Design, Synthesis and Antiproliferative Evaluation of Bis-Indole Derivatives with a Phenyl Linker: Focus on Autophagy

This work deals with the study of the synthesis of new bis-indole analogues with a phenyl linker derived from indole phytoalexins. Synthesis of target bis-indole thiourea linked by a phenyl linker was achieved by the reaction of [1-(tert-butoxycarbonyl)indol-3-yl]methyl isothiocyanate with p-phenyle...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 28; no. 1; p. 251
Main Authors: Marianna, Budovska, Radka, Michalkova, Martin, Kello, Janka, Vaskova, Jan, Mojzis
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 28-12-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work deals with the study of the synthesis of new bis-indole analogues with a phenyl linker derived from indole phytoalexins. Synthesis of target bis-indole thiourea linked by a phenyl linker was achieved by the reaction of [1-(tert-butoxycarbonyl)indol-3-yl]methyl isothiocyanate with p-phenylenediamine. By replacing the sulfur of the thiocarbonyl group in bis-indole thiourea with oxygen using mesityl nitrile oxide, a bis-indole homodimer with a urea group was obtained. A cyclization protocol utilizing bis-indole thiourea and methyl bromoacetate was applied to synthesize a bis-indole homodimer with a thiazolidin-4-one moiety. Bis-indole homodimers derived from 1-methoxyspirobrassinol methyl ether were prepared by bromospirocyclization methodology. Among the synthesized analogues, compound 49 was selected for further study. To evaluate the mode of the mechanism of action, we used flow cytometry, Western blot, and spectroscopic analyses. Compound 49 significantly inhibited the proliferation of lung cancer cell line A549 with minimal effects on the non-cancer cells. We also demonstrated that compound 49 induced autophagy through the upregulation of Beclin-1, LC3A/B, Atg7 and AMPK and ULK1. Furthermore, chloroquine (CQ; an autophagy inhibitor) in combination with compound 49 decreased cell proliferation and induced G1 cell cycle arrest and apoptosis. Compound 49 also caused GSH depletion and significantly potentiated the antiproliferative effect of cis-platin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules28010251