EMG feature evaluation for improving myoelectric pattern recognition robustness
► The medium-term robustness of EMG signals for prosthetic control is investigated. ► The effect of 50 EMG features has been extensively examined. ► A single optimal robust EMG feature is sample entropy. ► Linear discriminant analysis is better than other state-of-the-art classifiers in robustness....
Saved in:
Published in: | Expert systems with applications Vol. 40; no. 12; pp. 4832 - 4840 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier Ltd
15-09-2013
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | ► The medium-term robustness of EMG signals for prosthetic control is investigated. ► The effect of 50 EMG features has been extensively examined. ► A single optimal robust EMG feature is sample entropy. ► Linear discriminant analysis is better than other state-of-the-art classifiers in robustness. ► Average accuracy is 98.87% without retraining classifier for EMG recorded for 21days.
In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there is a gap between the classification accuracy and the usability of practical applications of myoelectric control, especially the effect of long-term usage. This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21days. The most stable single feature and multiple feature sets are presented with the optimum configuration of myoelectric control, i.e. data segmentation and classifier. The result shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier. The averaged test classification accuracy is 93.37%, when trained in only initial first day. It brings only 2.45% decrease compared with retraining schemes. Increasing number of features to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square and waveform length, increase the classification accuracy to 98.87%. The proposed techniques achieve to maintain the high accuracy without the retraining scheme. Additionally, this continuous classification allows the real-time operation. |
---|---|
AbstractList | ► The medium-term robustness of EMG signals for prosthetic control is investigated. ► The effect of 50 EMG features has been extensively examined. ► A single optimal robust EMG feature is sample entropy. ► Linear discriminant analysis is better than other state-of-the-art classifiers in robustness. ► Average accuracy is 98.87% without retraining classifier for EMG recorded for 21days.
In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there is a gap between the classification accuracy and the usability of practical applications of myoelectric control, especially the effect of long-term usage. This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21days. The most stable single feature and multiple feature sets are presented with the optimum configuration of myoelectric control, i.e. data segmentation and classifier. The result shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier. The averaged test classification accuracy is 93.37%, when trained in only initial first day. It brings only 2.45% decrease compared with retraining schemes. Increasing number of features to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square and waveform length, increase the classification accuracy to 98.87%. The proposed techniques achieve to maintain the high accuracy without the retraining scheme. Additionally, this continuous classification allows the real-time operation. In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there is a gap between the classification accuracy and the usability of practical applications of myoelectric control, especially the effect of long-term usage. This paper proposes and investigates the behavior of fifty time-domain and frequency-domain features to classify ten upper limb motions using electromyographic data recorded during 21 days. The most stable single feature and multiple feature sets are presented with the optimum configuration of myoelectric control, i.e. data segmentation and classifier. The result shows that sample entropy (SampEn) outperforms other features when compared using linear discriminant analysis (LDA), a robust classifier. The averaged test classification accuracy is 93.37%, when trained in only initial first day. It brings only 2.45% decrease compared with retraining schemes. Increasing number of features to four, which consists of SampEn, the fourth order cepstrum coefficients, root mean square and waveform length, increase the classification accuracy to 98.87%. The proposed techniques achieve to maintain the high accuracy without the retraining scheme. Additionally, this continuous classification allows the real-time operation. |
Author | Laurillau, Yann Charbonnier, Sylvie Serviere, Christine Quaine, Franck Phinyomark, Angkoon Tarpin-Bernard, Franck |
Author_xml | – sequence: 1 givenname: Angkoon surname: Phinyomark fullname: Phinyomark, Angkoon email: angkoon.p@hotmail.com, angkoon.phinyomark@gipsa-lab.grenoble-inp.fr organization: GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team, University Joseph Fourier, Grenoble, France – sequence: 2 givenname: Franck surname: Quaine fullname: Quaine, Franck email: franck.quaine@gipsa-lab.grenoble-inp.fr organization: GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team, University Joseph Fourier, Grenoble, France – sequence: 3 givenname: Sylvie surname: Charbonnier fullname: Charbonnier, Sylvie email: sylvie.charbonnier@gipsa-lab.grenoble-inp.fr organization: GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team, University Joseph Fourier, Grenoble, France – sequence: 4 givenname: Christine surname: Serviere fullname: Serviere, Christine email: christine.serviere@gipsa-lab.grenoble-inp.fr organization: GIPSA Laboratory, CNRS UMR 5216, Control System Department, SAIGA team, University Joseph Fourier, Grenoble, France – sequence: 5 givenname: Franck surname: Tarpin-Bernard fullname: Tarpin-Bernard, Franck email: franck.tarpin-bernard@imag.fr organization: LIG Laboratory, CNRS UMR 5217, University of Grenoble, Grenoble, France – sequence: 6 givenname: Yann surname: Laurillau fullname: Laurillau, Yann email: yann.laurillau@imag.fr organization: LIG Laboratory, CNRS UMR 5217, University of Grenoble, Grenoble, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27349214$$DView record in Pascal Francis https://hal.science/hal-00831643$$DView record in HAL |
