Gating of L-type Ca2+ channels in embryonic chick ventricle cells: dependence on voltage, current and channel density

1. L-type calcium channels in embryonic chick heart ventricle have voltage-dependent, time-variant kinetics when they conduct inward currents carried by 20 mM-Ba2+. Depolarizing the membrane from -20 to 20 mV increases mean open time from 1.4 to 4.2 ms. Mean open time increases monotonically with vo...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of physiology Vol. 443; no. 1; pp. 307 - 334
Main Authors: Mazzanti, M, DeFelice, L J, Liu, Y M
Format: Journal Article
Language:English
Published: Oxford The Physiological Society 01-11-1991
Blackwell
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:1. L-type calcium channels in embryonic chick heart ventricle have voltage-dependent, time-variant kinetics when they conduct inward currents carried by 20 mM-Ba2+. Depolarizing the membrane from -20 to 20 mV increases mean open time from 1.4 to 4.2 ms. Mean open time increases monotonically with voltage. The single-channel conductance, 18 +/- 2 pS, is approximately linear over this voltage range, and the extrapolated reversal potential is 38 +/- 5 mV. 2. In cell-attached patches with five or more L-type Ca2+ channels in the patch, the currents elicited by 500 ms depolarizing steps, from a -80 mV holding potential, inactivate rapidly and have large tail currents. In the same patch, currents from a -40 mV holding potential are smaller, inactivate more slowly, and have practically no tail currents. 3. In cell-attached patches containing one of two L-type Ca2+ channels, currents from -80 or -40 mV are virtually identical, and they are similar to the currents from multichannel patches held at -40 mV. 4. The voltage-dependent, time-variant kinetics of individual L-type Ca2+ channels are unaltered if the patch is removed from the cell and forms an inside-out configuration. In these experiments the internal membrane was bathed with an artificial, intracellular-like solution containing no phosphorylating enzymes or substrates. 5. Cells bathed in 20 mM-Ba2+ solutions and held at -80 mV have currents with an early phase that inactivates in tens of milliseconds, a late phase that inactivates in hundreds of milliseconds, and a large, slow tail current. Currents from -40 mV have only the late phase and practically no tails. However, if the maximum current is less than 0.1 pA pF-1, records from either -80 or -40 mV are virtually identical, and they are similar to currents from cells with higher channel density held at -40 mV. Furthermore, if cells are stimulated before full recovery from inactivation, the reduced current is accompanied by slower inactivation. 6. Whole-cell currents in 1.5 mM-Ca2+ solutions are entirely abolished by addition of 20 microM-nifedipine, and they are enhanced 2-3 times by addition of 30 microM-cyclic AMP and 3 mM-ATP to the whole-cell recording electrode. The whole-cell currents in 20 mM-Ba2+ solutions are also completely blocked by 20 microM-nifedipine, regardless of kinetics or holding potential. Thus, by definition, the cells we are studying contain only L-type channels.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-3751
1469-7793
DOI:10.1113/jphysiol.1991.sp018835