Metabolic Stress Induces Caspase-3 Mediated Degradation and Inactivation of Farnesyl and Geranylgeranyl Transferase Activities in Pancreatic β-Cells
Background/Aims: At least 300 prenylated proteins are identified in the human genome; the majority of which partake in a variety of cellular processes including growth, differentiation, cytoskeletal organization/dynamics and vesicle trafficking. Aberrant prenylation of proteins is implicated in huma...
Saved in:
Published in: | Cellular physiology and biochemistry Vol. 39; no. 6; pp. 2110 - 2120 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel, Switzerland
Cell Physiol Biochem Press GmbH & Co KG
01-01-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Background/Aims: At least 300 prenylated proteins are identified in the human genome; the majority of which partake in a variety of cellular processes including growth, differentiation, cytoskeletal organization/dynamics and vesicle trafficking. Aberrant prenylation of proteins is implicated in human pathologies including cancer; neurodegenerative diseases, retinitis pigmentosa, and premature ageing syndromes. Original observations from our laboratory have demonstrated that prenylation of proteins [small G-proteins and γ-subunits of trimeric G-proteins] is requisite for physiological insulin secretion. Herein, we assessed the impact of metabolic stress [gluco-, lipotoxicity and ER-stress] on the functional status of protein prenylation pathway in pancreatic β-cells. Methods: Farnesyltransferase [FTase] and geranylgeranyltransferase [GGTase] activities were quantified by radioisotopic methods. Caspase-3 activation and FTase/GGTase-α subunit degradation were determined by Western blotting. Results: We observed that metabolic stress activates caspase-3 and induces degradation of the common α-subunit of FTase and GGTase-I in INS-1 832/13 cells, normal rodent islets and human islets leading to functional defects [inactivation] in FTase and GGTase activities. Caspase-3 activation and FTase/GGTase-α degradation were also seen in islets from the Zucker diabetic fatty [ZDF] rat, a model for Type 2 diabetes. Consequential to defects in FTase/GGTase-α signaling, we observed significant accumulation of unprenylated proteins [Rap1] in β-cells exposed to glucotoxic conditions. These findings were replicated in β-cells following pharmacological inhibition of generation of prenylpyrophosphate substrates [Simvastatin] or catalytic activity of prenylating enzymes [GGTI-2147]. Conclusions: Our findings provide the first evidence to suggest that metabolic stress induced dysfunction of the islet β-cell may, in part, be due to defective protein prenylation signaling pathway. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1015-8987 1421-9778 |
DOI: | 10.1159/000447907 |