Using airborne LiDAR to determine total sapwood area for estimating stand transpiration in plantations

This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (Aₛcₐₜ/Ag) using small‐footprint light detection and ranging technology with a minimal amount of labour in field. Forty‐two‐year‐old plantations of Japanese cypress (Hinoki; Chamaecyparis obtusa Si...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological processes Vol. 29; no. 24; pp. 5071 - 5087
Main Authors: Saito, Takami, Yamamoto, Kazukiyo, Komatsu, Misako, Matsuda, Hiroki, Yunohara, Shuji, Komatsu, Hikaru, Tateishi, Makiko, Xiang, Yang, Otsuki, Kyoichi, Kumagai, Tomo'omi
Format: Journal Article
Language:English
Published: Chichester Wiley 29-11-2015
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (Aₛcₐₜ/Ag) using small‐footprint light detection and ranging technology with a minimal amount of labour in field. Forty‐two‐year‐old plantations of Japanese cypress (Hinoki; Chamaecyparis obtusa Sieb. et Zucc.) and Japanese cedar (Sugi; Cryptomeria japonica D. Don) vegetated the 2.98 ha experimental catchment. Field observations identified diameter at breast height (DBH) of all trees and produced the relationship between DBH and tree sapwood area (Aₛₜᵣₑ). The sum of Aₛₜᵣₑ generated actual values of Aₛcₐₜ/Ag. For light detection and ranging data analyses, local maximum filtering revealed height of tree apices (H) and tree number (N) with 9% omission errors. A novel process was developed to identify tree species by their apices based on height of the apices and canopy roughness. Four methods were tested. In Methods A–C, H was converted to Aₛₜᵣₑ directly or via DBH, then, the sum of Aₛₜᵣₑ created Aₛcₐₜ/Ag. H–Aₛₜᵣₑ or H–DBH relationships were varied irrespective of labour‐intensive measurements, and Aₛcₐₜ/Ag was underestimated up to 85% of actual value because of the smaller N. On the other hand, in Method D, ready‐made stand density management diagrams (SDMDs) overestimated mean DBH. However, a product of overestimated mean Aₛₜᵣₑ and the underestimated N was almost identical to the actual Aₛcₐₜ/Ag. The estimates were 84% and 95% of the true Aₛcₐₜ/Ag in Hinoki and Sugi, respectively, and the former will be more precise if the SDMD is suitable for the site as indicated through sensitivity analysis. Copyright © 2015 John Wiley & Sons, Ltd.
AbstractList This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (Ascat/Ag) using small-footprint light detection and ranging technology with a minimal amount of labour in field. Forty-two-year-old plantations of Japanese cypress (Hinoki; Chamaecyparis obtusa Sieb. et Zucc.) and Japanese cedar (Sugi; Cryptomeria japonica D. Don) vegetated the 2.98ha experimental catchment. Field observations identified diameter at breast height (DBH) of all trees and produced the relationship between DBH and tree sapwood area (Astre). The sum of Astre generated actual values of Ascat/Ag. For light detection and ranging data analyses, local maximum filtering revealed height of tree apices (H) and tree number (N) with 9% omission errors. A novel process was developed to identify tree species by their apices based on height of the apices and canopy roughness. Four methods were tested. In Methods A-C, H was converted to Astre directly or via DBH, then, the sum of Astre created Ascat/Ag. H-Astre or H-DBH relationships were varied irrespective of labour-intensive measurements, and Ascat/Ag was underestimated up to 85% of actual value because of the smaller N. On the other hand, in Method D, ready-made stand density management diagrams (SDMDs) overestimated mean DBH. However, a product of overestimated mean Astre and the underestimated N was almost identical to the actual Ascat/Ag. The estimates were 84% and 95% of the true Ascat/Ag in Hinoki and Sugi, respectively, and the former will be more precise if the SDMD is suitable for the site as indicated through sensitivity analysis. Copyright © 2015 John Wiley & Sons, Ltd.
This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (A sub(scat)/A sub(g)) using small-footprint light detection and ranging technology with a minimal amount of labour in field. Forty-two-year-old plantations of Japanese cypress (Hinoki; Chamaecyparis obtusa Sieb. et Zucc.) and Japanese cedar (Sugi; Cryptomeria japonica D. Don) vegetated the 2.98ha experimental catchment. Field observations identified diameter at breast height (DBH) of all trees and produced the relationship between DBH and tree sapwood area (A sub(stre)). The sum of A sub(stre) generated actual values of A sub(scat)/A sub(g). For light detection and ranging data analyses, local maximum filtering revealed height of tree apices (H) and tree number (N) with 9% omission errors. A novel process was developed to identify tree species by their apices based on height of the apices and canopy roughness. Four methods were tested. In Methods A-C, H was converted to A sub(stre) directly or via DBH, then, the sum of A sub(stre) created A sub(scat)/A sub(g). H-A sub(stre) or H-DBH relationships were varied irrespective of labour-intensive measurements, and A sub(scat)/A sub(g) was underestimated up to 85% of actual value because of the smaller N. On the other hand, in Method D, ready-made stand density management diagrams (SDMDs) overestimated mean DBH. However, a product of overestimated mean A sub(stre) and the underestimated N was almost identical to the actual A sub(scat)/A sub(g). The estimates were 84% and 95% of the true A sub(scat)/A sub(g) in Hinoki and Sugi, respectively, and the former will be more precise if the SDMD is suitable for the site as indicated through sensitivity analysis.
This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (Ascat/Ag) using small‐footprint light detection and ranging technology with a minimal amount of labour in field. Forty‐two‐year‐old plantations of Japanese cypress (Hinoki; Chamaecyparis obtusa Sieb. et Zucc.) and Japanese cedar (Sugi; Cryptomeria japonica D. Don) vegetated the 2.98 ha experimental catchment. Field observations identified diameter at breast height (DBH) of all trees and produced the relationship between DBH and tree sapwood area (Astre). The sum of Astre generated actual values of Ascat/Ag. For light detection and ranging data analyses, local maximum filtering revealed height of tree apices (H) and tree number (N) with 9% omission errors. A novel process was developed to identify tree species by their apices based on height of the apices and canopy roughness. Four methods were tested. In Methods A–C, H was converted to Astre directly or via DBH, then, the sum of Astre created Ascat/Ag. H–Astre or H–DBH relationships were varied irrespective of labour‐intensive measurements, and Ascat/Ag was underestimated up to 85% of actual value because of the smaller N. On the other hand, in Method D, ready‐made stand density management diagrams (SDMDs) overestimated mean DBH. However, a product of overestimated mean Astre and the underestimated N was almost identical to the actual Ascat/Ag. The estimates were 84% and 95% of the true Ascat/Ag in Hinoki and Sugi, respectively, and the former will be more precise if the SDMD is suitable for the site as indicated through sensitivity analysis. Copyright © 2015 John Wiley & Sons, Ltd.
This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment ( A scat / A g ) using small‐footprint light detection and ranging technology with a minimal amount of labour in field. Forty‐two‐year‐old plantations of Japanese cypress (Hinoki; Chamaecyparis obtusa Sieb. et Zucc.) and Japanese cedar (Sugi; Cryptomeria japonica D. Don) vegetated the 2.98 ha experimental catchment. Field observations identified diameter at breast height (DBH) of all trees and produced the relationship between DBH and tree sapwood area ( A stre ). The sum of A stre generated actual values of A scat / A g . For light detection and ranging data analyses, local maximum filtering revealed height of tree apices ( H ) and tree number ( N ) with 9% omission errors. A novel process was developed to identify tree species by their apices based on height of the apices and canopy roughness. Four methods were tested. In Methods A–C, H was converted to A stre directly or via DBH, then, the sum of A stre created A scat / A g . H–A stre or H –DBH relationships were varied irrespective of labour‐intensive measurements, and A scat / A g was underestimated up to 85% of actual value because of the smaller N . On the other hand, in Method D, ready‐made stand density management diagrams (SDMDs) overestimated mean DBH. However, a product of overestimated mean A stre and the underestimated N was almost identical to the actual A scat / A g . The estimates were 84% and 95% of the true A scat / A g in Hinoki and Sugi, respectively, and the former will be more precise if the SDMD is suitable for the site as indicated through sensitivity analysis. Copyright © 2015 John Wiley & Sons, Ltd.
This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (Aₛcₐₜ/Ag) using small‐footprint light detection and ranging technology with a minimal amount of labour in field. Forty‐two‐year‐old plantations of Japanese cypress (Hinoki; Chamaecyparis obtusa Sieb. et Zucc.) and Japanese cedar (Sugi; Cryptomeria japonica D. Don) vegetated the 2.98 ha experimental catchment. Field observations identified diameter at breast height (DBH) of all trees and produced the relationship between DBH and tree sapwood area (Aₛₜᵣₑ). The sum of Aₛₜᵣₑ generated actual values of Aₛcₐₜ/Ag. For light detection and ranging data analyses, local maximum filtering revealed height of tree apices (H) and tree number (N) with 9% omission errors. A novel process was developed to identify tree species by their apices based on height of the apices and canopy roughness. Four methods were tested. In Methods A–C, H was converted to Aₛₜᵣₑ directly or via DBH, then, the sum of Aₛₜᵣₑ created Aₛcₐₜ/Ag. H–Aₛₜᵣₑ or H–DBH relationships were varied irrespective of labour‐intensive measurements, and Aₛcₐₜ/Ag was underestimated up to 85% of actual value because of the smaller N. On the other hand, in Method D, ready‐made stand density management diagrams (SDMDs) overestimated mean DBH. However, a product of overestimated mean Aₛₜᵣₑ and the underestimated N was almost identical to the actual Aₛcₐₜ/Ag. The estimates were 84% and 95% of the true Aₛcₐₜ/Ag in Hinoki and Sugi, respectively, and the former will be more precise if the SDMD is suitable for the site as indicated through sensitivity analysis. Copyright © 2015 John Wiley & Sons, Ltd.
Author Matsuda, Hiroki
Yunohara, Shuji
Tateishi, Makiko
Otsuki, Kyoichi
Kumagai, Tomo'omi
Yamamoto, Kazukiyo
Xiang, Yang
Saito, Takami
Komatsu, Misako
Komatsu, Hikaru
Author_xml – sequence: 1
  givenname: Takami
  surname: Saito
  fullname: Saito, Takami
  email: Correspondence to: Takami Saito, Hydrospheric Atmospheric Research Center (HyARC), Nagoya University, Nagoya 464-8601, Japan., takamihappy@gmail.com
  organization: Kasuya Research Forest, Kyushu University, 811-2415, Fukuoka, Japan
– sequence: 2
  givenname: Kazukiyo
  surname: Yamamoto
  fullname: Yamamoto, Kazukiyo
  organization: Graduate School of Bioagricultural Sciences, Nagoya University, 464-8601, Nagoya, Japan
– sequence: 3
  givenname: Misako
  surname: Komatsu
  fullname: Komatsu, Misako
  organization: Kasuya Research Forest, Kyushu University, 811-2415, Fukuoka, Japan
– sequence: 4
  givenname: Hiroki
  surname: Matsuda
  fullname: Matsuda, Hiroki
  organization: Kasuya Research Forest, Kyushu University, 811-2415, Fukuoka, Japan
– sequence: 5
  givenname: Shuji
  surname: Yunohara
  fullname: Yunohara, Shuji
  organization: Kasuya Research Forest, Kyushu University, 811-2415, Fukuoka, Japan
– sequence: 6
  givenname: Hikaru
  surname: Komatsu
  fullname: Komatsu, Hikaru
  organization: The Hakubi Center for Advanced Research, Kyoto University, 606-8302, Kyoto, Japan
– sequence: 7
  givenname: Makiko
  surname: Tateishi
  fullname: Tateishi, Makiko
  organization: Kasuya Research Forest, Kyushu University, 811-2415, Fukuoka, Japan
– sequence: 8
  givenname: Yang
  surname: Xiang
  fullname: Xiang, Yang
  organization: Kasuya Research Forest, Kyushu University, 811-2415, Fukuoka, Japan
– sequence: 9
  givenname: Kyoichi
  surname: Otsuki
  fullname: Otsuki, Kyoichi
  organization: Kasuya Research Forest, Kyushu University, 811-2415, Fukuoka, Japan
– sequence: 10
  givenname: Tomo'omi
  surname: Kumagai
  fullname: Kumagai, Tomo'omi
  organization: Hydrospheric Atmospheric Research Center (HyARC), Nagoya University, 464-8601, Nagoya, Japan
BookMark eNqFkcFvFCEUxompidvWg3-BJF70MO2DYWbg2HS1a7KpRt0YvRCYgUqdhRHY1P3vSzvVg0njCXj8vpf3ve8QHfjgDUIvCJwQAHr6Yz-VC-P0CVoQEKIiwJsDtADOm6oF3j1DhyldAwADDgtkN8n5K6xc1CF6g9duefYJ54AHk03culLKIasRJzXdhDBgFY3CNkRsUnZble_UKSs_4ByVT5OLpRY8dh5Po_L5_pWO0VOrxmSeP5xHaPPu7ZfzVbX-cPH-_Gxd9U1LaNW1xjLCFFjQSlBta836eiCCMCqs0LWmjTGk1-VLE9FCQ3ohtGHcGDVQVh-h13PfKYZfuzKi3LrUm7FMYsIuScKLcQEtwP_Rjpf2jHNa0Ff_oNdhF30xUqimY4I0rC3Um5nqY0gpGiunWDYU95KAvAtHlnDkfTiFPZ3ZGzea_eOgXH37-EdRzQqXsvn9V6HiT9l2ddfIr5cXsuva72y5EnJZ-Jczb1WQ6iq6JDefKZBinbAiIPUt9aGq7w
CitedBy_id crossref_primary_10_1007_s11676_018_0784_5
crossref_primary_10_1016_j_envexpbot_2023_105284
crossref_primary_10_1016_j_jhydrol_2018_10_075
crossref_primary_10_1080_07038992_2017_1291338
crossref_primary_10_3390_land9090319
crossref_primary_10_1002_2017GL072760
crossref_primary_10_1016_j_agrformet_2021_108356
crossref_primary_10_1016_j_foreco_2017_07_036
crossref_primary_10_1002_hyp_11162
Cites_doi 10.1051/forest:19980107
10.1093/treephys/27.2.161
10.1016/S0168-1699(02)00121-7
10.1016/j.jhydrol.2013.09.053
10.1016/j.foreco.2004.10.066
10.1016/S0378-1127(97)00086-8
10.1016/j.jhydrol.2007.10.006
10.1016/j.jhydrol.2013.10.047
10.3732/ajb.1200160
10.1016/j.foreco.2009.05.017
10.1890/070001
10.5589/m03-023
10.1016/S0378-1127(00)00514-4
10.1016/0022-1694(83)90181-6
10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
10.1002/hyp.10124
10.1016/j.advwatres.2003.08.001
10.1109/36.921414
10.1046/j.1365-2486.2000.00289.x
10.1016/j.agrformet.2007.04.010
10.1093/treephys/24.11.1203
10.1016/S0168-1923(00)00199-4
10.1007/s00468-009-0356-6
10.1007/s10310-004-0125-8
10.1016/j.agrformet.2005.11.007
10.1093/treephys/tpp074
10.1016/j.agrformet.2008.04.010
10.1016/S0378-1127(00)00518-1
10.1016/j.jhydrol.2006.05.025
10.1890/060119.1
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
DBID FBQ
BSCLL
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
DOI 10.1002/hyp.10482
DatabaseName AGRIS
Istex
CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts
Technology Research Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1099-1085
EndPage 5087
ExternalDocumentID 3923178121
10_1002_hyp_10482
HYP10482
ark_67375_WNG_776Z4DH9_D
US201600147371
Genre article
GeographicLocations INW, Japan
GeographicLocations_xml – name: INW, Japan
GrantInformation_xml – fundername: Core Research for Evolutional Science and Technology (CREST)
– fundername: Japanese Ministry of Agriculture, Forestry and Fisheries
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABIJN
ABPVW
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TEORI
UB1
V2E
VH1
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAMNL
AAYXX
CITATION
7QH
7ST
7TG
7UA
8FD
C1K
F1W
FR3
H96
KL.
KR7
L.G
SOI
ID FETCH-LOGICAL-c5612-76ef414a0f0ba92bf3b4c3d191429f9b3b25ee1cb2bfb196051c99be48eead243
IEDL.DBID 33P
ISSN 0885-6087
IngestDate Fri Aug 16 06:31:17 EDT 2024
Fri Aug 16 23:28:37 EDT 2024
Tue Nov 19 06:49:16 EST 2024
Thu Nov 21 22:24:21 EST 2024
Sat Aug 24 00:49:21 EDT 2024
Wed Oct 30 09:53:44 EDT 2024
Wed Dec 27 19:13:18 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5612-76ef414a0f0ba92bf3b4c3d191429f9b3b25ee1cb2bfb196051c99be48eead243
Notes http://dx.doi.org/10.1002/hyp.10482
ark:/67375/WNG-776Z4DH9-D
istex:F5FEB65F62CB3C74A966576D00F18AADE7283C7A
Core Research for Evolutional Science and Technology (CREST)
Japanese Ministry of Agriculture, Forestry and Fisheries
ArticleID:HYP10482
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1757491546
PQPubID 2034139
PageCount 17
ParticipantIDs proquest_miscellaneous_1800490600
proquest_miscellaneous_1780514882
proquest_journals_1757491546
crossref_primary_10_1002_hyp_10482
wiley_primary_10_1002_hyp_10482_HYP10482
istex_primary_ark_67375_WNG_776Z4DH9_D
fao_agris_US201600147371
PublicationCentury 2000
PublicationDate 29 November 2015
PublicationDateYYYYMMDD 2015-11-29
PublicationDate_xml – month: 11
  year: 2015
  text: 29 November 2015
  day: 29
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Hydrological processes
PublicationTitleAlternate Hydrol. Process
PublicationYear 2015
Publisher Wiley
Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Hirata Y, Furuya N, Suzuki M, Yamamoto H. 2009. Airborne laser scanning in forest management: individual tree identification and laser pulse penetration in a stand with different levels of thinning. Forest Ecology and Management 258: 752-760.
Roberts S, Vertessy R, Grayson R. 2001. Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age. Forest Ecology and Management 143: 153-161.
Roth BE, Slatton KC, Cohen MJ. 2007. On the potential for high-resolution lidar to improve rainfall interception estimates in forest ecosystems. Frontiers in Ecology and the Environment 5: 421-428.
Nagai S, Taniguchi Y. 2001. Air permeability in wood of Cryptomeria japonica D. Don: air permeability in heartwood, white zone wood and sapwood in green logs. Zairyo 50: 409-414. (in Japanese with English summary)
Kumagai T, Tateishi M, Miyazawa Y, Kobayashi M, Yoshifuji N, Komatsu H, Shimizu T. 2014. Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (1): water use components in Japanese cedar stands. Journal of Hydrology 508: 66-76.
Saito T, Matsuda H, Komatsu M, Xiang Y, Takahashi A, Shinohara Y, Otsuki K. 2013. Forest canopy interception loss exceeds wet canopy evaporation in Japanese cypress (Hinoki) and Japanese cedar (Sugi) plantations. Journal of Hydrology 507: 287-299.
Kira T, Ogawa H, Sakazaki N. 1953. Intraspecific competition among higher plants. I. Competition-density-yield interrelationship in regularly dispersed population. Journal of the Institute of Polytechnics (Osaka City University) Series 4: 1-16.
Ando T. 1968. Ecological studies on the stand density control in even-aged pure stand. Bulletin of the Government Forest Experiment Station (Tokyo) 210: 1-153. (in Japanese with English summery)
Komatsu H, Maita E, Otsuki K. 2008. A model to estimate annual forest evapotranspiration in Japan from mean annual temperature. Journal of Hydrology 348: 330-340.
Roberts J. 1983. Forest transpiration: a conservative hydrological process? Journal of Hydrology 66: 133-141.
Wullschleger SD, Hanson PJ, Todd DE. 2001. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques. Forest Ecology and Management 143: 205-213.
Inoue Y, Miyahara H. 1954. On the yield-table of Sugi stand at Kasuya University Forest. Reports of the Kyushu University Forests 2: 15-50. (in Japanese)
Kosugi Y, Katsuyama M. 2007. Evapotranspiration over a Japanese cypress forest. II. Comparison of the eddy covariance and water budget methods. Journal of Hydrology 334: 305-311.
Pataki DE, Oren R. 2003. Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Advances in Water Resources 26: 1267-1278.
Ohashi H, Motegi Y, Yasue M. 1985. Water distribution and water alleyway in the living stem of Cryptomeria japonica. Research Bulletin of the Faculty College of Agriculture Gifu University 50: 111-129.
Lefsky MA, Cohen WB, Parker GG, Harding D. 2002. Lidar remote sensing for ecosystem studies. BioScience 52(1): 19-30.
Nagakura J, Shigenaga H, Akama A, Takahashi M. 2004. Growth and transpiration of Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) seedlings in response to soil water content. Tree Physiology 24: 1203-1208.
Levia DF, Näthe MK, Bischoff S, Richter S, Legates DR. 2015. Differential stemflow yield from European beech saplings: the role of individual canopy structure metrics. Hydrological Processes 29: 43-51.
Nagai S, Utsumi Y. 2012. The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of Cryptomeria japonica (Cupressaceae). American Journal of Botany 99: 1553-1561.
Alsheimer M, Köstner B, Falge E, Tenhunen JD. 1998. Temporal and spatial variation in transpiration of Norway spruce stands within a forested catchment of the Fichtelgebirge, Germany. Annals of Forest Science 55: 103-123.
Persson A, Holmgren J, Söderman U. 2002. Detecting and measuring individual trees using an airborne laser scanner. Photogrammetric Engineering and Remote Sensing 68: 925-932.
Hyyppä J, Lehikoinen M, Inkinen M. 2001. A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Transactions on Geoscience and Remote Sensing 39(5): 969-975.
Takahashi T, Yamamoto K, Senda Y, Tsuzuku M. 2005. Estimating individual tree heights of sugi (Cryptomeria japonica D. Don) plantations in mountainous areas using small-footprint airborne LiDAR. Journal of Forest Research 10: 135-142.
Kumagai T, Nagasawa H, Mabuchi T, Ohsaki S, Kubota K, Kogi K, Utsumi Y, Koga S, Otsuki K. 2005b. Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for Cryptomeria japonica and Chamaecyparis obtusa. Forest Ecology and Management 206: 191-195.
Kumagai T, Aoki S, Shimizu T, Otsuki K. 2007. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed. Tree Physiology 27: 161-168.
Kumagai T, Tateishi M, Shimizu T, Otsuki K. 2008. Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agricultural and Forest Meteorology 148: 1444-1455.
Kuroda K, Yamashita K, Fujiwara T. 2009. Cellular level observation of water loss and the refilling of tracheids in the xylem of Cryptomeria japonica during heartwood formation. Trees 23: 1163-1172.
Newton PF. 1997. Stand density management diagrams: review of their development and utility in stand-level management planning. Forest Ecology and Management 98: 251-265.
Ford CR, Hubbard RM, Kloeppel BD, Vose JM. 2007. A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance. Agricultural and Forest Meteorology 145: 176-185.
Kume A, Tsuruta K, Komatsu H, Kumagai T, Higashi N, Shinohara Y, Otsuki K. 2009. Effects of sample size on sap flux-based stand-scale transpiration estimates. Tree Physiology 30: 129-138.
Popescu SC, Wynne RH, Nelson RF. 2002. Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Computers and Electronics in Agriculture 37: 71-95.
Vierling KT, Vierling LA, Gould WA, Martinuzzi S, Clawges RM. 2008. Lidar: shedding new light on habitat characterization and modeling. Frontiers in Ecology and the Environment 6: 90-98.
Gaveau DLA, Hill RA. 2003. Quantifying canopy height underestimation by laser pulse penetration in small-footprint airborne laser scanning data. Canadian Journal of Remote Sensing 29(5): 650-657.
Nobuchi T, Harada H. 1983. Physiological features of the "white zone" of sugi (Cryptomeria japonica D. Don) - cytological structure and moisture content. Mokuzai Gakkaishi 29: 824-832.
Kumagai T, Aoki S, Nagasawa H, Mabuchi T, Kubota K, Inoue S, Utsumi Y, Otsuki K. 2005a. Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agricultural and Forest Meteorology 135: 110-116.
Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD. 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology 106: 153-168.
Zimmermann R, Schulze E-D, Wirth C, Schulze E-E, McDonald KC, Vygodskaya NN, Ziegler W. 2000. Canopy transpiration in a chronosequence of Central Siberian pine forests. Global Change Biology 6: 25-37.
Kawana A. 1992. Forestation in Forestry, 3rd edn. Asakura: Tokyo, pp. 101. (in Japanese)
2009; 23
2001; 143
2007; 145
2001; 50
2002; 37
2012
2002; 52
2000; 6
2013; 507
2004; 24
1953; 4
2008; 348
2005a; 135
2008; 148
2008; 6
1992
2012; 99
2009; 258
1957
2001; 106
2007; 334
2009; 30
2014; 508
2015; 29
1968; 210
1997; 98
2005b; 206
2002; 68
2003; 26
2005; 10
2003; 29
2007; 5
2001; 39
2013
1985; 50
1983; 29
1998; 55
1954; 2
1983; 66
2007; 27
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
Nobuchi T (e_1_2_8_29_1) 1983; 29
e_1_2_8_27_1
Inoue Y (e_1_2_8_9_1) 1954; 2
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_22_1
Ando T (e_1_2_8_3_1) 1968; 210
e_1_2_8_23_1
Kawana A (e_1_2_8_12_1) 1992
e_1_2_8_41_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
Nagai S (e_1_2_8_25_1) 2001; 50
e_1_2_8_39_1
e_1_2_8_19_1
Persson A (e_1_2_8_32_1) 2002; 68
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Ohashi H (e_1_2_8_30_1) 1985; 50
Kira T (e_1_2_8_13_1) 1953; 4
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_33_1
References_xml – volume: 508
  start-page: 66
  year: 2014
  end-page: 76
  article-title: Estimation of annual forest evapotranspiration from a coniferous plantation watershed in Japan (1): water use components in Japanese cedar stands
  publication-title: Journal of Hydrology
– volume: 29
  start-page: 824
  year: 1983
  end-page: 832
  article-title: Physiological features of the “white zone” of sugi ( D. Don) – cytological structure and moisture content
  publication-title: Mokuzai Gakkaishi
– volume: 29
  start-page: 650
  issue: 5
  year: 2003
  end-page: 657
  article-title: Quantifying canopy height underestimation by laser pulse penetration in small‐footprint airborne laser scanning data
  publication-title: Canadian Journal of Remote Sensing
– volume: 507
  start-page: 287
  year: 2013
  end-page: 299
  article-title: Forest canopy interception loss exceeds wet canopy evaporation in Japanese cypress (Hinoki) and Japanese cedar (Sugi) plantations
  publication-title: Journal of Hydrology
– volume: 55
  start-page: 103
  year: 1998
  end-page: 123
  article-title: Temporal and spatial variation in transpiration of Norway spruce stands within a forested catchment of the Fichtelgebirge, Germany
  publication-title: Annals of Forest Science
– volume: 23
  start-page: 1163
  year: 2009
  end-page: 1172
  article-title: Cellular level observation of water loss and the refilling of tracheids in the xylem of during heartwood formation
  publication-title: Trees
– volume: 148
  start-page: 1444
  year: 2008
  end-page: 1455
  article-title: Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed
  publication-title: Agricultural and Forest Meteorology
– volume: 50
  start-page: 409
  year: 2001
  end-page: 414
  article-title: Air permeability in wood of D. Don: air permeability in heartwood, white zone wood and sapwood in green logs
  publication-title: Zairyo
– volume: 106
  start-page: 153
  year: 2001
  end-page: 168
  article-title: A comparison of methods for determining forest evapotranspiration and its components: sap‐flow, soil water budget, eddy covariance and catchment water balance
  publication-title: Agricultural and Forest Meteorology
– volume: 258
  start-page: 752
  year: 2009
  end-page: 760
  article-title: Airborne laser scanning in forest management: individual tree identification and laser pulse penetration in a stand with different levels of thinning
  publication-title: Forest Ecology and Management
– volume: 4
  start-page: 1
  year: 1953
  end-page: 16
  article-title: Intraspecific competition among higher plants. I. Competition‐density‐yield interrelationship in regularly dispersed population
  publication-title: Journal of the Institute of Polytechnics (Osaka City University) Series
– volume: 98
  start-page: 251
  year: 1997
  end-page: 265
  article-title: Stand density management diagrams: review of their development and utility in stand‐level management planning
  publication-title: Forest Ecology and Management
– volume: 348
  start-page: 330
  year: 2008
  end-page: 340
  article-title: A model to estimate annual forest evapotranspiration in Japan from mean annual temperature
  publication-title: Journal of Hydrology
– volume: 29
  start-page: 43
  year: 2015
  end-page: 51
  article-title: Differential stemflow yield from European beech saplings: the role of individual canopy structure metrics
  publication-title: Hydrological Processes
– volume: 334
  start-page: 305
  year: 2007
  end-page: 311
  article-title: Evapotranspiration over a Japanese cypress forest. II. Comparison of the eddy covariance and water budget methods
  publication-title: Journal of Hydrology
– volume: 99
  start-page: 1553
  year: 2012
  end-page: 1561
  article-title: The function of intercellular spaces along the ray parenchyma in sapwood, intermediate wood, and heartwood of (Cupressaceae)
  publication-title: American Journal of Botany
– volume: 206
  start-page: 191
  year: 2005b
  end-page: 195
  article-title: Sources of error in estimating stand transpiration using allometric relationships between stem diameter and sapwood area for and
  publication-title: Forest Ecology and Management
– year: 1992
– year: 2012
– volume: 6
  start-page: 90
  year: 2008
  end-page: 98
  article-title: Lidar: shedding new light on habitat characterization and modeling
  publication-title: Frontiers in Ecology and the Environment
– volume: 26
  start-page: 1267
  year: 2003
  end-page: 1278
  article-title: Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest
  publication-title: Advances in Water Resources
– volume: 68
  start-page: 925
  year: 2002
  end-page: 932
  article-title: Detecting and measuring individual trees using an airborne laser scanner
  publication-title: Photogrammetric Engineering and Remote Sensing
– year: 1957
– volume: 24
  start-page: 1203
  year: 2004
  end-page: 1208
  article-title: Growth and transpiration of Japanese cedar ( ) and Hinoki cypress ( ) seedlings in response to soil water content
  publication-title: Tree Physiology
– volume: 2
  start-page: 15
  year: 1954
  end-page: 50
  article-title: On the yield‐table of Sugi stand at Kasuya University Forest
  publication-title: Reports of the Kyushu University Forests
– volume: 135
  start-page: 110
  year: 2005a
  end-page: 116
  article-title: Effects of tree‐to‐tree and radial variations on sap flow estimates of transpiration in Japanese cedar
  publication-title: Agricultural and Forest Meteorology
– volume: 6
  start-page: 25
  year: 2000
  end-page: 37
  article-title: Canopy transpiration in a chronosequence of Central Siberian pine forests
  publication-title: Global Change Biology
– volume: 145
  start-page: 176
  year: 2007
  end-page: 185
  article-title: A comparison of sap flux‐based evapotranspiration estimates with catchment‐scale water balance
  publication-title: Agricultural and Forest Meteorology
– volume: 52
  start-page: 19
  issue: 1
  year: 2002
  end-page: 30
  article-title: Lidar remote sensing for ecosystem studies
  publication-title: BioScience
– volume: 143
  start-page: 205
  year: 2001
  end-page: 213
  article-title: Transpiration from a multi‐species deciduous forest as estimated by xylem sap flow techniques
  publication-title: Forest Ecology and Management
– volume: 5
  start-page: 421
  year: 2007
  end-page: 428
  article-title: On the potential for high‐resolution lidar to improve rainfall interception estimates in forest ecosystems
  publication-title: Frontiers in Ecology and the Environment
– volume: 27
  start-page: 161
  year: 2007
  end-page: 168
  article-title: Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed
  publication-title: Tree Physiology
– volume: 39
  start-page: 969
  issue: 5
  year: 2001
  end-page: 975
  article-title: A segmentation‐based method to retrieve stem volume estimates from 3‐D tree height models produced by laser scanners
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 30
  start-page: 129
  year: 2009
  end-page: 138
  article-title: Effects of sample size on sap flux‐based stand‐scale transpiration estimates
  publication-title: Tree Physiology
– volume: 10
  start-page: 135
  year: 2005
  end-page: 142
  article-title: Estimating individual tree heights of sugi ( D. Don) plantations in mountainous areas using small‐footprint airborne LiDAR
  publication-title: Journal of Forest Research
– volume: 143
  start-page: 153
  year: 2001
  end-page: 161
  article-title: Transpiration from (L. Johnson) forests of different age
  publication-title: Forest Ecology and Management
– volume: 50
  start-page: 111
  year: 1985
  end-page: 129
  article-title: Water distribution and water alleyway in the living stem of
  publication-title: Research Bulletin of the Faculty College of Agriculture Gifu University
– volume: 66
  start-page: 133
  year: 1983
  end-page: 141
  article-title: Forest transpiration: a conservative hydrological process?
  publication-title: Journal of Hydrology
– volume: 37
  start-page: 71
  year: 2002
  end-page: 95
  article-title: Estimating plot‐level tree heights with lidar: local filtering with a canopy‐height based variable window size
  publication-title: Computers and Electronics in Agriculture
– volume: 210
  start-page: 1
  year: 1968
  end-page: 153
  article-title: Ecological studies on the stand density control in even‐aged pure stand
  publication-title: Bulletin of the Government Forest Experiment Station (Tokyo)
– year: 2013
– ident: e_1_2_8_2_1
  doi: 10.1051/forest:19980107
– ident: e_1_2_8_18_1
  doi: 10.1093/treephys/27.2.161
– volume: 68
  start-page: 925
  year: 2002
  ident: e_1_2_8_32_1
  article-title: Detecting and measuring individual trees using an airborne laser scanner
  publication-title: Photogrammetric Engineering and Remote Sensing
  contributor:
    fullname: Persson A
– ident: e_1_2_8_33_1
  doi: 10.1016/S0168-1699(02)00121-7
– ident: e_1_2_8_38_1
  doi: 10.1016/j.jhydrol.2013.09.053
– volume: 29
  start-page: 824
  year: 1983
  ident: e_1_2_8_29_1
  article-title: Physiological features of the “white zone” of sugi (Cryptomeria japonica D. Don) – cytological structure and moisture content
  publication-title: Mokuzai Gakkaishi
  contributor:
    fullname: Nobuchi T
– ident: e_1_2_8_17_1
  doi: 10.1016/j.foreco.2004.10.066
– ident: e_1_2_8_28_1
  doi: 10.1016/S0378-1127(97)00086-8
– ident: e_1_2_8_14_1
  doi: 10.1016/j.jhydrol.2007.10.006
– ident: e_1_2_8_6_1
– ident: e_1_2_8_11_1
– ident: e_1_2_8_20_1
  doi: 10.1016/j.jhydrol.2013.10.047
– ident: e_1_2_8_26_1
  doi: 10.3732/ajb.1200160
– ident: e_1_2_8_7_1
  doi: 10.1016/j.foreco.2009.05.017
– ident: e_1_2_8_40_1
  doi: 10.1890/070001
– ident: e_1_2_8_5_1
  doi: 10.5589/m03-023
– volume: 4
  start-page: 1
  year: 1953
  ident: e_1_2_8_13_1
  article-title: Intraspecific competition among higher plants. I. Competition‐density‐yield interrelationship in regularly dispersed population
  publication-title: Journal of the Institute of Polytechnics (Osaka City University) Series
  contributor:
    fullname: Kira T
– ident: e_1_2_8_36_1
  doi: 10.1016/S0378-1127(00)00514-4
– volume: 210
  start-page: 1
  year: 1968
  ident: e_1_2_8_3_1
  article-title: Ecological studies on the stand density control in even‐aged pure stand
  publication-title: Bulletin of the Government Forest Experiment Station (Tokyo)
  contributor:
    fullname: Ando T
– volume: 50
  start-page: 111
  year: 1985
  ident: e_1_2_8_30_1
  article-title: Water distribution and water alleyway in the living stem of Cryptomeria japonica
  publication-title: Research Bulletin of the Faculty College of Agriculture Gifu University
  contributor:
    fullname: Ohashi H
– ident: e_1_2_8_35_1
  doi: 10.1016/0022-1694(83)90181-6
– ident: e_1_2_8_23_1
  doi: 10.1641/0006-3568(2002)052[0019:LRSFES]2.0.CO;2
– ident: e_1_2_8_24_1
  doi: 10.1002/hyp.10124
– ident: e_1_2_8_10_1
– ident: e_1_2_8_31_1
  doi: 10.1016/j.advwatres.2003.08.001
– ident: e_1_2_8_8_1
  doi: 10.1109/36.921414
– ident: e_1_2_8_43_1
  doi: 10.1046/j.1365-2486.2000.00289.x
– ident: e_1_2_8_4_1
  doi: 10.1016/j.agrformet.2007.04.010
– volume: 50
  start-page: 409
  year: 2001
  ident: e_1_2_8_25_1
  article-title: Air permeability in wood of Cryptomeria japonica D. Don: air permeability in heartwood, white zone wood and sapwood in green logs
  publication-title: Zairyo
  contributor:
    fullname: Nagai S
– ident: e_1_2_8_27_1
  doi: 10.1093/treephys/24.11.1203
– ident: e_1_2_8_41_1
  doi: 10.1016/S0168-1923(00)00199-4
– ident: e_1_2_8_22_1
  doi: 10.1007/s00468-009-0356-6
– ident: e_1_2_8_39_1
  doi: 10.1007/s10310-004-0125-8
– ident: e_1_2_8_16_1
  doi: 10.1016/j.agrformet.2005.11.007
– volume-title: Forestation in Forestry
  year: 1992
  ident: e_1_2_8_12_1
  contributor:
    fullname: Kawana A
– volume: 2
  start-page: 15
  year: 1954
  ident: e_1_2_8_9_1
  article-title: On the yield‐table of Sugi stand at Kasuya University Forest
  publication-title: Reports of the Kyushu University Forests
  contributor:
    fullname: Inoue Y
– ident: e_1_2_8_21_1
  doi: 10.1093/treephys/tpp074
– ident: e_1_2_8_19_1
  doi: 10.1016/j.agrformet.2008.04.010
– ident: e_1_2_8_42_1
  doi: 10.1016/S0378-1127(00)00518-1
– ident: e_1_2_8_15_1
  doi: 10.1016/j.jhydrol.2006.05.025
– ident: e_1_2_8_37_1
  doi: 10.1890/060119.1
– ident: e_1_2_8_34_1
SSID ssj0004080
Score 2.258603
Snippet This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (Aₛcₐₜ/Ag) using small‐footprint light detection and...
This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (Ascat/Ag) using small‐footprint light detection and...
This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment ( A scat / A g ) using small‐footprint light detection...
This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (Ascat/Ag) using small-footprint light detection and...
This study offers an unprecedented opportunity to estimate total sapwood area over an entire catchment (A sub(scat)/A sub(g)) using small-footprint light...
SourceID proquest
crossref
wiley
istex
fao
SourceType Aggregation Database
Publisher
StartPage 5071
SubjectTerms Catchments
Chamaecyparis obtusa
Cryptomeria japonica
Cupressus
Estimates
Japanese cedar
Japanese cypress
Lidar
Light detection and ranging
local maximum filtering
Plantations
remote sensing
sapflow measurement
Silver
stand density management diagram
Stands
Trees
Title Using airborne LiDAR to determine total sapwood area for estimating stand transpiration in plantations
URI https://api.istex.fr/ark:/67375/WNG-776Z4DH9-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhyp.10482
https://www.proquest.com/docview/1757491546
https://search.proquest.com/docview/1780514882
https://search.proquest.com/docview/1800490600
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RXuDCGzVQkEEIcYmaOE5si1PFtuwBVRWl4nGxbMemK1B2tdmV6L9nxslu6aESErdEtiXbM2N_tme-AXhdhqLxstU5b53PRcubXIXY5taGJpRV9FWgaOTpmTz5qiZHRJPzbhMLM_BDbC_cyDLSek0Gbl1_cEUaenG5oAdKResvnhJS-EZ1ehUTWaSsaWhEdd4USm5YhQp-sG15bS_aiXaOCJUm9_c1uPk3aE27zvG9_-rvfbg7gk12OGjHA7gVuodwe8x7fnH5CGLyGGB2tkRV6AL7OJscfmKrOWtHL5mAPwjPWW8X5JzDLGJMhjiXETkHgV1snW4j2CqxpM8GhWKzji1-2SGsqesfw_nx0ef303zMvJB7ypaZyyZEUQpbxMJZzV2snPBVS1xwXEftKsfrEErvsMihDaNle61dECqgZnJRPYHdbt6FPWA-8ibW0lrEcqLyBeIdRGw2aKsVR7ll8GojA7MYCDbMQKXMDU6ZSVOWwR5Kx9gfuPCZ8zNOtHh4tpOVLDN4k0S2bWyXP8lZTdbmy8kHI2XzXUym2kwy2N_I1Ix22hsET1JohJFNBi-3xWhh9GxiuzBfUx1FJPGKunFjHZWeULFXGbxNWnDzYMz022n6ePrvVZ_BHRx0TUGQXO_D7mq5Ds9hp2_XL5La_wEAGQMI
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RcigX3qiBAgYhxCVq4jh2LPVSsS1BLKuKtuJxsZzEpqtW2dU-JPrvO-Nkt_RQCYlbotiSMw_7sz3zDcC71CWyVo2OeVPVsWi4jAvnm9haJ12a-TpzlI1cHqvRj2JwQDQ5e6tcmI4fYn3gRp4R5mtycDqQ3r1mDT27nNINZYET8F0h0RApgSM7us6KTELdNHSjPJZJoVa8QgnfXXe9sRpteDtBjEri_XMDcP4NW8O6c_jg_0b8EO73eJPtdwbyCO649jFs9aXPzy6fgA9BA8yOZ2gNrWPD8WD_G1tMWNMHyjh8QYTO5nZK8TnMIsxkCHUZ8XMQ3sXe4UCCLQJR-rizKTZu2fTCdplN7fwpnB4enHws4774QlxTwcxYSedFKmzik8pqXvmsEnXWEB0c115XWcVz59K6wk8VujE6d6115UTh0Di5yJ7BZjtp3Taw2nPpc2UtwjmR1QlCHgRt1mmrC44bvAjerpRgph3HhunYlLlBkZkgsgi2UT3G_sa5z5wec2LGw-2dylQawfugs3VnOzuneDWVm--jT0Yp-UsMSm0GEeyslGp6V50bxE9KaESSMoI368_oZHRzYls3WVKbgnjiCxrGrW2KcIuKo4rgQzCD23_GlD-PwsPzf2_6GrbKk69DM_w8-vIC7qEAcsqJ5HoHNhezpXsJG_Nm-Sr4wBVaKgcw
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9QwEB-8E9QXv-Wqp0YR8aVcm6RNg0-HvXXFY1k8Dz9eQtom3qJ0y36A9987k3b3vIcDwbeWJJBkZpJfkpnfALxKXZLXqtExb6o6lg3P48L5JrbW5S4VvhaOopHHJ2rytSiPiCbn7SYWpueH2F64kWWE9ZoMvGv8wQVp6Nl5Rw-UBa6_1yXCcCLOF2J6ERSZhLRpaEVZnCeF2tAKJfxg2_TSZrTj7RwhKs3u70t482_UGrad0Z3_6vBduD2gTXbYq8c9uOba-3BzSHx-dv4AfHAZYHa2QF1oHTuelYef2GrOmsFNxuEP4nO2tB155zCLIJMh0GXEzkFoF1uH6wi2CjTps16j2Kxl3S_bxzW1y4dwOjr6_G4cD6kX4prSZcYqd16m0iY-qazmlReVrEVDZHBce12JimfOpXWFRRUaMZp2rXXlZOFQNbkUj2C3nbduD1jtee4zZS2COSnqBAEPQjbrtNUFx-NdBC83MjBdz7Bhei5lbnDKTJiyCPZQOsb-wJXPnJ5w4sXDw50SKo3gdRDZtrFd_CRvNZWZL5P3Rqn8uyzH2pQR7G9kagZDXRpET0pqxJF5BC-2xWhi9G5iWzdfU52CWOIL6saVdYrwhoq9iuBN0IKrB2PG36bh4_G_V30ON6blyBx_mHx8Ardw_BkFRHK9D7urxdo9hZ1ls34WLOAPHfkF1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+airborne+LiDAR+to+determine+total+sapwood+area+for+estimating+stand+transpiration+in+plantations&rft.jtitle=Hydrological+processes&rft.au=Saito%2C+Takami&rft.au=Yamamoto%2C+Kazukiyo&rft.au=Komatsu%2C+Misako&rft.au=Matsuda%2C+Hiroki&rft.date=2015-11-29&rft.issn=0885-6087&rft.eissn=1099-1085&rft.volume=29&rft.issue=24&rft.spage=5071&rft.epage=5087&rft_id=info:doi/10.1002%2Fhyp.10482&rft.externalDBID=10.1002%252Fhyp.10482&rft.externalDocID=HYP10482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6087&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6087&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6087&client=summon