BookMark | eNqNkU1r3DAQhkVJoZu0f6AnXwrtwdvRpyXoJYQ0CWzJpT0LRR6nWrzSVrI35N9XzoYcm8KAQDzzDjPPKTmJKSIhHymsKVD1dbvG8uDWDChfA6vF35AV1R1vVWf4CVmBkV0raCfekdNStgC0A-hW5Pbyx1UzoJvmjA0e3Di7KaTYDCk3YbfP6RDifbN7TDiin3Lwzd5NE-bYZPTpPoYnOqe7uUwRS3lP3g5uLPjh-T0jv75f_ry4bje3VzcX55vWS8Wm1gxSsLs6lzKtOCLtpTbMKMNZxwVTA2PCDUZRaXDotKIIXIEELZnrZQ_8jHw55v52o93nsHP50SYX7PX5xi5_AJpTJfiBVvbzka3r_JmxTHYXisdxdBHTXGw9BQUDwMz_oVwDl6-jknLRMVD8dVQIXUktWEXZEfU5lZJxeFmOgl1U261dVNtFtQVWa8n_9JzvinfjkF30obx0Lic1jIrKfTtyWM0cAmZbfMDosQ_V5mT7FP415i_Dvr3M |
CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2964678 crossref_primary_10_1016_j_matpr_2020_09_093 crossref_primary_10_1142_S0219843615500115 crossref_primary_10_1007_s13246_015_0399_5 crossref_primary_10_1016_j_eswa_2021_114977 crossref_primary_10_1186_s12938_015_0025_5 crossref_primary_10_1016_j_knosys_2021_108053 crossref_primary_10_1016_j_pmrj_2018_06_015 crossref_primary_10_3390_sym12040541 crossref_primary_10_3390_s22041604 crossref_primary_10_1016_j_jbmt_2020_06_037 crossref_primary_10_1016_j_eswa_2014_11_044 crossref_primary_10_1109_JSEN_2018_2813434 crossref_primary_10_3389_fbioe_2024_1329209 crossref_primary_10_1109_TBME_2022_3140269 crossref_primary_10_1007_s10916_020_01639_x crossref_primary_10_1166_jmihi_2021_3907 crossref_primary_10_1109_TAI_2020_3046160 crossref_primary_10_1109_TNSRE_2022_3144323 crossref_primary_10_1007_s11062_022_09922_y crossref_primary_10_15446_ing_investig_106558 crossref_primary_10_1109_TNSRE_2016_2563222 crossref_primary_10_1177_1729881418802138 crossref_primary_10_3390_s17030458 crossref_primary_10_1007_s12553_016_0153_3 crossref_primary_10_1016_j_bspc_2024_106105 crossref_primary_10_1016_j_bspc_2022_104042 crossref_primary_10_1016_j_biosystemseng_2019_04_021 crossref_primary_10_3390_s24092702 crossref_primary_10_1016_j_bspc_2019_101774 crossref_primary_10_3389_fnins_2019_00437 crossref_primary_10_1007_s42235_022_00171_7 crossref_primary_10_3390_app13179546 crossref_primary_10_3934_mbe_2021177 crossref_primary_10_1016_j_medengphy_2023_104060 crossref_primary_10_1016_j_bspc_2019_02_010 crossref_primary_10_1016_j_bspc_2019_02_011 crossref_primary_10_1155_2021_6693206 crossref_primary_10_1016_j_sna_2024_115687 crossref_primary_10_1109_TNSRE_2020_2999505 crossref_primary_10_3389_fnins_2017_00379 crossref_primary_10_3389_fnbot_2021_699174 crossref_primary_10_1007_s10916_017_0843_z crossref_primary_10_1007_s12555_021_0277_8 crossref_primary_10_1109_TBME_2016_2641584 crossref_primary_10_3389_fnins_2022_1020086 crossref_primary_10_1109_LRA_2021_3097257 crossref_primary_10_1007_s13042_019_00966_x crossref_primary_10_1016_j_ifacol_2017_08_1602 crossref_primary_10_1080_01691864_2020_1750480 crossref_primary_10_1109_ACCESS_2022_3212146 crossref_primary_10_3390_s22093380 crossref_primary_10_1080_01691864_2014_957723 crossref_primary_10_1186_1475_925X_13_8 crossref_primary_10_1109_JIOT_2022_3218739 crossref_primary_10_3233_JIFS_179549 crossref_primary_10_3390_s22228733 crossref_primary_10_1109_ACCESS_2020_3027497 crossref_primary_10_1109_JSEN_2022_3165988 crossref_primary_10_3390_s21227681 crossref_primary_10_1007_s11517_019_02073_z crossref_primary_10_1016_j_bspc_2015_02_009 crossref_primary_10_1016_j_compag_2018_08_033 crossref_primary_10_3390_s24072063 crossref_primary_10_1162_comj_a_00672 crossref_primary_10_3390_app7101050 crossref_primary_10_1007_s10439_018_02126_8 crossref_primary_10_3390_app10207144 crossref_primary_10_3390_bioengineering10020219 crossref_primary_10_3390_s18051388 crossref_primary_10_1088_1741_2560_12_4_046005 crossref_primary_10_3390_s21030763 crossref_primary_10_1007_s12652_021_03284_9 crossref_primary_10_1016_j_eswa_2017_08_024 crossref_primary_10_1007_s12065_020_00441_5 crossref_primary_10_3390_s24123970 crossref_primary_10_1142_S021951942340033X crossref_primary_10_1007_s11517_015_1443_z crossref_primary_10_1109_ACCESS_2020_2983608 crossref_primary_10_1109_TMRB_2019_2930352 crossref_primary_10_3389_fnins_2022_977328 crossref_primary_10_1088_1742_6596_1780_1_012035 crossref_primary_10_1109_JSEN_2023_3266872 crossref_primary_10_1142_S0219843619500130 crossref_primary_10_3389_fnbot_2022_923164 crossref_primary_10_1109_TBME_2019_2899222 crossref_primary_10_1088_1741_2552_abd461 crossref_primary_10_3390_s22207984 crossref_primary_10_1016_j_bspc_2023_105445 crossref_primary_10_1007_s11062_024_09948_4 crossref_primary_10_1016_j_medengphy_2024_104131 crossref_primary_10_1109_TNSRE_2023_3346462 crossref_primary_10_1016_j_engappai_2017_10_017 crossref_primary_10_1016_j_bbe_2017_11_001 crossref_primary_10_1016_j_bspc_2019_101588 crossref_primary_10_1080_1448837X_2021_1969729 crossref_primary_10_1142_S2424905X17400037 crossref_primary_10_3390_s19081864 crossref_primary_10_1007_s12541_021_00546_6 crossref_primary_10_1142_S0219843619410044 crossref_primary_10_2139_ssrn_4183382 crossref_primary_10_1016_j_eswa_2023_121635 crossref_primary_10_1007_s00339_018_2187_z crossref_primary_10_1142_S0219843620500255 crossref_primary_10_1109_TIM_2023_3277930 crossref_primary_10_1016_j_bspc_2016_08_017 crossref_primary_10_1016_j_eswa_2013_11_009 crossref_primary_10_2174_0115743624268804231222042118 crossref_primary_10_1109_THMS_2022_3175408 crossref_primary_10_3390_app11104678 crossref_primary_10_3390_s24082383 crossref_primary_10_1109_JSEN_2024_3377247 crossref_primary_10_1049_iet_spr_2020_0315 crossref_primary_10_3390_s21113872 crossref_primary_10_1109_JBHI_2022_3159792 crossref_primary_10_3390_s20030672 crossref_primary_10_1109_TNSRE_2020_3024947 crossref_primary_10_1109_TNSRE_2022_3194246 crossref_primary_10_3389_fnins_2021_621885 crossref_primary_10_3390_math10224387 crossref_primary_10_1109_TBME_2019_2900415 crossref_primary_10_3389_fnins_2021_733359 crossref_primary_10_1109_TNSRE_2021_3086401 crossref_primary_10_1016_j_bspc_2018_06_012 crossref_primary_10_1080_02522667_2014_961782 crossref_primary_10_1016_j_bbe_2019_07_007 crossref_primary_10_3390_s20041201 crossref_primary_10_1155_2022_8125186 crossref_primary_10_1109_TNSRE_2019_2936622 crossref_primary_10_1007_s40747_020_00232_6 crossref_primary_10_1155_2022_9594521 crossref_primary_10_1177_09544119221139593 crossref_primary_10_1109_JSEN_2021_3119074 crossref_primary_10_1109_TNSRE_2018_2870152 crossref_primary_10_3389_fnins_2021_704603 crossref_primary_10_1007_s11517_023_02917_9 crossref_primary_10_1109_ACCESS_2023_3279735 crossref_primary_10_1007_s12046_019_1231_9 crossref_primary_10_3390_s19204457 crossref_primary_10_1109_TNSRE_2016_2562180 crossref_primary_10_1016_j_bspc_2021_102587 crossref_primary_10_1109_TIM_2022_3217868 crossref_primary_10_1016_j_eswa_2016_05_031 crossref_primary_10_1080_10255842_2020_1861256 crossref_primary_10_1088_1741_2552_aafabc crossref_primary_10_1590_2446_4740_08516 crossref_primary_10_1016_j_heliyon_2024_e33133 crossref_primary_10_1016_j_bspc_2018_02_006 crossref_primary_10_1016_j_bspc_2019_101791 crossref_primary_10_1016_j_engappai_2014_07_009 crossref_primary_10_1088_1742_6596_2025_1_012006 crossref_primary_10_3390_bdcc2030021 crossref_primary_10_1109_ACCESS_2019_2946256 crossref_primary_10_3390_s23010263 crossref_primary_10_1007_s12553_019_00315_6 crossref_primary_10_1016_j_jii_2018_09_001 crossref_primary_10_1016_j_neucom_2021_10_126 crossref_primary_10_1145_3287039 crossref_primary_10_1109_TIM_2020_3036654 crossref_primary_10_1080_10255842_2024_2310726 crossref_primary_10_1109_ACCESS_2022_3214531 crossref_primary_10_1016_j_patcog_2020_107393 crossref_primary_10_1016_j_bspc_2020_101981 crossref_primary_10_1109_JSEN_2017_2778243 crossref_primary_10_1016_j_bspc_2021_102577 crossref_primary_10_1109_JSEN_2021_3099744 crossref_primary_10_3389_fbioe_2018_00164 crossref_primary_10_3390_s20061613 crossref_primary_10_1109_ACCESS_2024_3377111 crossref_primary_10_1109_LRA_2022_3142721 crossref_primary_10_1002_mus_28023 crossref_primary_10_1002_cpe_6903 crossref_primary_10_3390_s16081304 crossref_primary_10_1109_THMS_2022_3146053 crossref_primary_10_1109_TNSRE_2021_3095298 crossref_primary_10_1007_s42835_019_00083_3 crossref_primary_10_1016_j_iswa_2021_200045 crossref_primary_10_1088_1757_899X_745_1_012020 crossref_primary_10_4028_p_9cplm1 crossref_primary_10_1007_s13246_015_0395_9 crossref_primary_10_1016_j_asoc_2020_106616 crossref_primary_10_3390_app11041526 crossref_primary_10_1109_TCYB_2020_3016595 crossref_primary_10_1016_j_imu_2017_10_006 crossref_primary_10_1109_JBHI_2014_2380454 crossref_primary_10_1016_j_health_2022_100126 crossref_primary_10_1109_JSEN_2015_2450211 crossref_primary_10_1007_s00779_019_01285_2 crossref_primary_10_1109_TNSRE_2019_2896269 crossref_primary_10_1016_j_bspc_2022_104303 crossref_primary_10_1016_j_bspc_2022_104546 crossref_primary_10_1155_2017_8943850 crossref_primary_10_1016_j_eswa_2017_11_049 crossref_primary_10_1109_JBHI_2018_2864335 crossref_primary_10_1109_TII_2018_2869394 crossref_primary_10_1088_1741_2552_ad38dd crossref_primary_10_1109_JBHI_2022_3205058 crossref_primary_10_3233_JIFS_169794 crossref_primary_10_3390_mi13020191 crossref_primary_10_1109_ACCESS_2022_3170483 crossref_primary_10_1109_TNSRE_2023_3295658 crossref_primary_10_1109_TNSRE_2022_3196622 crossref_primary_10_3390_mi14030546 crossref_primary_10_3390_s23136233 crossref_primary_10_3390_s23052413 crossref_primary_10_1016_j_bspc_2023_104936 crossref_primary_10_1109_TBME_2023_3329826 crossref_primary_10_1007_s00521_019_04147_3 crossref_primary_10_1109_TBME_2023_3239687 crossref_primary_10_3389_fnins_2021_783539 crossref_primary_10_1109_TNSRE_2019_2959243 crossref_primary_10_1007_s40998_020_00353_1 crossref_primary_10_1177_0954411920935741 crossref_primary_10_1371_journal_pone_0192938 crossref_primary_10_1007_s00521_018_3909_z crossref_primary_10_34133_2021_9863761 crossref_primary_10_1109_THMS_2019_2925191 crossref_primary_10_3389_fbioe_2020_00158 crossref_primary_10_20965_jaciii_2022_p0269 crossref_primary_10_1002_aisy_202300207 crossref_primary_10_1016_j_bspc_2022_103487 crossref_primary_10_3390_s21227713 crossref_primary_10_3389_fnins_2022_666173 crossref_primary_10_3390_s19163548 crossref_primary_10_1016_j_eswa_2023_120445 crossref_primary_10_1109_JBHI_2019_2926307 crossref_primary_10_1007_s40010_014_0148_2 crossref_primary_10_3390_s20041031 crossref_primary_10_1109_TNSRE_2019_2946625 crossref_primary_10_1142_S0219843619410068 crossref_primary_10_1098_rsif_2017_0734 crossref_primary_10_1088_1741_2552_aae9d4 crossref_primary_10_1016_j_irbm_2023_100773 crossref_primary_10_3389_fnins_2023_1174760 crossref_primary_10_1016_j_array_2023_100277 crossref_primary_10_3390_electronics8111244 crossref_primary_10_1007_s12652_020_01980_6 crossref_primary_10_1016_j_bspc_2014_05_007 crossref_primary_10_1016_j_procs_2021_05_043 crossref_primary_10_1109_TIE_2015_2497212 crossref_primary_10_1109_TNSRE_2021_3059741 crossref_primary_10_3390_s18082497 crossref_primary_10_1016_j_eswa_2022_117785 crossref_primary_10_1016_j_heliyon_2022_e11931 crossref_primary_10_1109_JBHI_2020_3009383 crossref_primary_10_1109_TNSRE_2014_2305111 crossref_primary_10_1109_JBHI_2015_2490718 crossref_primary_10_3389_fnins_2023_1168888 crossref_primary_10_1016_j_jelekin_2018_04_004 crossref_primary_10_1016_j_cmpb_2020_105721 crossref_primary_10_1109_TII_2020_3041618 crossref_primary_10_3390_fractalfract7080620 crossref_primary_10_1142_S0219519420500542 crossref_primary_10_1109_LRA_2022_3191238 crossref_primary_10_3389_fnins_2015_00416 crossref_primary_10_3389_fnhum_2023_1101938 crossref_primary_10_1016_j_bspc_2023_105600 crossref_primary_10_1016_j_bspc_2018_05_036 crossref_primary_10_1109_TNSRE_2024_3383156 crossref_primary_10_1016_j_eswa_2020_113281 crossref_primary_10_3389_fnbot_2018_00058 crossref_primary_10_1016_j_bspc_2016_01_011 crossref_primary_10_3390_app12073374 crossref_primary_10_1038_s41598_024_54677_7 crossref_primary_10_1016_j_bspc_2021_102603 crossref_primary_10_1007_s11063_021_10738_w crossref_primary_10_1109_ACCESS_2022_3206436 crossref_primary_10_3390_sym9080147 crossref_primary_10_1142_S0129065718500259 crossref_primary_10_3233_JIFS_220811 crossref_primary_10_1016_j_promfg_2020_02_254 crossref_primary_10_1016_j_jelekin_2018_10_004 crossref_primary_10_1016_j_medengphy_2020_05_009 crossref_primary_10_1142_S0129065718500399 crossref_primary_10_3390_s20164359 crossref_primary_10_1109_TNSRE_2017_2687520 crossref_primary_10_3390_s19153309 crossref_primary_10_1109_TNSRE_2021_3077413 crossref_primary_10_1016_j_bspc_2020_101920 crossref_primary_10_1016_j_bspc_2022_104088 crossref_primary_10_1186_s12984_016_0183_0 crossref_primary_10_1016_j_bspc_2021_103134 crossref_primary_10_1016_j_bspc_2021_103005 crossref_primary_10_1109_ACCESS_2024_3384258 crossref_primary_10_1007_s11517_018_1807_2 crossref_primary_10_3390_bioengineering11050458 crossref_primary_10_1007_s11042_024_19130_x crossref_primary_10_3390_s22218134 crossref_primary_10_1049_csy2_12009 crossref_primary_10_3390_s18051615 crossref_primary_10_1016_j_engappai_2023_105853 crossref_primary_10_1109_JSEN_2020_3042540 crossref_primary_10_1109_ACCESS_2020_2994829 crossref_primary_10_3389_frobt_2021_710806 crossref_primary_10_1109_TNSRE_2022_3204781 crossref_primary_10_1016_j_medengphy_2024_104198 crossref_primary_10_1109_TMRB_2020_3046847 crossref_primary_10_1016_j_bspc_2023_104731 crossref_primary_10_1007_s13042_021_01482_7 crossref_primary_10_1109_TII_2020_3001612 crossref_primary_10_1109_TNSRE_2021_3082551 crossref_primary_10_1111_exsy_12381 crossref_primary_10_3389_fnhum_2022_911204 crossref_primary_10_1007_s10586_017_0985_2 crossref_primary_10_1186_s12938_020_00840_w crossref_primary_10_1088_1741_2560_13_4_046011 crossref_primary_10_1088_1741_2552_ac387f crossref_primary_10_3233_JIFS_234196 crossref_primary_10_1002_jsid_749 crossref_primary_10_1109_TNSRE_2018_2807360 crossref_primary_10_1016_j_ergon_2019_102905 crossref_primary_10_1016_j_compbiomed_2017_09_013 crossref_primary_10_1016_j_cmpb_2014_06_013 crossref_primary_10_1088_1742_6596_1450_1_012118 crossref_primary_10_3390_s23052715 crossref_primary_10_1109_JSEN_2024_3389963 crossref_primary_10_1016_j_health_2023_100296 crossref_primary_10_1080_08839514_2021_1990525 crossref_primary_10_1109_LRA_2021_3091698 crossref_primary_10_1111_exsy_12274 crossref_primary_10_1155_2014_781769 crossref_primary_10_1016_j_bspc_2023_105014 crossref_primary_10_1109_TNSRE_2020_3038374 crossref_primary_10_1115_1_4033835 crossref_primary_10_1155_2022_6414664 crossref_primary_10_1007_s42600_020_00080_w crossref_primary_10_1177_2055668320938588 crossref_primary_10_1016_j_eswa_2023_121224 crossref_primary_10_21307_ijssis_2017_906 crossref_primary_10_3389_fbioe_2023_1238210 |
Cites_doi | 10.1109/CISP.2011.6100025 10.1007/s13246-011-0079-z 10.1016/S1386-5056(97)00029-4 10.1109/BioRob.2012.6290901 10.1682/JRRD.2010.08.0161 10.1109/10.914793 10.1109/TNSRE.2011.2163529 10.1142/S0219477512500289 10.1016/j.jelekin.2012.06.005 10.1109/TBME.2009.2039480 10.1016/0165-0270(94)00164-C 10.1109/10.204774 10.1109/CCECE.1998.685635 10.1109/IEMBS.2010.5627288 10.1142/S0219843612500077 10.1615/CritRevBiomedEng.v30.i456.80 10.1023/A:1010933404324 10.1007/11754336_6 10.1016/j.compeleceng.2012.08.009 10.1109/86.481972 10.1109/IROS.2006.282425 10.1007/s10439-011-0438-7 10.5755/j01.eee.122.6.1816 10.1109/ROBIO.2006.340150 10.1016/j.brainresbull.2012.09.012 10.1016/j.bspc.2007.07.009 10.1145/1731903.1731924 10.1016/j.cap.2010.11.051 10.2478/v10178-011-0061-9 10.1109/TBME.2011.2177662 10.1109/ICRA.2012.6225047 10.1016/j.eswa.2012.03.039 10.1016/j.jelekin.2008.05.004 10.1145/1622176.1622208 10.1109/TBME.2011.2159216 10.1109/TBME.2008.919734 10.1016/j.eswa.2012.01.102 10.1007/978-3-540-77413-6_11 |
ContentType | Journal Article |
Copyright | 2013 Elsevier Ltd 2014 INIST-CNRS Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2013 Elsevier Ltd – notice: 2014 INIST-CNRS – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | IQODW AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC |
DOI | 10.1016/j.eswa.2013.02.023 |
DatabaseName | Pascal-Francis CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences Physics |
EISSN | 1873-6793 |
EndPage | 4840 |
ExternalDocumentID | oai_HAL_hal_00831643v1 10_1016_j_eswa_2013_02_023 27349214 S0957417413001395 |
GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 08R 29G AAAKG AALMO AAPBV AAQXK ABKBG ABPIF ABPTK ACNNM ADALY ADJOM ASPBG AVWKF AZFZN FEDTE FGOYB G-2 HLZ HVGLF HZ~ IPNFZ IQODW PQEST R2- SBC SET SEW WUQ XPP ZMT AAXKI AAYXX ADMUD AFJKZ AKRWK CITATION 7SC 8FD JQ2 L7M L~C L~D 1XC |
ID | FETCH-LOGICAL-c562t-9f542bfea12863ee1d58929693273426f224af96159ef7861e036050852ad5d03 |
ISSN | 0957-4174 |
IngestDate | Tue Oct 15 15:52:28 EDT 2024 Fri Oct 25 08:34:00 EDT 2024 Fri Oct 25 07:02:00 EDT 2024 Fri Oct 25 08:32:28 EDT 2024 Fri Oct 25 09:56:05 EDT 2024 Thu Sep 26 16:49:34 EDT 2024 Fri Nov 25 01:08:14 EST 2022 Fri Feb 23 02:26:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Myoelectric control Sample entropy Feature extraction Linear discriminant analysis Electromyography (EMG) Segmentation Time allowed High precision Continuous time Entropy Modeling Optimization Classification Selection criterion Electromyography Robustness Root mean square value Pattern extraction Discriminant analysis Pattern recognition Real time Long term Spectral analysis Cepstrum Usability |
Language | English |
License | CC BY 4.0 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c562t-9f542bfea12863ee1d58929693273426f224af96159ef7861e036050852ad5d03 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ORCID | 0000-0003-4108-045X 0000-0003-3295-0871 |
PQID | 1448720842 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_00831643v1 proquest_miscellaneous_1701090029 proquest_miscellaneous_1701038035 proquest_miscellaneous_1513472063 proquest_miscellaneous_1448720842 crossref_primary_10_1016_j_eswa_2013_02_023 pascalfrancis_primary_27349214 elsevier_sciencedirect_doi_10_1016_j_eswa_2013_02_023 |
PublicationCentury | 2000 |
PublicationDate | 2013-09-15 |
PublicationDateYYYYMMDD | 2013-09-15 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Expert systems with applications |
PublicationYear | 2013 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Oskoei, Hu (b0125) 2008; 55 Saponas, T. S., Tan, D. S., Morris, D., Balakrishnan, R., Turner, J., & Landay, J. A. (2009). Enabling always-available input with muscle-computer interfaces. In Zhao, J., Jiang, L., Cai, H., Liu, H., & Hirzinger, G. (2006a). A novel EMG motion pattern classifier based on wavelet transform and nonlinearlity analysis method. In (pp. 83–90). Jain, S., Singhal, G., Smith, R. J., Kaliki, R., & Thakor, N. (2012). Improving long term myoelectric decoding, using an adaptive classifier with label correction. In Hariharan, Fook, Sindhu, Ilias, Yaacob (b0065) 2012; 38 (pp. 167–176). Geethanjali, Ray (b0050) 2011; 34 Gitter, Czerniecki (b0055) 1995; 58 Kendell, Lemaire, Losier, Chan, Hudgins (b0090) 2012; 9 Zhao, J., Xie, Z., Jiang, L., Cai, H., Liu, H., & Hirzinger, G. (2006b). EMG control for a five-fingered underactuated prosthetic hand based on wavelet transform and sample entropy. In Phinyomark, Phukpattaranont, Limsakul (b0150) 2012; 39 (pp. 866–869). Anatomy of the human body [Image] (1918). Retrieved November 4, 2012, from Wikipedia. (pp. 1494–1499). . Fougner, Scheme, Chan, Englehart, Stavdahl (b0045) 2011; 19 Arjunan, Kumar (b0010) 2010; 7 Boschmann, A., Kaufmann, P., Platzner, M., & Winkler, M. (2009). Towards multi-movement hand prostheses: Combining adaptive classification with high precision sockets. In Breiman (b0025) 2001; 45 Phinyomark, Nuidod, Phukpattaranont, Limsakul (b0145) 2012; 122 Phinyomark, Phothisonothai, Phukpattaranont, Limsakul (b0135) 2011; 18 Richman, Moorman (b0160) 2000; 278 Zhang, Zhou (b0215) 2012; 22 Zhang, X., Chen, X., Zhao, Z. Y., Li, Q., Yang, J. H., Lantz, V., Wang, K. Q. (2007). An adaptive feature extractor for gesture SEMG recognition. In (pp. 532–537). Yang, Zhao, Jiang, Liu (b0185) 2012; 9 Young, Hargrove, Kuiken (b0195) 2012; 59 (pp. 2287–2292). Kim, Choi, Moon, Mun (b0100) 2011; 11 Gupta, Suryanarayanan, Reddy (b0060) 1997; 45 Liarokapis, M. V., Artemiadis, P. K., Katsiaris, P. T., Kyriakopoulos, K. J., & Manolakos, E. S. (2012). Learning human reach-to-grasp strategies: towards EMG-based control of robotic arm-hand systems. In Khushaba, Al-Ani, Al-Jumaily (b0095) 2010; 57 van den Broek, E. L., Schut, M. H., Westerink, J. H. D. M., van Herk, J., & Tuinenbreijer, K. (2006). Computing emotion awareness through facial electromyography. In Hudgins, Parker, Scott (b0070) 1993; 40 Phinyomark, Phukpattaranont, Limsakul (b0155) 2012; 39 Benko, H., Saponas, T. S., Morris, D., & Tan, D. (2009). Enhancing input on and above the interactive surface with muscle sensing. In (pp. 3215–3220). Ehtiati, T., Kinsner, W., & Moussavi, Z. K. (1998). Multifractal characterization of the electromyogram signals in presence of fatigue. In Kamavuako, Farina, Yoshida, Jensen (b0080) 2012; 40 (pp. 93–100). (pp. 6357–6360). Chen, L., Geng, Y., & Li, G. (2011). Effect of upper-limb positions on motion pattern recognition using electromyography. In Zardoshti-Kermani, Wheeler, Badie, Hashemi (b0200) 1995; 3 (pp. 139–142). Englehart, Hudgins, Parker (b0040) 2001; 48 Kaufmann, P., Englehart, K., & Platzner, M. (2010). Fluctuating EMG signals: investigating long-term effects of pattern matching algorithms. In Tkach, Huang, Kuiken (b0175) 2010; 7 (pp. 52–63). Peerdeman, Boere, Witteveen, in ‘t Veld, Hermens, Stramigioli (b0230) 2011; 48 Phinyomark, Phukpattaranont, Limsakul (b0140) 2012; 11 Young, Hargrove, Kuiken (b0190) 2011; 58 Zecca, Micera, Carrozza, Dario (b0205) 2002; 30 Lorrain, Jiang, Farina (b0110) 2011; 8 Nazarpour, Al-Timemy, Bugmann, Jackson (b0115) 2013; 90 Talebinejad, Chan, Miri, Dansereau (b0170) 2009; 19 Oskoei, Hu (b0120) 2007; 2 Arjunan (10.1016/j.eswa.2013.02.023_b0010) 2010; 7 Zhang (10.1016/j.eswa.2013.02.023_b0215) 2012; 22 Lorrain (10.1016/j.eswa.2013.02.023_b0110) 2011; 8 10.1016/j.eswa.2013.02.023_b0180 Kamavuako (10.1016/j.eswa.2013.02.023_b0080) 2012; 40 Phinyomark (10.1016/j.eswa.2013.02.023_b0145) 2012; 122 Gitter (10.1016/j.eswa.2013.02.023_b0055) 1995; 58 10.1016/j.eswa.2013.02.023_b0085 10.1016/j.eswa.2013.02.023_b0020 Peerdeman (10.1016/j.eswa.2013.02.023_b0230) 2011; 48 Phinyomark (10.1016/j.eswa.2013.02.023_b0135) 2011; 18 Yang (10.1016/j.eswa.2013.02.023_b0185) 2012; 9 Nazarpour (10.1016/j.eswa.2013.02.023_b0115) 2013; 90 Zardoshti-Kermani (10.1016/j.eswa.2013.02.023_b0200) 1995; 3 Geethanjali (10.1016/j.eswa.2013.02.023_b0050) 2011; 34 Talebinejad (10.1016/j.eswa.2013.02.023_b0170) 2009; 19 10.1016/j.eswa.2013.02.023_b0210 10.1016/j.eswa.2013.02.023_b0035 Fougner (10.1016/j.eswa.2013.02.023_b0045) 2011; 19 10.1016/j.eswa.2013.02.023_b0015 Hudgins (10.1016/j.eswa.2013.02.023_b0070) 1993; 40 Khushaba (10.1016/j.eswa.2013.02.023_b0095) 2010; 57 Breiman (10.1016/j.eswa.2013.02.023_b0025) 2001; 45 10.1016/j.eswa.2013.02.023_b0030 Zecca (10.1016/j.eswa.2013.02.023_b0205) 2002; 30 10.1016/j.eswa.2013.02.023_b0075 Kendell (10.1016/j.eswa.2013.02.023_b0090) 2012; 9 Oskoei (10.1016/j.eswa.2013.02.023_b0120) 2007; 2 Kim (10.1016/j.eswa.2013.02.023_b0100) 2011; 11 Gupta (10.1016/j.eswa.2013.02.023_b0060) 1997; 45 Phinyomark (10.1016/j.eswa.2013.02.023_b0140) 2012; 11 Richman (10.1016/j.eswa.2013.02.023_b0160) 2000; 278 Young (10.1016/j.eswa.2013.02.023_b0190) 2011; 58 Hariharan (10.1016/j.eswa.2013.02.023_b0065) 2012; 38 Oskoei (10.1016/j.eswa.2013.02.023_b0125) 2008; 55 Young (10.1016/j.eswa.2013.02.023_b0195) 2012; 59 10.1016/j.eswa.2013.02.023_b0165 10.1016/j.eswa.2013.02.023_b0220 Tkach (10.1016/j.eswa.2013.02.023_b0175) 2010; 7 Phinyomark (10.1016/j.eswa.2013.02.023_b0150) 2012; 39 Phinyomark (10.1016/j.eswa.2013.02.023_b0155) 2012; 39 10.1016/j.eswa.2013.02.023_b0005 10.1016/j.eswa.2013.02.023_b0225 10.1016/j.eswa.2013.02.023_b0105 Englehart (10.1016/j.eswa.2013.02.023_b0040) 2001; 48 |
References_xml | – volume: 59 start-page: 645 year: 2012 end-page: 652 ident: b0195 article-title: Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration publication-title: IEEE Transactions on Biomedical Engineering contributor: fullname: Kuiken – volume: 45 start-page: 185 year: 1997 end-page: 192 ident: b0060 article-title: Fractal analysis of surface EMG signals from the biceps publication-title: International Journal of Medical Informatics contributor: fullname: Reddy – volume: 55 start-page: 1956 year: 2008 end-page: 1965 ident: b0125 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Transactions on Biomedical Engineering contributor: fullname: Hu – volume: 90 start-page: 88 year: 2013 end-page: 91 ident: b0115 article-title: A note on the probability distribution function of the surface electromyogram signal publication-title: Brain Research Bulletin contributor: fullname: Jackson – volume: 58 start-page: 103 year: 1995 end-page: 108 ident: b0055 article-title: Fractal analysis of the electromyographic interference pattern publication-title: Journal of Neuroscience Methods contributor: fullname: Czerniecki – volume: 11 start-page: 740 year: 2011 end-page: 745 ident: b0100 article-title: Comparison of publication-title: Current Applied Physics contributor: fullname: Mun – volume: 278 start-page: H2039 year: 2000 end-page: H2049 ident: b0160 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: American Journal of Physiology contributor: fullname: Moorman – volume: 58 start-page: 2537 year: 2011 end-page: 2544 ident: b0190 article-title: The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift publication-title: IEEE Transactions on Biomedical Engineering contributor: fullname: Kuiken – volume: 38 start-page: 1798 year: 2012 end-page: 1807 ident: b0065 article-title: A comparative study of wavelet families for classification of wrist motions publication-title: Computers and Electrical Engineering contributor: fullname: Yaacob – volume: 122 start-page: 27 year: 2012 end-page: 32 ident: b0145 article-title: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification publication-title: Elektronika ir Elektrotechnika contributor: fullname: Limsakul – volume: 19 start-page: 840 year: 2009 end-page: 850 ident: b0170 article-title: Fractal analysis of surface electromyography signals: a novel power spectrum-based method publication-title: Journal of Electromyography and Kinesiology contributor: fullname: Dansereau – volume: 7 year: 2010 ident: b0010 article-title: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors publication-title: Journal of NeuroEngineering and Rehabilitation contributor: fullname: Kumar – volume: 22 start-page: 901 year: 2012 end-page: 907 ident: b0215 article-title: Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes publication-title: Journal of Electromyography and Kinesiology contributor: fullname: Zhou – volume: 19 start-page: 644 year: 2011 end-page: 651 ident: b0045 article-title: Resolving the limb position effect in myoelectric pattern recognition publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering contributor: fullname: Stavdahl – volume: 7 year: 2010 ident: b0175 article-title: Study of stability of time-domain features for electromyographic pattern recognition publication-title: Journal of NeuroEngineering and Rehabilitation contributor: fullname: Kuiken – volume: 18 start-page: 645 year: 2011 end-page: 658 ident: b0135 article-title: Critical exponent analysis applied to surface electromyography (EMG) signals for gesture recognition publication-title: Metrology and Measurement Systems contributor: fullname: Limsakul – volume: 8 year: 2011 ident: b0110 article-title: Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses publication-title: Journal of NeuroEngineering and Rehabilitation contributor: fullname: Farina – volume: 40 start-page: 648 year: 2012 end-page: 656 ident: b0080 article-title: Estimation of grasping force from features of intramuscular EMG signals with mirrored bilateral training publication-title: Annals of Biomedical Engineering contributor: fullname: Jensen – volume: 3 start-page: 324 year: 1995 end-page: 333 ident: b0200 article-title: EMG feature evaluation for movement control of upper extremity prostheses publication-title: IEEE Transactions on Rehabilitation Engineering contributor: fullname: Hashemi – volume: 39 start-page: 11156 year: 2012 end-page: 11163 ident: b0155 article-title: Fractal analysis features for weak and single-channel upper-limb EMG signals publication-title: Expert Systems with Applications contributor: fullname: Limsakul – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0025 article-title: Random forests publication-title: Machine Learning contributor: fullname: Breiman – volume: 39 start-page: 7420 year: 2012 end-page: 7431 ident: b0150 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Systems with Applications contributor: fullname: Limsakul – volume: 2 start-page: 275 year: 2007 end-page: 294 ident: b0120 article-title: Myoelectric control systems–A survey publication-title: Biomedical Signal Processing and Control contributor: fullname: Hu – volume: 48 start-page: 302 year: 2001 end-page: 311 ident: b0040 article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control publication-title: IEEE Transactions on Biomedical Engineering contributor: fullname: Parker – volume: 40 start-page: 82 year: 1993 end-page: 94 ident: b0070 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Transactions on Biomedical Engineering contributor: fullname: Scott – volume: 57 start-page: 1410 year: 2010 end-page: 1419 ident: b0095 article-title: Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control publication-title: IEEE Transactions on Biomedical Engineering contributor: fullname: Al-Jumaily – volume: 34 start-page: 419 year: 2011 end-page: 427 ident: b0050 article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand publication-title: Australiasian College of Physical Scientists and Engineers in Medicine contributor: fullname: Ray – volume: 9 year: 2012 ident: b0090 article-title: A novel approach to surface electromyography: An exploratory study of electrode-pair selection based on signal characteristics publication-title: Journal of NeuroEngineering and Rehabilitation contributor: fullname: Hudgins – volume: 30 start-page: 459 year: 2002 end-page: 485 ident: b0205 article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal publication-title: Critical Reviews in Biomedical Engineering contributor: fullname: Dario – volume: 11 start-page: 1250028 year: 2012 ident: b0140 article-title: Investigating long-term effects of feature extraction methods for continuous EMG pattern classification publication-title: Fluctuation and Noise Letters contributor: fullname: Limsakul – volume: 48 start-page: 719 year: 2011 end-page: 737 ident: b0230 article-title: Myoelectric forearm prostheses: State of the art from a user-centered perspective publication-title: Journal of Rehabilitation Research and Development contributor: fullname: Stramigioli – volume: 9 start-page: 1250007 year: 2012 ident: b0185 article-title: Dynamic hand motion recognition based on transient and steady-state EMG signals publication-title: International Journal of Humanoid Robotics contributor: fullname: Liu – ident: 10.1016/j.eswa.2013.02.023_b0030 doi: 10.1109/CISP.2011.6100025 – volume: 34 start-page: 419 issue: 3 year: 2011 ident: 10.1016/j.eswa.2013.02.023_b0050 article-title: Identification of motion from multi-channel EMG signals for control of prosthetic hand publication-title: Australiasian College of Physical Scientists and Engineers in Medicine doi: 10.1007/s13246-011-0079-z contributor: fullname: Geethanjali – volume: 45 start-page: 185 issue: 3 year: 1997 ident: 10.1016/j.eswa.2013.02.023_b0060 article-title: Fractal analysis of surface EMG signals from the biceps publication-title: International Journal of Medical Informatics doi: 10.1016/S1386-5056(97)00029-4 contributor: fullname: Gupta – ident: 10.1016/j.eswa.2013.02.023_b0075 doi: 10.1109/BioRob.2012.6290901 – volume: 48 start-page: 719 issue: 6 year: 2011 ident: 10.1016/j.eswa.2013.02.023_b0230 article-title: Myoelectric forearm prostheses: State of the art from a user-centered perspective publication-title: Journal of Rehabilitation Research and Development doi: 10.1682/JRRD.2010.08.0161 contributor: fullname: Peerdeman – volume: 48 start-page: 302 issue: 3 year: 2001 ident: 10.1016/j.eswa.2013.02.023_b0040 article-title: A wavelet-based continuous classification scheme for multifunction myoelectric control publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.914793 contributor: fullname: Englehart – volume: 19 start-page: 644 issue: 6 year: 2011 ident: 10.1016/j.eswa.2013.02.023_b0045 article-title: Resolving the limb position effect in myoelectric pattern recognition publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2011.2163529 contributor: fullname: Fougner – volume: 11 start-page: 1250028 issue: 4 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0140 article-title: Investigating long-term effects of feature extraction methods for continuous EMG pattern classification publication-title: Fluctuation and Noise Letters doi: 10.1142/S0219477512500289 contributor: fullname: Phinyomark – volume: 22 start-page: 901 issue: 6 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0215 article-title: Sample entropy analysis of surface EMG for improved muscle activity onset detection against spurious background spikes publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/j.jelekin.2012.06.005 contributor: fullname: Zhang – ident: 10.1016/j.eswa.2013.02.023_b0020 – volume: 57 start-page: 1410 issue: 6 year: 2010 ident: 10.1016/j.eswa.2013.02.023_b0095 article-title: Orthogonal fuzzy neighborhood discriminant analysis for multifunction myoelectric hand control publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2009.2039480 contributor: fullname: Khushaba – volume: 58 start-page: 103 issue: 1–2 year: 1995 ident: 10.1016/j.eswa.2013.02.023_b0055 article-title: Fractal analysis of the electromyographic interference pattern publication-title: Journal of Neuroscience Methods doi: 10.1016/0165-0270(94)00164-C contributor: fullname: Gitter – volume: 40 start-page: 82 issue: 1 year: 1993 ident: 10.1016/j.eswa.2013.02.023_b0070 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.204774 contributor: fullname: Hudgins – ident: 10.1016/j.eswa.2013.02.023_b0035 doi: 10.1109/CCECE.1998.685635 – volume: 9 issue: 24 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0090 article-title: A novel approach to surface electromyography: An exploratory study of electrode-pair selection based on signal characteristics publication-title: Journal of NeuroEngineering and Rehabilitation contributor: fullname: Kendell – volume: 7 issue: 21 year: 2010 ident: 10.1016/j.eswa.2013.02.023_b0175 article-title: Study of stability of time-domain features for electromyographic pattern recognition publication-title: Journal of NeuroEngineering and Rehabilitation contributor: fullname: Tkach – ident: 10.1016/j.eswa.2013.02.023_b0085 doi: 10.1109/IEMBS.2010.5627288 – volume: 9 start-page: 1250007 issue: 1 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0185 article-title: Dynamic hand motion recognition based on transient and steady-state EMG signals publication-title: International Journal of Humanoid Robotics doi: 10.1142/S0219843612500077 contributor: fullname: Yang – volume: 30 start-page: 459 issue: 4–6 year: 2002 ident: 10.1016/j.eswa.2013.02.023_b0205 article-title: Control of multifunctional prosthetic hands by processing the electromyographic signal publication-title: Critical Reviews in Biomedical Engineering doi: 10.1615/CritRevBiomedEng.v30.i456.80 contributor: fullname: Zecca – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.eswa.2013.02.023_b0025 article-title: Random forests publication-title: Machine Learning doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – ident: 10.1016/j.eswa.2013.02.023_b0180 doi: 10.1007/11754336_6 – volume: 38 start-page: 1798 issue: 6 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0065 article-title: A comparative study of wavelet families for classification of wrist motions publication-title: Computers and Electrical Engineering doi: 10.1016/j.compeleceng.2012.08.009 contributor: fullname: Hariharan – volume: 3 start-page: 324 issue: 4 year: 1995 ident: 10.1016/j.eswa.2013.02.023_b0200 article-title: EMG feature evaluation for movement control of upper extremity prostheses publication-title: IEEE Transactions on Rehabilitation Engineering doi: 10.1109/86.481972 contributor: fullname: Zardoshti-Kermani – ident: 10.1016/j.eswa.2013.02.023_b0225 doi: 10.1109/IROS.2006.282425 – volume: 40 start-page: 648 issue: 3 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0080 article-title: Estimation of grasping force from features of intramuscular EMG signals with mirrored bilateral training publication-title: Annals of Biomedical Engineering doi: 10.1007/s10439-011-0438-7 contributor: fullname: Kamavuako – volume: 122 start-page: 27 issue: 6 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0145 article-title: Feature extraction and reduction of wavelet transform coefficients for EMG pattern classification publication-title: Elektronika ir Elektrotechnika doi: 10.5755/j01.eee.122.6.1816 contributor: fullname: Phinyomark – ident: 10.1016/j.eswa.2013.02.023_b0005 – ident: 10.1016/j.eswa.2013.02.023_b0220 doi: 10.1109/ROBIO.2006.340150 – volume: 90 start-page: 88 year: 2013 ident: 10.1016/j.eswa.2013.02.023_b0115 article-title: A note on the probability distribution function of the surface electromyogram signal publication-title: Brain Research Bulletin doi: 10.1016/j.brainresbull.2012.09.012 contributor: fullname: Nazarpour – volume: 2 start-page: 275 issue: 4 year: 2007 ident: 10.1016/j.eswa.2013.02.023_b0120 article-title: Myoelectric control systems–A survey publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.07.009 contributor: fullname: Oskoei – volume: 278 start-page: H2039 issue: 6 year: 2000 ident: 10.1016/j.eswa.2013.02.023_b0160 article-title: Physiological time-series analysis using approximate entropy and sample entropy publication-title: American Journal of Physiology contributor: fullname: Richman – ident: 10.1016/j.eswa.2013.02.023_b0015 doi: 10.1145/1731903.1731924 – volume: 11 start-page: 740 issue: 3 year: 2011 ident: 10.1016/j.eswa.2013.02.023_b0100 article-title: Comparison of k-nearest neighbor, quadratic discriminant and linear discriminant analysis in classification of electromyogram signals based on the wrist-motion directions publication-title: Current Applied Physics doi: 10.1016/j.cap.2010.11.051 contributor: fullname: Kim – volume: 18 start-page: 645 issue: 4 year: 2011 ident: 10.1016/j.eswa.2013.02.023_b0135 article-title: Critical exponent analysis applied to surface electromyography (EMG) signals for gesture recognition publication-title: Metrology and Measurement Systems doi: 10.2478/v10178-011-0061-9 contributor: fullname: Phinyomark – volume: 59 start-page: 645 issue: 3 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0195 article-title: Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2011.2177662 contributor: fullname: Young – ident: 10.1016/j.eswa.2013.02.023_b0105 doi: 10.1109/ICRA.2012.6225047 – volume: 39 start-page: 11156 issue: 12 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0155 article-title: Fractal analysis features for weak and single-channel upper-limb EMG signals publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.03.039 contributor: fullname: Phinyomark – volume: 19 start-page: 840 issue: 5 year: 2009 ident: 10.1016/j.eswa.2013.02.023_b0170 article-title: Fractal analysis of surface electromyography signals: a novel power spectrum-based method publication-title: Journal of Electromyography and Kinesiology doi: 10.1016/j.jelekin.2008.05.004 contributor: fullname: Talebinejad – volume: 7 issue: 53 year: 2010 ident: 10.1016/j.eswa.2013.02.023_b0010 article-title: Decoding subtle forearm flexions using fractal features of surface electromyogram from single and multiple sensors publication-title: Journal of NeuroEngineering and Rehabilitation contributor: fullname: Arjunan – ident: 10.1016/j.eswa.2013.02.023_b0165 doi: 10.1145/1622176.1622208 – volume: 58 start-page: 2537 issue: 9 year: 2011 ident: 10.1016/j.eswa.2013.02.023_b0190 article-title: The effects of electrode size and orientation on the sensitivity of myoelectric pattern recognition systems to electrode shift publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2011.2159216 contributor: fullname: Young – volume: 55 start-page: 1956 issue: 8 year: 2008 ident: 10.1016/j.eswa.2013.02.023_b0125 article-title: Support vector machine-based classification scheme for myoelectric control applied to upper limb publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2008.919734 contributor: fullname: Oskoei – volume: 39 start-page: 7420 issue: 8 year: 2012 ident: 10.1016/j.eswa.2013.02.023_b0150 article-title: Feature reduction and selection for EMG signal classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.01.102 contributor: fullname: Phinyomark – ident: 10.1016/j.eswa.2013.02.023_b0210 doi: 10.1007/978-3-540-77413-6_11 – volume: 8 issue: 25 year: 2011 ident: 10.1016/j.eswa.2013.02.023_b0110 article-title: Influence of the training set on the accuracy of surface EMG classification in dynamic contractions for the control of multifunction prostheses publication-title: Journal of NeuroEngineering and Rehabilitation contributor: fullname: Lorrain |
SSID | ssj0017007 |
Score | 2.6269598 |
Snippet | ► The medium-term robustness of EMG signals for prosthetic control is investigated. ► The effect of 50 EMG features has been extensively examined. ► A single... In pattern recognition-based myoelectric control, high accuracy for multiple discriminated motions is presented in most of related literature. However, there... |
SourceID | hal proquest crossref pascalfrancis elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 4832 |
SubjectTerms | Applied sciences Biological and medical sciences Biomechanics Classification Classifiers Computer science; control theory; systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Electrodiagnosis. Electric activity recording Electromyography (EMG) Engineering Sciences Entropy Exact sciences and technology Expert systems Feature extraction Investigative techniques, diagnostic techniques (general aspects) Linear discriminant analysis Mechanics Medical sciences Memory organisation. Data processing Myoelectric control Nervous system Physics Retraining Robustness Sample entropy Software Waveforms |
Title | EMG feature evaluation for improving myoelectric pattern recognition robustness |
URI | https://dx.doi.org/10.1016/j.eswa.2013.02.023 https://search.proquest.com/docview/1448720842 https://search.proquest.com/docview/1513472063 https://search.proquest.com/docview/1701038035 https://search.proquest.com/docview/1701090029 https://hal.science/hal-00831643 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLba7QUJcUeUy2QQb1Wm2Inj5LGCQkFchDakvUVO4owWlky9DPXfc05sJ2ET5SIhVVFrubn4fLE_nyshz1UcB5HkhRfxxPdgPRZepvzMyxUvpZRlohQGJ8-O5IeT-OU0nA4GrnJM1_ZfJQ1tIGuMnP0LabcnhQb4DjKHI0gdjn8k9-n71-NSN-k6e6m8G2_CeatAONvWpv7NPMfMqqgUHLeuRNB7WWeb1bpy3hmL1l9PL9c2-bMLi-sZwHsWhmpbn1kv7El1-rXujP2fNmpufYqxpkcbKIR2_6yuqrmtBLb9djFvQdfMaNqoy006BOcOYBUWWDwi8UzIptGiuUiazm3JqCOlFzJTsedQm8k4loEXSVNB0c3WJrmTQyXvzb1hbDWl2v40Xa-sEUZdsTjUq--YeIoFTdJWE_V8Kff2Ed4W3hUa_YAriyHZ53BDMKHuT95MT962Bivpm8h89xg2Psu4El6-0q840PALOuNeP1creD9LU1jlCkdoiM_xLXLD7ljoxEDtNhno6g656aqBULs43CUfAXnUIo92yKOAPNoij_aQRy3yaA95tEPePfL51fT4xcyz5Tq8HEj02ktKEfIMrgOUJwq0ZoWIgXxHsEOQARDBEtiiKhOg0IkuZRwxDezJhw2C4KoQhR_cJ3tVXekHhOKmIC8ky1jAQpbEmSojwXQmEpbnmSxGZOwGMD03WVlS5664SHG4Uxzu1OfwCUZEuDFOLa80fDEFSOz83zMQSHsBTMQ-m7xLsa0p0Adk_oKNyMFP8mq740MnnIUj8tQJMIWpG-1xqtL1ZgW77jCW3I9DvqOPwFhvDhuJHX0kFmuJ_UD8pk-CNviH_zgaj8i17m1-TPbWy41-QoarYnNgX4Yfc9LkZw |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EMG+feature+evaluation+for+improving+myoelectric+pattern+recognition+robustness&rft.jtitle=Expert+systems+with+applications&rft.au=Phinyomark%2C+Angkoon&rft.au=Quaine%2C+Franck&rft.au=Charbonnier%2C+Sylvie&rft.au=Serviere%2C+Christine&rft.date=2013-09-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=40&rft.issue=12&rft.spage=4832&rft.epage=4840&rft_id=info:doi/10.1016%2Fj.eswa.2013.02.023&rft.externalDocID=S0957417413001395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |