougner, Scheme, Chan, Englehart, Stavdahl (b0045) 2011; 19
Arjunan, Kumar (b0010) 2010; 7
Boschmann, A., Kaufmann, P., Platzner, M., & Winkler, M. (2009). Towards multi-movement hand prostheses: Combining adaptive classification with high precision sockets. In
Breiman (b0025) 2001; 45
Phinyomark, Nuidod, Phukpattaranont, Limsakul (b0145) 2012; 122
Phinyomark, Phothisonothai, Phukpattaranont, Limsakul (b0135) 2011; 18
Richman, Moorman (b0160) 2000; 278
Zhang, Zhou (b0215) 2012; 22
Zhang, X., Chen, X., Zhao, Z. Y., Li, Q., Yang, J. H., Lantz, V., Wang, K. Q. (2007). An adaptive feature extractor for gesture SEMG recognition. In
(pp. 532–537).
Yang, Zhao, Jiang, Liu (b0185) 2012; 9
Young, Hargrove, Kuiken (b0195) 2012; 59
(pp. 2287–2292).
Kim, Choi, Moon, Mun (b0100) 2011; 11
Gupta, Suryanarayanan, Reddy (b0060) 1997; 45
Liarokapis, M. V., Artemiadis, P. K., Katsiaris, P. T., Kyriakopoulos, K. J., & Manolakos, E. S. (2012). Learning human reach-to-grasp strategies: towards EMG-based control of robotic arm-hand systems. In
Khushaba, Al-Ani, Al-Jumaily (b0095) 2010; 57
van den Broek, E. L., Schut, M. H., Westerink, J. H. D. M., van Herk, J., & Tuinenbreijer, K. (2006). Computing emotion awareness through facial electromyography. In
Hudgins, Parker, Scott (b0070) 1993; 40
Phinyomark, Phukpattaranont, Limsakul (b0155) 2012; 39
Benko, H., Saponas, T. S., Morris, D., & Tan, D. (2009). Enhancing input on and above the interactive surface with muscle sensing. In
(pp. 3215–3220).
Ehtiati, T., Kinsner, W., & Moussavi, Z. K. (1998). Multifractal characterization of the electromyogram signals in presence of fatigue. In
Kamavuako, Farina, Yoshida, Jensen (b0080) 2012; 40
(pp. 93–100).
(pp. 6357–6360).
Chen, L., Geng, Y., & Li, G. (2011). Effect of upper-limb positions on motion pattern recognition using electromyography. In
Zardoshti-Kermani, Wheeler, Badie, Hashemi (b0200) 1995; 3
(pp. 139–142).
Englehart, Hudgins, Parker (b0040) 2001; 48
Kaufmann, P., Englehart, K., & Platzner, M. (2010). Fluctuating EMG signals: investigating long-term effects of pattern matching algorithms. In
Tkach, Huang, Kuiken (b0175) 2010; 7
(pp. 52–63).
Peerdeman, Boere, Witteveen, in ‘t Veld, Hermens, Stramigioli (b0230) 2011; 48
Phinyomark, Phukpattaranont, Limsakul (b0140) 2012; 11
Young, Hargrove, Kuiken (b0190) 2011; 58
Zecca, Micera, Carrozza, Dario (b0205) 2002; 30
Lorrain, Jiang, Farina (b0110) 2011; 8
Nazarpour, Al-Timemy, Bugmann, Jackson (b0115) 2013; 90
Talebinejad, Chan, Miri, Dansereau (b0170) 2009; 19
Oskoei, Hu (b0120) 2007; 2
Arjunan (10.1016/j.eswa.2013.02.023_b0010) 2010; 7
Zhang (10.1016/j.eswa.2013.02.023_b0215) 2012; 22
Lorrain (10.1016/j.eswa.2013.02.023_b0110) 2011; 8
10.1016/j.eswa.2013.02.023_b0180
Kamavuako (10.1016/j.eswa.2013.02.023_b0080) 2012; 40
Phinyomark (10.1016/j.eswa.2013.02.023_b0145) 2012; 122
Gitter (10.1016/j.eswa.2013.02.023_b0055) 1995; 58
10.1016/j.eswa.2013.02.023_b0085
10.1016/j.eswa.2013.02.023_b0020
Peerdeman (10.1016/j.eswa.2013.02.023_b0230) 2011; 48
Phinyomark (10.1016/j.eswa.2013.02.023_b0135) 2011; 18
Yang (10.1016/j.eswa.2013.02.023_b0185) 2012; 9
Nazarpour (10.1016/j.eswa.2013.02.023_b0115) 2013; 90
Zardoshti-Kermani (10.1016/j.eswa.2013.02.023_b0200) 1995; 3
Geethanjali (10.1016/j.eswa.2013.02.023_b0050) 2011; 34
Talebinejad (10.1016/j.eswa.2013.02.023_b0170) 2009; 19
10.1016/j.eswa.2013.02.023_b0210
10.1016/j.eswa.2013.02.023_b0035
Fougner (10.1016/j.eswa.2013.02.023_b0045) 2011; 19
10.1016/j.eswa.2013.02.023_b0015
Hudgins (10.1016/j.eswa.2013.02.023_b0070) 1993; 40
Khushaba (10.1016/j.eswa.2013.02.023_b0095) 2010; 57
Breiman (10.1016/j.eswa.2013.02.023_b0025) 2001; 45
10.1016/j.eswa.2013.02.023_b0030
Zecca (10.1016/j.eswa.2013.02.023_b0205) 2002; 30
10.1016/j.eswa.2013.02.023_b0075
Kendell (10.1016/j.eswa.2013.02.023_b0090) 2012; 9
Oskoei (10.1016/j.eswa.2013.02.023_b0120) 2007; 2
Kim (10.1016/j.eswa.2013.02.023_b0100) 2011; 11
Gupta (10.1016/j.eswa.2013.02.023_b0060) 1997; 45
Phinyomark (10.1016/j.eswa.2013.02.023_b0140) 2012; 11
Richman (10.1016/j.eswa.2013.02.023_b0160) 2000; 278
Young (10.1016/j.eswa.2013.02.023_b0190) 2011; 58
Hariharan (10.1016/j.eswa.2013.02.023_b0065) 2012; 38
Oskoei (10.1016/j.eswa.2013.02.023_b0125) 2008; 55
Young (10.1016/j.eswa.2013.02.023_b0195) 2012; 59
10.1016/j.eswa.2013.02.023_b0165
10.1016/j.eswa.2013.02.023_b0220
Tkach (10.1016/j.eswa.2013.02.023_b0175) 2010; 7
Phinyomark (10.1016/j.eswa.2013.02.023_b0150) 2012; 39
Phinyomark (10.1016/j.eswa.2013.02.023_b0155) 2012; 39
10.1016/j.eswa.2013.02.023_b0005
10.1016/j.eswa.2013.02.023_b0225
10.1016/j.eswa.2013.02.023_b0105
Englehart (10.1016/j.eswa.2013.02.023_b0040) 2001; 48
References_xml – volume: 59
  start-page: 645
  year: 2012
  end-page: 652
  ident: b0195
  article-title: Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration
  publication-title: IEEE Transactions on Biomedical Engineering
  contributor:
    fullname: Kuiken
– volume: 45
  start-page: 185
  year: 1997
  end-page: 192
  ident: b0060
  article-title: Fractal analysis of surface EMG signals from the biceps
  publication-title: International Journal of Medical Informatics
  contributor:
    fullname: Reddy
– volume: 55
  start-page: 1956
  year: 2008
  end-page: 1965
  ident: b0125
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Transactions on Biomedical Engineering
  contributor:
    fullname: Hu
– volume: 90
  start-page: 88
  year: 2013
  end-page: 91
  ident: b0115
  article-title: A note on the probability distribution function of the surface electromyogram signal
  publication-title: Brain Research Bulletin
  contributor:
    fullname: Jackson
– volume: 58
  start-page: 103
  year: 1995
  end-page: 108
  ident: b0055
  article-title: Fractal analysis of the electromyographic interference pattern
  publication-title: Journal of Neuroscience Methods
  contributor:
    fullname: Czerniecki
– volume: 11
  start-page: 740
  year: 2011
  end-page: 745
  ident: b0100
  article-title: Comparison of
  publication-title: Current Applied Physics
  contributor:
    fullname: Mun
– volume: 278
  start-page: H2039
  year: 2000
  end-page: H2049
  ident: b0160
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: American Journal of Physiology
  contributor:
    fullname: Moorman
– volume: 58
  start-page: 2537
  year: 2011
  end-page: 2544
  ident: b0190
  article-title: The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift
  publication-title: IEEE Transactions on Biomedical Engineering
  contributor:
    fullname: Kuiken
– volume: 38
  start-page: 1798
  year: 2012
  end-page: 1807
  ident: b0065
  article-title: A comparative study of wavelet families for classification of wrist motions
  publication-title: Computers and Electrical Engineering
  contributor:
    fullname: Yaacob
– volume: 122
  start-page: 27
  year: 2012
  end-page: 32
  ident: b0145
  article-title: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification
  publication-title: Elektronika ir Elektrotechnika
  contributor:
    fullname: Limsakul
– volume: 19
  start-page: 840
  year: 2009
  end-page: 850
  ident: b0170
  article-title: Fractal analysis of surface electromyography signals: a novel power spectrum-based method
  publication-title: Journal of Electromyography and Kinesiology
  contributor:
    fullname: Dansereau
– volume: 7
  year: 2010
  ident: b0010
  article-title: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors
  publication-title: Journal of NeuroEngineering and Rehabilitation
  contributor:
    fullname: Kumar
– volume: 22
  start-page: 901
  year: 2012
  end-page: 907
  ident: b0215
  article-title: Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes
  publication-title: Journal of Electromyography and Kinesiology
  contributor:
    fullname: Zhou
– volume: 19
  start-page: 644
  year: 2011
  end-page: 651
  ident: b0045
  article-title: Resolving the limb position effect in myoelectric pattern recognition
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  contributor:
    fullname: Stavdahl
– volume: 7
  year: 2010
  ident: b0175
  article-title: Study of stability of time-domain features for electromyographic pattern recognition
  publication-title: Journal of NeuroEngineering and Rehabilitation
  contributor:
    fullname: Kuiken
– volume: 18
  start-page: 645
  year: 2011
  end-page: 658
  ident: b0135
  article-title: Critical exponent analysis applied to surface electromyography (EMG) signals for gesture recognition
  publication-title: Metrology and Measurement Systems
  contributor:
    fullname: Limsakul
– volume: 8
  year: 2011
  ident: b0110
  article-title: Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses
  publication-title: Journal of NeuroEngineering and Rehabilitation
  contributor:
    fullname: Farina
– volume: 40
  start-page: 648
  year: 2012
  end-page: 656
  ident: b0080
  article-title: Estimation of grasping force from features of intramuscular EMG signals with mirrored bilateral training
  publication-title: Annals of Biomedical Engineering
  contributor:
    fullname: Jensen
– volume: 3
  start-page: 324
  year: 1995
  end-page: 333
  ident: b0200
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Transactions on Rehabilitation Engineering
  contributor:
    fullname: Hashemi
– volume: 39
  start-page: 11156
  year: 2012
  end-page: 11163
  ident: b0155
  article-title: Fractal analysis features for weak and single-channel upper-limb EMG signals
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Limsakul
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0025
  article-title: Random forests
  publication-title: Machine Learning
  contributor:
    fullname: Breiman
– volume: 39
  start-page: 7420
  year: 2012
  end-page: 7431
  ident: b0150
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Limsakul
– volume: 2
  start-page: 275
  year: 2007
  end-page: 294
  ident: b0120
  article-title: Myoelectric control systems–A survey
  publication-title: Biomedical Signal Processing and Control
  contributor:
    fullname: Hu
– volume: 48
  start-page: 302
  year: 2001
  end-page: 311
  ident: b0040
  article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
  contributor:
    fullname: Parker
– volume: 40
  start-page: 82
  year: 1993
  end-page: 94
  ident: b0070
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
  contributor:
    fullname: Scott
– volume: 57
  start-page: 1410
  year: 2010
  end-page: 1419
  ident: b0095
  article-title: Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control
  publication-title: IEEE Transactions on Biomedical Engineering
  contributor:
    fullname: Al-Jumaily
– volume: 34
  start-page: 419
  year: 2011
  end-page: 427
  ident: b0050
  article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand
  publication-title: Australiasian College of Physical Scientists and Engineers in Medicine
  contributor:
    fullname: Ray
– volume: 9
  year: 2012
  ident: b0090
  article-title: A novel approach to surface electromyography: An exploratory study of electrode-pair selection based on signal characteristics
  publication-title: Journal of NeuroEngineering and Rehabilitation
  contributor:
    fullname: Hudgins
– volume: 30
  start-page: 459
  year: 2002
  end-page: 485
  ident: b0205
  article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal
  publication-title: Critical Reviews in Biomedical Engineering
  contributor:
    fullname: Dario
– volume: 11
  start-page: 1250028
  year: 2012
  ident: b0140
  article-title: Investigating long-term effects of feature extraction methods for continuous EMG pattern classification
  publication-title: Fluctuation and Noise Letters
  contributor:
    fullname: Limsakul
– volume: 48
  start-page: 719
  year: 2011
  end-page: 737
  ident: b0230
  article-title: Myoelectric forearm prostheses: State of the art from a user-centered perspective
  publication-title: Journal of Rehabilitation Research and Development
  contributor:
    fullname: Stramigioli
– volume: 9
  start-page: 1250007
  year: 2012
  ident: b0185
  article-title: Dynamic hand motion recognition based on transient and steady-state EMG signals
  publication-title: International Journal of Humanoid Robotics
  contributor:
    fullname: Liu
– ident: 10.1016/j.eswa.2013.02.023_b0030
  doi: 10.1109/CISP.2011.6100025
– volume: 34
  start-page: 419
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2013.02.023_b0050
  article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand
  publication-title: Australiasian College of Physical Scientists and Engineers in Medicine
  doi: 10.1007/s13246-011-0079-z
  contributor:
    fullname: Geethanjali
– volume: 45
  start-page: 185
  issue: 3
  year: 1997
  ident: 10.1016/j.eswa.2013.02.023_b0060
  article-title: Fractal analysis of surface EMG signals from the biceps
  publication-title: International Journal of Medical Informatics
  doi: 10.1016/S1386-5056(97)00029-4
  contributor:
    fullname: Gupta
– ident: 10.1016/j.eswa.2013.02.023_b0075
  doi: 10.1109/BioRob.2012.6290901
– volume: 48
  start-page: 719
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2013.02.023_b0230
  article-title: Myoelectric forearm prostheses: State of the art from a user-centered perspective
  publication-title: Journal of Rehabilitation Research and Development
  doi: 10.1682/JRRD.2010.08.0161
  contributor:
    fullname: Peerdeman
– volume: 48
  start-page: 302
  issue: 3
  year: 2001
  ident: 10.1016/j.eswa.2013.02.023_b0040
  article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.914793
  contributor:
    fullname: Englehart
– volume: 19
  start-page: 644
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2013.02.023_b0045
  article-title: Resolving the limb position effect in myoelectric pattern recognition
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2011.2163529
  contributor:
    fullname: Fougner
– volume: 11
  start-page: 1250028
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0140
  article-title: Investigating long-term effects of feature extraction methods for continuous EMG pattern classification
  publication-title: Fluctuation and Noise Letters
  doi: 10.1142/S0219477512500289
  contributor:
    fullname: Phinyomark
– volume: 22
  start-page: 901
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0215
  article-title: Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/j.jelekin.2012.06.005
  contributor:
    fullname: Zhang
– ident: 10.1016/j.eswa.2013.02.023_b0020
– volume: 57
  start-page: 1410
  issue: 6
  year: 2010
  ident: 10.1016/j.eswa.2013.02.023_b0095
  article-title: Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2009.2039480
  contributor:
    fullname: Khushaba
– volume: 58
  start-page: 103
  issue: 1–2
  year: 1995
  ident: 10.1016/j.eswa.2013.02.023_b0055
  article-title: Fractal analysis of the electromyographic interference pattern
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/0165-0270(94)00164-C
  contributor:
    fullname: Gitter
– volume: 40
  start-page: 82
  issue: 1
  year: 1993
  ident: 10.1016/j.eswa.2013.02.023_b0070
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.204774
  contributor:
    fullname: Hudgins
– ident: 10.1016/j.eswa.2013.02.023_b0035
  doi: 10.1109/CCECE.1998.685635
– volume: 9
  issue: 24
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0090
  article-title: A novel approach to surface electromyography: An exploratory study of electrode-pair selection based on signal characteristics
  publication-title: Journal of NeuroEngineering and Rehabilitation
  contributor:
    fullname: Kendell
– volume: 7
  issue: 21
  year: 2010
  ident: 10.1016/j.eswa.2013.02.023_b0175
  article-title: Study of stability of time-domain features for electromyographic pattern recognition
  publication-title: Journal of NeuroEngineering and Rehabilitation
  contributor:
    fullname: Tkach
– ident: 10.1016/j.eswa.2013.02.023_b0085
  doi: 10.1109/IEMBS.2010.5627288
– volume: 9
  start-page: 1250007
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0185
  article-title: Dynamic hand motion recognition based on transient and steady-state EMG signals
  publication-title: International Journal of Humanoid Robotics
  doi: 10.1142/S0219843612500077
  contributor:
    fullname: Yang
– volume: 30
  start-page: 459
  issue: 4–6
  year: 2002
  ident: 10.1016/j.eswa.2013.02.023_b0205
  article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal
  publication-title: Critical Reviews in Biomedical Engineering
  doi: 10.1615/CritRevBiomedEng.v30.i456.80
  contributor:
    fullname: Zecca
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2013.02.023_b0025
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– ident: 10.1016/j.eswa.2013.02.023_b0180
  doi: 10.1007/11754336_6
– volume: 38
  start-page: 1798
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0065
  article-title: A comparative study of wavelet families for classification of wrist motions
  publication-title: Computers and Electrical Engineering
  doi: 10.1016/j.compeleceng.2012.08.009
  contributor:
    fullname: Hariharan
– volume: 3
  start-page: 324
  issue: 4
  year: 1995
  ident: 10.1016/j.eswa.2013.02.023_b0200
  article-title: EMG feature evaluation for movement control of upper extremity prostheses
  publication-title: IEEE Transactions on Rehabilitation Engineering
  doi: 10.1109/86.481972
  contributor:
    fullname: Zardoshti-Kermani
– ident: 10.1016/j.eswa.2013.02.023_b0225
  doi: 10.1109/IROS.2006.282425
– volume: 40
  start-page: 648
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0080
  article-title: Estimation of grasping force from features of intramuscular EMG signals with mirrored bilateral training
  publication-title: Annals of Biomedical Engineering
  doi: 10.1007/s10439-011-0438-7
  contributor:
    fullname: Kamavuako
– volume: 122
  start-page: 27
  issue: 6
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0145
  article-title: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification
  publication-title: Elektronika ir Elektrotechnika
  doi: 10.5755/j01.eee.122.6.1816
  contributor:
    fullname: Phinyomark
– ident: 10.1016/j.eswa.2013.02.023_b0005
– ident: 10.1016/j.eswa.2013.02.023_b0220
  doi: 10.1109/ROBIO.2006.340150
– volume: 90
  start-page: 88
  year: 2013
  ident: 10.1016/j.eswa.2013.02.023_b0115
  article-title: A note on the probability distribution function of the surface electromyogram signal
  publication-title: Brain Research Bulletin
  doi: 10.1016/j.brainresbull.2012.09.012
  contributor:
    fullname: Nazarpour
– volume: 2
  start-page: 275
  issue: 4
  year: 2007
  ident: 10.1016/j.eswa.2013.02.023_b0120
  article-title: Myoelectric control systems–A survey
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.07.009
  contributor:
    fullname: Oskoei
– volume: 278
  start-page: H2039
  issue: 6
  year: 2000
  ident: 10.1016/j.eswa.2013.02.023_b0160
  article-title: Physiological time-series analysis using approximate entropy and sample entropy
  publication-title: American Journal of Physiology
  contributor:
    fullname: Richman
– ident: 10.1016/j.eswa.2013.02.023_b0015
  doi: 10.1145/1731903.1731924
– volume: 11
  start-page: 740
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2013.02.023_b0100
  article-title: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions
  publication-title: Current Applied Physics
  doi: 10.1016/j.cap.2010.11.051
  contributor:
    fullname: Kim
– volume: 18
  start-page: 645
  issue: 4
  year: 2011
  ident: 10.1016/j.eswa.2013.02.023_b0135
  article-title: Critical exponent analysis applied to surface electromyography (EMG) signals for gesture recognition
  publication-title: Metrology and Measurement Systems
  doi: 10.2478/v10178-011-0061-9
  contributor:
    fullname: Phinyomark
– volume: 59
  start-page: 645
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0195
  article-title: Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2177662
  contributor:
    fullname: Young
– ident: 10.1016/j.eswa.2013.02.023_b0105
  doi: 10.1109/ICRA.2012.6225047
– volume: 39
  start-page: 11156
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0155
  article-title: Fractal analysis features for weak and single-channel upper-limb EMG signals
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.03.039
  contributor:
    fullname: Phinyomark
– volume: 19
  start-page: 840
  issue: 5
  year: 2009
  ident: 10.1016/j.eswa.2013.02.023_b0170
  article-title: Fractal analysis of surface electromyography signals: a novel power spectrum-based method
  publication-title: Journal of Electromyography and Kinesiology
  doi: 10.1016/j.jelekin.2008.05.004
  contributor:
    fullname: Talebinejad
– volume: 7
  issue: 53
  year: 2010
  ident: 10.1016/j.eswa.2013.02.023_b0010
  article-title: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors
  publication-title: Journal of NeuroEngineering and Rehabilitation
  contributor:
    fullname: Arjunan
– ident: 10.1016/j.eswa.2013.02.023_b0165
  doi: 10.1145/1622176.1622208
– volume: 58
  start-page: 2537
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2013.02.023_b0190
  article-title: The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2011.2159216
  contributor:
    fullname: Young
– volume: 55
  start-page: 1956
  issue: 8
  year: 2008
  ident: 10.1016/j.eswa.2013.02.023_b0125
  article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2008.919734
  contributor:
    fullname: Oskoei
– volume: 39
  start-page: 7420
  issue: 8
  year: 2012
  ident: 10.1016/j.eswa.2013.02.023_b0150
  article-title: Feature reduction and selection for EMG signal classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.01.102
  contributor:
    fullname: Phinyomark
– ident: 10.1016/j.eswa.2013.02.023_b0210
  doi: 10.1007/978-3-540-77413-6_11
– volume: 8
  issue: 25
  year: 2011
  ident: 10.1016/j.eswa.2013.02.023_b0110
  article-title: Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses
  publication-title: Journal of NeuroEngineering and Rehabilitation
  contributor:
    fullname: Lorrain
SSID ssj0017007
Score 2.6269598
Snippet ► The medium-term robustness of EMG signals for prosthetic control is investigated. ► The effect of 50 EMG features has been extensively examined. ► A single...
In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there...
SourceID hal
proquest
crossref
pascalfrancis
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4832
SubjectTerms Applied sciences
Biological and medical sciences
Biomechanics
Classification
Classifiers
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Data processing. List processing. Character string processing
Electrodiagnosis. Electric activity recording
Electromyography (EMG)
Engineering Sciences
Entropy
Exact sciences and technology
Expert systems
Feature extraction
Investigative techniques, diagnostic techniques (general aspects)
Linear discriminant analysis
Mechanics
Medical sciences
Memory organisation. Data processing
Myoelectric control
Nervous system
Physics
Retraining
Robustness
Sample entropy
Software
Waveforms
Title EMG feature evaluation for improving myoelectric pattern recognition robustness
URI https://dx.doi.org/10.1016/j.eswa.2013.02.023
https://search.proquest.com/docview/1448720842
https://search.proquest.com/docview/1513472063
https://search.proquest.com/docview/1701038035
https://search.proquest.com/docview/1701090029
https://hal.science/hal-00831643
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLba7QUJcUeUy2QQb1Wm2Inj5LGCQkFchDakvUVO4owWlky9DPXfc05sJ2ET5SIhVVFrubn4fLE_nyshz1UcB5HkhRfxxPdgPRZepvzMyxUvpZRlohQGJ8-O5IeT-OU0nA4GrnJM1_ZfJQ1tIGuMnP0LabcnhQb4DjKHI0gdjn8k9-n71-NSN-k6e6m8G2_CeatAONvWpv7NPMfMqqgUHLeuRNB7WWeb1bpy3hmL1l9PL9c2-bMLi-sZwHsWhmpbn1kv7El1-rXujP2fNmpufYqxpkcbKIR2_6yuqrmtBLb9djFvQdfMaNqoy006BOcOYBUWWDwi8UzIptGiuUiazm3JqCOlFzJTsedQm8k4loEXSVNB0c3WJrmTQyXvzb1hbDWl2v40Xa-sEUZdsTjUq--YeIoFTdJWE_V8Kff2Ed4W3hUa_YAriyHZ53BDMKHuT95MT962Bivpm8h89xg2Psu4El6-0q840PALOuNeP1creD9LU1jlCkdoiM_xLXLD7ljoxEDtNhno6g656aqBULs43CUfAXnUIo92yKOAPNoij_aQRy3yaA95tEPePfL51fT4xcyz5Tq8HEj02ktKEfIMrgOUJwq0ZoWIgXxHsEOQARDBEtiiKhOg0IkuZRwxDezJhw2C4KoQhR_cJ3tVXekHhOKmIC8ky1jAQpbEmSojwXQmEpbnmSxGZOwGMD03WVlS5664SHG4Uxzu1OfwCUZEuDFOLa80fDEFSOz83zMQSHsBTMQ-m7xLsa0p0Adk_oKNyMFP8mq740MnnIUj8tQJMIWpG-1xqtL1ZgW77jCW3I9DvqOPwFhvDhuJHX0kFmuJ_UD8pk-CNviH_zgaj8i17m1-TPbWy41-QoarYnNgX4Yfc9LkZw
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMG+feature+evaluation+for+improving+myoelectric+pattern+recognition+robustness&rft.jtitle=Expert+systems+with+applications&rft.au=Phinyomark%2C+Angkoon&rft.au=Quaine%2C+Franck&rft.au=Charbonnier%2C+Sylvie&rft.au=Serviere%2C+Christine&rft.date=2013-09-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=40&rft.issue=12&rft.spage=4832&rft.epage=4840&rft_id=info:doi/10.1016%2Fj.eswa.2013.02.023&rft.externalDocID=S0957417413001395
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon