Effects of exercise on gene expression in human peripheral blood mononuclear cells

Departments of 2 Pediatrics, 3 Orthopedics, 4 Microbiology and Molecular Genetics, and 5 Biological Chemistry, 1 Center for the Study of Health Effects of Exercise in Children, 7 Department Physiology and Biophysics, 6 Institute for Genomics and Bioinformatics, College of Medicine, University of Cal...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physiology (1985) Vol. 97; no. 4; pp. 1461 - 1469
Main Authors: Connolly, Peter H, Caiozzo, Vincent J, Zaldivar, Frank, Nemet, Dan, Larson, Jennifer, Hung, She-pin, Heck, J. Denis, Hatfield, G. Wesley, Cooper, Dan M
Format: Journal Article
Language:English
Published: Bethesda, MD Am Physiological Soc 01-10-2004
American Physiological Society
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Departments of 2 Pediatrics, 3 Orthopedics, 4 Microbiology and Molecular Genetics, and 5 Biological Chemistry, 1 Center for the Study of Health Effects of Exercise in Children, 7 Department Physiology and Biophysics, 6 Institute for Genomics and Bioinformatics, College of Medicine, University of California, Irvine, California 92697 Submitted 25 March 2004 ; accepted in final form 6 June 2004 Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18–30 yr old) performed 30 min of constant work rate cycle ergometry ( 80% peak O 2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1 (1.84-fold) and -1 (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair. microarray; inflammation; growth; immunity Address for reprint requests and other correspondence: D. M. Cooper, Center for the Study of Health Effects of Exercise in Children, Dept. of Pediatrics, Bldg. 25, 2nd Floor, 101 The City Dr., Orange, CA 92868 (E-mail: dcooper{at}uci.edu ).
AbstractList Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18–30 yr old) performed 30 min of constant work rate cycle ergometry (∼80% peak O 2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1α (1.84-fold) and -1β (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair.
Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18-30 yr old) performed 30 min of constant work rate cycle ergometry (approximately 80% peak O2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1alpha (1.84-fold) and -1beta (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair.
Departments of 2 Pediatrics, 3 Orthopedics, 4 Microbiology and Molecular Genetics, and 5 Biological Chemistry, 1 Center for the Study of Health Effects of Exercise in Children, 7 Department Physiology and Biophysics, 6 Institute for Genomics and Bioinformatics, College of Medicine, University of California, Irvine, California 92697 Submitted 25 March 2004 ; accepted in final form 6 June 2004 Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18–30 yr old) performed 30 min of constant work rate cycle ergometry ( 80% peak O 2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1 (1.84-fold) and -1 (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair. microarray; inflammation; growth; immunity Address for reprint requests and other correspondence: D. M. Cooper, Center for the Study of Health Effects of Exercise in Children, Dept. of Pediatrics, Bldg. 25, 2nd Floor, 101 The City Dr., Orange, CA 92868 (E-mail: dcooper{at}uci.edu ).
Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18-30 yr old) performed 30 min of constant work rate cycle ergometry (about 80% peak O2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1alpha (1.84-fold) and -1beta (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair. [PUBLICATION ABSTRACT]
Author Zaldivar, Frank
Hatfield, G. Wesley
Heck, J. Denis
Larson, Jennifer
Connolly, Peter H
Hung, She-pin
Nemet, Dan
Cooper, Dan M
Caiozzo, Vincent J
Author_xml – sequence: 1
  fullname: Connolly, Peter H
– sequence: 2
  fullname: Caiozzo, Vincent J
– sequence: 3
  fullname: Zaldivar, Frank
– sequence: 4
  fullname: Nemet, Dan
– sequence: 5
  fullname: Larson, Jennifer
– sequence: 6
  fullname: Hung, She-pin
– sequence: 7
  fullname: Heck, J. Denis
– sequence: 8
  fullname: Hatfield, G. Wesley
– sequence: 9
  fullname: Cooper, Dan M
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16134452$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15194674$$D View this record in MEDLINE/PubMed
BookMark eNp1kV2L1DAYhYOsuLOrf0GD4OJNx6RN83Epy64KC4LMfUjTt9MOaVKTKe78e9Od4opgbgLJc95zcnKFLnzwgNA7SraU1uWng5kmN_WnNAS3JaSifFsSwl6gTb4tC8oJvUAbKWpSiFqKS3SV0oEQylhNX6FLWlPFuGAb9OOu68AeEw4dhkeIdkiAg8d78JAPpggpe3g8eNzPo_F4gjhMPUTjcONCaPEYcrbZOjARW3AuvUYvO-MSvFn3a7S7v9vdfi0evn_5dvv5obB1rY5FaRWwHM42olWqAUEpB1pWhkkJTFatrAGkYFYoAqxtWA5aASul4UxJXl2jm_PYKYafM6SjHoe0BDAewpw055ITqWgG3_8DHsIcfY6my7wqklvKkDhDNoaUInR6isNo4klTopfK9d-V66fK9VJ5Vr5dx8_NCO2zbu04Ax9WwCRrXBeNzy0_c5xW-VvKzH08c_2w738NEfTqFvanxV0roZmmjC9PYv9H72fndvB4XDR_JHpqu-o3QBqwvA
CODEN JAPHEV
CitedBy_id crossref_primary_10_1038_s41526_017_0028_6
crossref_primary_10_1007_s12192_016_0726_0
crossref_primary_10_1089_ars_2012_4757
crossref_primary_10_1007_s00421_010_1789_8
crossref_primary_10_1152_japplphysiol_00872_2007
crossref_primary_10_1152_japplphysiol_00225_2007
crossref_primary_10_1016_j_mad_2008_02_007
crossref_primary_10_1016_j_cccb_2023_100183
crossref_primary_10_1158_0008_5472_CAN_09_2303
crossref_primary_10_3390_ijerph19116777
crossref_primary_10_1016_j_archoralbio_2022_105451
crossref_primary_10_1016_j_redox_2016_09_008
crossref_primary_10_1016_j_marpolbul_2014_08_025
crossref_primary_10_1111_j_1399_5448_2008_00452_x
crossref_primary_10_1016_j_lfs_2023_121440
crossref_primary_10_1016_j_appet_2010_03_015
crossref_primary_10_1016_j_molmed_2007_08_003
crossref_primary_10_1007_s00125_008_1132_7
crossref_primary_10_1016_j_jneuroim_2019_577019
crossref_primary_10_1371_journal_pgen_1000873
crossref_primary_10_29252_mlj_14_3_40
crossref_primary_10_1007_s41105_016_0077_3
crossref_primary_10_1016_j_mrrev_2010_04_001
crossref_primary_10_1186_s12905_022_01671_8
crossref_primary_10_3109_13813455_2014_1003566
crossref_primary_10_3390_cells11030531
crossref_primary_10_1016_j_yrtph_2010_04_005
crossref_primary_10_1007_s11332_020_00657_z
crossref_primary_10_14814_phy2_12621
crossref_primary_10_1017_thg_2022_15
crossref_primary_10_1152_physiolgenomics_00096_2005
crossref_primary_10_1158_1055_9965_227_14_1
crossref_primary_10_1177_0018720816645457
crossref_primary_10_14712_23362936_2014_3
crossref_primary_10_1007_s00421_020_04552_w
crossref_primary_10_1249_MSS_0b013e31825ab69b
crossref_primary_10_1097_MD_0000000000008325
crossref_primary_10_1007_s00421_016_3382_2
crossref_primary_10_1080_02640414_2014_912759
crossref_primary_10_1097_JSM_0b013e31814c3e4f
crossref_primary_10_1007_s12192_011_0283_5
crossref_primary_10_1007_s12192_009_0121_1
crossref_primary_10_1007_s40279_013_0023_3
crossref_primary_10_1038_s41598_017_04448_4
crossref_primary_10_3390_antiox12051138
crossref_primary_10_1002_mnfr_201100685
crossref_primary_10_1111_j_1365_2052_2010_02129_x
crossref_primary_10_1203_PDR_0b013e3181993473
crossref_primary_10_1111_j_1520_037X_2007_06425_x
crossref_primary_10_1161_CIRCRESAHA_117_310725
crossref_primary_10_3389_fneur_2019_01389
crossref_primary_10_1016_j_regpep_2010_08_001
crossref_primary_10_1152_japplphysiol_01079_2006
crossref_primary_10_1186_s12864_017_4191_7
crossref_primary_10_5713_ajas_19_0260
crossref_primary_10_1152_japplphysiol_00562_2005
crossref_primary_10_3389_fphys_2017_00473
crossref_primary_10_3390_ijerph16050760
crossref_primary_10_1186_1755_8794_4_29
crossref_primary_10_3390_ijms242216124
crossref_primary_10_1002_em_21777
crossref_primary_10_15406_jdmdc_2023_10_00259
crossref_primary_10_1016_j_bbrc_2009_11_150
crossref_primary_10_1111_j_1753_5174_2009_00020_x
crossref_primary_10_1371_journal_pone_0191331
crossref_primary_10_1152_japplphysiol_00114_2016
crossref_primary_10_1016_j_bbi_2013_10_023
crossref_primary_10_1186_1471_2164_7_115
crossref_primary_10_1016_j_cyto_2007_08_008
crossref_primary_10_1152_japplphysiol_00121_2009
crossref_primary_10_1080_21615667_2011_10878931
crossref_primary_10_1007_s12170_015_0463_4
crossref_primary_10_1016_j_mgene_2022_101012
crossref_primary_10_1073_pnas_0803080105
crossref_primary_10_1111_sms_12164
crossref_primary_10_1186_1479_7364_7_24
crossref_primary_10_2478_hukin_2021_0041
crossref_primary_10_5812_ircmj_17_4_2015_26321
crossref_primary_10_1139_H10_087
crossref_primary_10_1152_japplphysiol_00717_2012
crossref_primary_10_3389_fphys_2019_01550
crossref_primary_10_1007_s00415_008_0784_z
crossref_primary_10_14814_phy2_15394
crossref_primary_10_3390_ijms22179426
crossref_primary_10_1096_fj_202301619R
crossref_primary_10_1152_japplphysiol_01291_2009
crossref_primary_10_1089_neu_2015_4191
crossref_primary_10_1371_journal_pone_0180322
crossref_primary_10_3389_fresc_2024_1305925
crossref_primary_10_3390_ijms24076734
crossref_primary_10_1016_j_fertnstert_2007_06_058
crossref_primary_10_1002_em_21798
crossref_primary_10_1097_CEJ_0b013e3283592cbb
crossref_primary_10_3390_ijms151222835
crossref_primary_10_18632_aging_101016
crossref_primary_10_1016_j_cell_2020_04_043
crossref_primary_10_1002_oby_21079
crossref_primary_10_1007_s00421_011_2048_3
crossref_primary_10_1371_journal_pone_0092031
crossref_primary_10_1152_physiolgenomics_00072_2014
crossref_primary_10_1038_s41598_021_94330_1
crossref_primary_10_1007_s00421_010_1573_9
crossref_primary_10_1249_MSS_0b013e3181e2158d
crossref_primary_10_1016_j_lfs_2005_12_016
crossref_primary_10_1038_s41598_017_09819_5
crossref_primary_10_1155_2021_1938492
crossref_primary_10_1080_15592294_2019_1582276
crossref_primary_10_1016_j_jada_2006_01_001
crossref_primary_10_1186_s12974_016_0758_5
crossref_primary_10_1111_j_1471_4159_2009_06080_x
crossref_primary_10_1186_1741_7007_8_84
crossref_primary_10_3390_foods10020253
crossref_primary_10_1007_s00421_011_1923_2
crossref_primary_10_1002_dta_331
crossref_primary_10_1038_s41598_023_38064_2
crossref_primary_10_1155_2019_9526725
crossref_primary_10_1111_sms_12497
crossref_primary_10_1097_HTR_0000000000000191
crossref_primary_10_3390_genes13040574
crossref_primary_10_1136_bjsports_2014_093529
crossref_primary_10_3109_07853890_2014_927713
crossref_primary_10_1016_j_lab_2005_10_005
crossref_primary_10_1016_j_ymeth_2018_11_012
crossref_primary_10_1111_j_1600_0838_2006_00620_x
crossref_primary_10_1258_ebm_2009_009209
crossref_primary_10_1161_CIRCGENETICS_113_000121
crossref_primary_10_1111_sms_12400
crossref_primary_10_1152_japplphysiol_00066_2006
crossref_primary_10_1152_japplphysiol_00387_2014
crossref_primary_10_1080_15548627_2015_1009776
crossref_primary_10_1371_journal_pbio_2002690
crossref_primary_10_1080_1744666X_2023_2214364
Cites_doi 10.1093/humrep/deg231
10.1111/j.1469-7793.2000.t01-1-00647.x
10.1023/A:1025809808697
10.1074/jbc.M204044200
10.1016/S0197-4580(03)00126-X
10.1152/jappl.1984.56.3.628
10.1667/0033-7587(2002)157[0478:EIOCPA]2.0.CO;2
10.1097/00075198-200206000-00008
10.1159/000060100
10.2174/1566524013363816
10.1097/00003246-200201000-00014
10.1097/00002281-200305000-00009
10.1016/S0039-6109(02)00202-5
10.1161/01.CIR.0000058702.69484.A0
10.1097/00003677-200301000-00006
10.1111/j.1469-7793.2000.00157.x
10.1152/ajpheart.01098.2001
10.1016/S1568-9972(02)00085-X
10.1016/S1367-5931(02)00345-9
10.1023/B:ABME.0000007788.41804.0d
10.1063/1.364119
10.1542/peds.110.4.681
10.1016/j.tips.2003.10.004
10.1080/08977190290024192
10.1002/jlb.52.3.303
10.1189/jlb.0903412
10.1111/j.1469-7793.1998.949bp.x
10.2165/00007256-200333040-00002
10.1007/s00018-003-2370-y
10.1055/s-2007-972825
10.1152/jappl.1994.77.1.93
10.1073/pnas.252784499
10.1189/jlb.69.5.747
10.2165/00007256-200333110-00004
10.1097/00005768-200007000-00006
10.1152/jappl.1997.82.6.1946
10.1002/hipo.10109
10.1007/s00018-002-8525-4
10.1038/labinvest.3780186
10.1016/S0167-9473(01)00046-9
10.1074/jbc.M010192200
10.1093/bioinformatics/17.6.509
10.1055/s-2002-33741
10.1016/S0083-6729(00)58022-4
10.1159/000058402
10.1046/j.1365-2796.2001.00867.x
10.1096/fasebj.14.1.6
10.1152/japplphysiol.01031.2003
10.1097/00024382-200304000-00004
10.1152/ajpregu.1990.259.1.R163
10.1111/j.1472-8206.1999.tb00314.x
10.1046/j.0014-2956.2002.02754.x
10.1016/S0003-4975(02)03658-5
10.1016/S0090-6980(02)00042-4
10.1152/ajpgi.00178.2002
10.1152/jappl.2000.89.4.1499
10.1016/S1359-6101(02)00020-5
10.1097/00001573-200209000-00009
10.1152/jappl.2000.89.2.704
10.1038/sj.ijo.0802498
10.1002/jcb.10584
10.1111/j.1469-7793.1999.287ad.x
10.1016/j.amjmed.2003.09.016
10.1152/ajpendo.1989.257.3.E405
10.1152/ajpcell.2001.280.4.C769
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright American Physiological Society Oct 2004
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright American Physiological Society Oct 2004
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
DOI 10.1152/japplphysiol.00316.2004
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Physical Education Index
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Physical Education Index
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1522-1601
EndPage 1469
ExternalDocumentID 776862541
10_1152_japplphysiol_00316_2004
15194674
16134452
jap_97_4_1461
Genre Research Support, U.S. Gov't, P.H.S
Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
Feature
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: HD-26939
– fundername: NCRR NIH HHS
  grantid: MO1 RR-00827
– fundername: NIGMS NIH HHS
  grantid: GM-55073
– fundername: NIAMS NIH HHS
  grantid: AR-46856
– fundername: NIGMS NIH HHS
  grantid: GM-68903
GroupedDBID -
02
2WC
39C
3O-
4.4
53G
55
5VS
85S
AALRV
ABFLS
ABOCM
ABUFD
ACGFS
ACIWK
ACPRK
ADBBV
ADBIT
AEILP
AENEX
AEULQ
AFDAS
AFRAH
AGCDD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GJ
GX1
H13
H~9
KQ8
L7B
MVM
MYA
NEJ
O0-
OHT
OK1
P-O
P2P
PQEST
PQQKQ
RAP
RHF
RHI
RPL
SJN
UHB
UKR
UPT
WH7
WOQ
X
X7M
YCJ
ZXP
---
-~X
.55
.GJ
08R
18M
1CY
29J
476
8M5
AAFWJ
AAUGY
ABCQX
ABDNZ
ABKWE
ACBEA
ACGFO
ACKIV
ACYGS
ADFNX
AETEA
AFMIJ
AFOSN
AGNAY
AI.
AIDAL
AJUXI
BKKCC
BTFSW
C2-
EMOBN
F3I
IQODW
ITBOX
J5H
P6G
RPRKH
TR2
VH1
W8F
XOL
XSW
YBH
YQJ
YQT
YWH
~02
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7QR
7TK
7TS
7U7
8FD
C1K
FR3
P64
7X8
ID FETCH-LOGICAL-c559t-2c9e4758cb7d99be7116e123a488e483d85ee874c790e4db4ffe3e428a649863
ISSN 8750-7587
IngestDate Fri Oct 25 04:41:33 EDT 2024
Thu Oct 10 17:48:04 EDT 2024
Thu Nov 21 21:20:12 EST 2024
Sat Sep 28 07:42:50 EDT 2024
Sun Oct 29 17:07:13 EDT 2023
Tue Jan 05 17:53:21 EST 2021
Mon May 06 11:51:06 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Physical exercise
Human
Vertebrata
Blood cell
microarray
Mammalia
Mononuclear cell
Growth
Inflammation
Gene expression
Immunity
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c559t-2c9e4758cb7d99be7116e123a488e483d85ee874c790e4db4ffe3e428a649863
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://escholarship.org/content/qt4b7136mv/qt4b7136mv.pdf?t=pqd3cx
PMID 15194674
PQID 222230750
PQPubID 40905
PageCount 9
ParticipantIDs pubmed_primary_15194674
proquest_journals_222230750
crossref_primary_10_1152_japplphysiol_00316_2004
highwire_physiology_jap_97_4_1461
proquest_miscellaneous_66860891
pascalfrancis_primary_16134452
PublicationCentury 2000
PublicationDate 2004-10-01
PublicationDateYYYYMMDD 2004-10-01
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-01
  day: 01
PublicationDecade 2000
PublicationPlace Bethesda, MD
PublicationPlace_xml – name: Bethesda, MD
– name: United States
– name: Bethesda
PublicationTitle Journal of applied physiology (1985)
PublicationTitleAlternate J Appl Physiol (1985)
PublicationYear 2004
Publisher Am Physiological Soc
American Physiological Society
Publisher_xml – name: Am Physiological Soc
– name: American Physiological Society
References R61
R60
R63
R62
R21
R65
R20
R64
R23
R67
R22
R66
R25
R69
R24
R68
R27
R26
R29
R28
R2
R3
R4
R5
R6
R7
R8
R9
R70
R71
R30
R32
R31
R34
R33
R36
R35
R38
R39
R41
R40
R43
R42
R45
R44
R47
R46
R49
R48
R50
R52
R51
R10
R54
R53
R12
R56
R11
R55
R14
R58
R13
R57
R16
R15
R59
R18
R17
R19
References_xml – ident: R68
  doi: 10.1093/humrep/deg231
– ident: R58
  doi: 10.1111/j.1469-7793.2000.t01-1-00647.x
– ident: R10
  doi: 10.1023/A:1025809808697
– ident: R29
  doi: 10.1074/jbc.M204044200
– ident: R33
  doi: 10.1016/S0197-4580(03)00126-X
– ident: R14
  doi: 10.1152/jappl.1984.56.3.628
– ident: R16
  doi: 10.1667/0033-7587(2002)157[0478:EIOCPA]2.0.CO;2
– ident: R61
  doi: 10.1097/00075198-200206000-00008
– ident: R51
  doi: 10.1159/000060100
– ident: R70
  doi: 10.2174/1566524013363816
– ident: R56
– ident: R40
  doi: 10.1097/00003246-200201000-00014
– ident: R55
  doi: 10.1097/00002281-200305000-00009
– ident: R15
  doi: 10.1016/S0039-6109(02)00202-5
– ident: R54
  doi: 10.1161/01.CIR.0000058702.69484.A0
– ident: R53
  doi: 10.1097/00003677-200301000-00006
– ident: R31
  doi: 10.1111/j.1469-7793.2000.00157.x
– ident: R25
  doi: 10.1152/ajpheart.01098.2001
– ident: R36
  doi: 10.1016/S1568-9972(02)00085-X
– ident: R26
  doi: 10.1016/S1367-5931(02)00345-9
– ident: R27
  doi: 10.1023/B:ABME.0000007788.41804.0d
– ident: R9
  doi: 10.1063/1.364119
– ident: R44
  doi: 10.1542/peds.110.4.681
– ident: R62
  doi: 10.1016/j.tips.2003.10.004
– ident: R22
– ident: R34
  doi: 10.1080/08977190290024192
– ident: R3
  doi: 10.1002/jlb.52.3.303
– ident: R71
  doi: 10.1189/jlb.0903412
– ident: R49
  doi: 10.1111/j.1469-7793.1998.949bp.x
– ident: R57
  doi: 10.2165/00007256-200333040-00002
– ident: R8
  doi: 10.1007/s00018-003-2370-y
– ident: R11
  doi: 10.1055/s-2007-972825
– ident: R63
  doi: 10.1152/jappl.1994.77.1.93
– ident: R67
  doi: 10.1073/pnas.252784499
– ident: R21
  doi: 10.1189/jlb.69.5.747
– ident: R30
  doi: 10.2165/00007256-200333110-00004
– ident: R47
  doi: 10.1097/00005768-200007000-00006
– ident: R28
  doi: 10.1152/jappl.1997.82.6.1946
– ident: R41
  doi: 10.1002/hipo.10109
– ident: R66
  doi: 10.1007/s00018-002-8525-4
– ident: R42
  doi: 10.1038/labinvest.3780186
– ident: R2
  doi: 10.1016/S0167-9473(01)00046-9
– ident: R39
  doi: 10.1074/jbc.M010192200
– ident: R6
  doi: 10.1093/bioinformatics/17.6.509
– ident: R46
  doi: 10.1055/s-2002-33741
– ident: R65
  doi: 10.1016/S0083-6729(00)58022-4
– ident: R50
  doi: 10.1159/000058402
– ident: R5
  doi: 10.1046/j.1365-2796.2001.00867.x
– ident: R12
  doi: 10.1096/fasebj.14.1.6
– ident: R35
  doi: 10.1152/japplphysiol.01031.2003
– ident: R69
  doi: 10.1097/00024382-200304000-00004
– ident: R7
  doi: 10.1152/ajpregu.1990.259.1.R163
– ident: R32
  doi: 10.1111/j.1472-8206.1999.tb00314.x
– ident: R60
  doi: 10.1046/j.0014-2956.2002.02754.x
– ident: R23
  doi: 10.1016/S0003-4975(02)03658-5
– ident: R64
  doi: 10.1016/S0090-6980(02)00042-4
– ident: R18
  doi: 10.1152/ajpgi.00178.2002
– ident: R43
  doi: 10.1152/jappl.2000.89.4.1499
– ident: R45
– ident: R4
  doi: 10.1016/S1359-6101(02)00020-5
– ident: R52
  doi: 10.1097/00001573-200209000-00009
– ident: R20
  doi: 10.1152/jappl.2000.89.2.704
– ident: R38
  doi: 10.1038/sj.ijo.0802498
– ident: R19
  doi: 10.1002/jcb.10584
– ident: R48
  doi: 10.1111/j.1469-7793.1999.287ad.x
– ident: R24
  doi: 10.1016/j.amjmed.2003.09.016
– ident: R13
  doi: 10.1152/ajpendo.1989.257.3.E405
– ident: R59
  doi: 10.1152/ajpcell.2001.280.4.C769
– ident: R17
SSID ssj0014451
Score 2.2758803
Snippet Departments of 2 Pediatrics, 3 Orthopedics, 4 Microbiology and Molecular Genetics, and 5 Biological Chemistry, 1 Center for the Study of Health Effects of...
Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both...
SourceID proquest
crossref
pubmed
pascalfrancis
highwire
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1461
SubjectTerms Adolescent
Adult
Biological and medical sciences
Blood Proteins - immunology
Cells
Cells, Cultured
Cytokines - blood
Cytokines - immunology
Exercise
Exercise - physiology
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Regulation - immunology
Gene Expression Regulation - physiology
Human subjects
Humans
Leukocytes, Mononuclear - immunology
Leukocytes, Mononuclear - physiology
Male
Physical Exertion - physiology
Title Effects of exercise on gene expression in human peripheral blood mononuclear cells
URI http://jap.physiology.org/cgi/content/abstract/97/4/1461
https://www.ncbi.nlm.nih.gov/pubmed/15194674
https://www.proquest.com/docview/222230750
https://search.proquest.com/docview/66860891
Volume 97
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELa6ISFeEGzAwmAYCfEyBZLUdezHaes0oVEQC2jixXISV6q0JdPSIjHx47mzkziTVgEPvFRt6sSO78v57vzljpA3MtbcFEyEeZkXIStjHuooTUPOtMhh-dF5gTHdk7N0di6Opmw6Gv3qvP7-2H-VNBwDWeObs_8g7f6icAC-g8zhE6QOn38l96knaHTllHBDANobTOfvaK-W3ujK82GmY5ta4MKR2PdhpHWFWY719T6G9Zs19qtu7VcbG3GZnDDpkxSTQXRhWM3aUoH9yxCHelHf3NhI7bdFhSRRv0X1XV-Uix-O-23LyvuY9aXbPTlqUd0FLFhPffOczigENyUdKmFH0m3BxgYaFeuOD1Zn-Cnv1vyTxFYcgHtv7_sdKizLQmF-ses2-Gef1PHX01OVTc-zDXIvATWFWvLsw6zfg8LUbS467IbbsgOho_drurlt23T5ppFuqxt44uauVMp6X8baNNkj8rAVJj1wKHpMRqbaItsHlV7Wlz_pW_q5F-0Wuf-xZWFsky8txmg9px3GaF1RxBj1GKOLilqMUY8xajFGBxijFmNPSHY8zQ5PwrY2R1iAD7oMk0IaBrNS5GkpZW7SOOYGrCANC4JhYlyKiTEiZUUqI8PKnMHAxgZ8Xc2ZFHz8lGxCR2aH0FzkMhYa1hnNGE9SLbAGwTiZC57HsTQBibpJVVcuA4uynuskUUM52Cy3HMuqsoCE3eQr_xAoDOpkgAI8TaaKodsbq6tyHpDXd7WHZqpvF5C9W1L0YwGDGKCSBGS3E6tq9UGjEjS_0SoPyKv-X1DgOLW6MvWqUZwLHgkJHTxzWPBXBu8KiwE9_-O5u-SBf9JekM3l9cq8JBtNudqzmP4NxQnFHQ
link.rule.ids 315,782,786,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+exercise+on+gene+expression+in+human+peripheral+blood+mononuclear+cells&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Connolly%2C+Peter+H&rft.au=Caiozzo%2C+Vincent+J&rft.au=Zaldivar%2C+Frank&rft.au=Nemet%2C+Dan&rft.date=2004-10-01&rft.issn=8750-7587&rft.volume=97&rft.issue=4&rft.spage=1461&rft.epage=1469&rft_id=info:doi/10.1152%2Fjapplphysiol.00316.2004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon