Effects of exercise on gene expression in human peripheral blood mononuclear cells
Departments of 2 Pediatrics, 3 Orthopedics, 4 Microbiology and Molecular Genetics, and 5 Biological Chemistry, 1 Center for the Study of Health Effects of Exercise in Children, 7 Department Physiology and Biophysics, 6 Institute for Genomics and Bioinformatics, College of Medicine, University of Cal...
Saved in:
Published in: | Journal of applied physiology (1985) Vol. 97; no. 4; pp. 1461 - 1469 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Bethesda, MD
Am Physiological Soc
01-10-2004
American Physiological Society |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Departments of 2 Pediatrics, 3 Orthopedics, 4 Microbiology and Molecular Genetics, and 5 Biological Chemistry, 1 Center for the Study of Health Effects of Exercise in Children, 7 Department Physiology and Biophysics, 6 Institute for Genomics and Bioinformatics, College of Medicine, University of California, Irvine, California 92697
Submitted 25 March 2004
; accepted in final form 6 June 2004
Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (1830 yr old) performed 30 min of constant work rate cycle ergometry ( 80% peak O 2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1 (1.84-fold) and -1 (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair.
microarray; inflammation; growth; immunity
Address for reprint requests and other correspondence: D. M. Cooper, Center for the Study of Health Effects of Exercise in Children, Dept. of Pediatrics, Bldg. 25, 2nd Floor, 101 The City Dr., Orange, CA 92868 (E-mail: dcooper{at}uci.edu ). |
---|---|
AbstractList | Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18–30 yr old) performed 30 min of constant work rate cycle ergometry (∼80% peak O
2
uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1α (1.84-fold) and -1β (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair. Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18-30 yr old) performed 30 min of constant work rate cycle ergometry (approximately 80% peak O2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1alpha (1.84-fold) and -1beta (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair. Departments of 2 Pediatrics, 3 Orthopedics, 4 Microbiology and Molecular Genetics, and 5 Biological Chemistry, 1 Center for the Study of Health Effects of Exercise in Children, 7 Department Physiology and Biophysics, 6 Institute for Genomics and Bioinformatics, College of Medicine, University of California, Irvine, California 92697 Submitted 25 March 2004 ; accepted in final form 6 June 2004 Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (1830 yr old) performed 30 min of constant work rate cycle ergometry ( 80% peak O 2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1 (1.84-fold) and -1 (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair. microarray; inflammation; growth; immunity Address for reprint requests and other correspondence: D. M. Cooper, Center for the Study of Health Effects of Exercise in Children, Dept. of Pediatrics, Bldg. 25, 2nd Floor, 101 The City Dr., Orange, CA 92868 (E-mail: dcooper{at}uci.edu ). Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both pro- and anti-inflammatory mediators. Whether this is paralleled by changes in gene expression within the circulating population of PBMCs is not fully understood. Fifteen healthy men (18-30 yr old) performed 30 min of constant work rate cycle ergometry (about 80% peak O2 uptake). Blood samples were obtained preexercise (Pre), end-exercise (End-Ex), and 60 min into recovery (Recovery), and gene expression was measured using microarray analysis (Affymetrix GeneChips). Significant differential gene expression was defined with a posterior probability of differential expression of 0.99 and a Bayesian P value of 0.005. Significant changes were observed from Pre to End-Ex in 311 genes, from End-Ex to Recovery in 552 genes, and from Pre to Recovery in 293 genes. Pre to End-Ex upregulation of PBMC genes related to stress and inflammation [e.g., heat shock protein 70 (3.70-fold) and dual-specificity phosphatase-1 (4.45-fold)] was followed by a return of these genes to baseline by Recovery. The gene for interleukin-1 receptor antagonist (an anti-inflammatory mediator) increased between End-Ex and Recovery (1.52-fold). Chemokine genes associated with inflammatory diseases [macrophage inflammatory protein-1alpha (1.84-fold) and -1beta (2.88-fold), and regulation-on-activation, normal T cell expressed and secreted (1.34-fold)] were upregulated but returned to baseline by Recovery. Exercise also upregulated growth and repair genes such as epiregulin (3.50-fold), platelet-derived growth factor (1.55-fold), and hypoxia-inducible factor-I (2.40-fold). A single bout of heavy exercise substantially alters PBMC gene expression characterized in many cases by a brisk activation and deactivation of genes associated with stress, inflammation, and tissue repair. [PUBLICATION ABSTRACT] |
Author | Zaldivar, Frank Hatfield, G. Wesley Heck, J. Denis Larson, Jennifer Connolly, Peter H Hung, She-pin Nemet, Dan Cooper, Dan M Caiozzo, Vincent J |
Author_xml | – sequence: 1 fullname: Connolly, Peter H – sequence: 2 fullname: Caiozzo, Vincent J – sequence: 3 fullname: Zaldivar, Frank – sequence: 4 fullname: Nemet, Dan – sequence: 5 fullname: Larson, Jennifer – sequence: 6 fullname: Hung, She-pin – sequence: 7 fullname: Heck, J. Denis – sequence: 8 fullname: Hatfield, G. Wesley – sequence: 9 fullname: Cooper, Dan M |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16134452$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15194674$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV2L1DAYhYOsuLOrf0GD4OJNx6RN83Epy64KC4LMfUjTt9MOaVKTKe78e9Od4opgbgLJc95zcnKFLnzwgNA7SraU1uWng5kmN_WnNAS3JaSifFsSwl6gTb4tC8oJvUAbKWpSiFqKS3SV0oEQylhNX6FLWlPFuGAb9OOu68AeEw4dhkeIdkiAg8d78JAPpggpe3g8eNzPo_F4gjhMPUTjcONCaPEYcrbZOjARW3AuvUYvO-MSvFn3a7S7v9vdfi0evn_5dvv5obB1rY5FaRWwHM42olWqAUEpB1pWhkkJTFatrAGkYFYoAqxtWA5aASul4UxJXl2jm_PYKYafM6SjHoe0BDAewpw055ITqWgG3_8DHsIcfY6my7wqklvKkDhDNoaUInR6isNo4klTopfK9d-V66fK9VJ5Vr5dx8_NCO2zbu04Ax9WwCRrXBeNzy0_c5xW-VvKzH08c_2w738NEfTqFvanxV0roZmmjC9PYv9H72fndvB4XDR_JHpqu-o3QBqwvA |
CODEN | JAPHEV |
CitedBy_id | crossref_primary_10_1038_s41526_017_0028_6 crossref_primary_10_1007_s12192_016_0726_0 crossref_primary_10_1089_ars_2012_4757 crossref_primary_10_1007_s00421_010_1789_8 crossref_primary_10_1152_japplphysiol_00872_2007 crossref_primary_10_1152_japplphysiol_00225_2007 crossref_primary_10_1016_j_mad_2008_02_007 crossref_primary_10_1016_j_cccb_2023_100183 crossref_primary_10_1158_0008_5472_CAN_09_2303 crossref_primary_10_3390_ijerph19116777 crossref_primary_10_1016_j_archoralbio_2022_105451 crossref_primary_10_1016_j_redox_2016_09_008 crossref_primary_10_1016_j_marpolbul_2014_08_025 crossref_primary_10_1111_j_1399_5448_2008_00452_x crossref_primary_10_1016_j_lfs_2023_121440 crossref_primary_10_1016_j_appet_2010_03_015 crossref_primary_10_1016_j_molmed_2007_08_003 crossref_primary_10_1007_s00125_008_1132_7 crossref_primary_10_1016_j_jneuroim_2019_577019 crossref_primary_10_1371_journal_pgen_1000873 crossref_primary_10_29252_mlj_14_3_40 crossref_primary_10_1007_s41105_016_0077_3 crossref_primary_10_1016_j_mrrev_2010_04_001 crossref_primary_10_1186_s12905_022_01671_8 crossref_primary_10_3109_13813455_2014_1003566 crossref_primary_10_3390_cells11030531 crossref_primary_10_1016_j_yrtph_2010_04_005 crossref_primary_10_1007_s11332_020_00657_z crossref_primary_10_14814_phy2_12621 crossref_primary_10_1017_thg_2022_15 crossref_primary_10_1152_physiolgenomics_00096_2005 crossref_primary_10_1158_1055_9965_227_14_1 crossref_primary_10_1177_0018720816645457 crossref_primary_10_14712_23362936_2014_3 crossref_primary_10_1007_s00421_020_04552_w crossref_primary_10_1249_MSS_0b013e31825ab69b crossref_primary_10_1097_MD_0000000000008325 crossref_primary_10_1007_s00421_016_3382_2 crossref_primary_10_1080_02640414_2014_912759 crossref_primary_10_1097_JSM_0b013e31814c3e4f crossref_primary_10_1007_s12192_011_0283_5 crossref_primary_10_1007_s12192_009_0121_1 crossref_primary_10_1007_s40279_013_0023_3 crossref_primary_10_1038_s41598_017_04448_4 crossref_primary_10_3390_antiox12051138 crossref_primary_10_1002_mnfr_201100685 crossref_primary_10_1111_j_1365_2052_2010_02129_x crossref_primary_10_1203_PDR_0b013e3181993473 crossref_primary_10_1111_j_1520_037X_2007_06425_x crossref_primary_10_1161_CIRCRESAHA_117_310725 crossref_primary_10_3389_fneur_2019_01389 crossref_primary_10_1016_j_regpep_2010_08_001 crossref_primary_10_1152_japplphysiol_01079_2006 crossref_primary_10_1186_s12864_017_4191_7 crossref_primary_10_5713_ajas_19_0260 crossref_primary_10_1152_japplphysiol_00562_2005 crossref_primary_10_3389_fphys_2017_00473 crossref_primary_10_3390_ijerph16050760 crossref_primary_10_1186_1755_8794_4_29 crossref_primary_10_3390_ijms242216124 crossref_primary_10_1002_em_21777 crossref_primary_10_15406_jdmdc_2023_10_00259 crossref_primary_10_1016_j_bbrc_2009_11_150 crossref_primary_10_1111_j_1753_5174_2009_00020_x crossref_primary_10_1371_journal_pone_0191331 crossref_primary_10_1152_japplphysiol_00114_2016 crossref_primary_10_1016_j_bbi_2013_10_023 crossref_primary_10_1186_1471_2164_7_115 crossref_primary_10_1016_j_cyto_2007_08_008 crossref_primary_10_1152_japplphysiol_00121_2009 crossref_primary_10_1080_21615667_2011_10878931 crossref_primary_10_1007_s12170_015_0463_4 crossref_primary_10_1016_j_mgene_2022_101012 crossref_primary_10_1073_pnas_0803080105 crossref_primary_10_1111_sms_12164 crossref_primary_10_1186_1479_7364_7_24 crossref_primary_10_2478_hukin_2021_0041 crossref_primary_10_5812_ircmj_17_4_2015_26321 crossref_primary_10_1139_H10_087 crossref_primary_10_1152_japplphysiol_00717_2012 crossref_primary_10_3389_fphys_2019_01550 crossref_primary_10_1007_s00415_008_0784_z crossref_primary_10_14814_phy2_15394 crossref_primary_10_3390_ijms22179426 crossref_primary_10_1096_fj_202301619R crossref_primary_10_1152_japplphysiol_01291_2009 crossref_primary_10_1089_neu_2015_4191 crossref_primary_10_1371_journal_pone_0180322 crossref_primary_10_3389_fresc_2024_1305925 crossref_primary_10_3390_ijms24076734 crossref_primary_10_1016_j_fertnstert_2007_06_058 crossref_primary_10_1002_em_21798 crossref_primary_10_1097_CEJ_0b013e3283592cbb crossref_primary_10_3390_ijms151222835 crossref_primary_10_18632_aging_101016 crossref_primary_10_1016_j_cell_2020_04_043 crossref_primary_10_1002_oby_21079 crossref_primary_10_1007_s00421_011_2048_3 crossref_primary_10_1371_journal_pone_0092031 crossref_primary_10_1152_physiolgenomics_00072_2014 crossref_primary_10_1038_s41598_021_94330_1 crossref_primary_10_1007_s00421_010_1573_9 crossref_primary_10_1249_MSS_0b013e3181e2158d crossref_primary_10_1016_j_lfs_2005_12_016 crossref_primary_10_1038_s41598_017_09819_5 crossref_primary_10_1155_2021_1938492 crossref_primary_10_1080_15592294_2019_1582276 crossref_primary_10_1016_j_jada_2006_01_001 crossref_primary_10_1186_s12974_016_0758_5 crossref_primary_10_1111_j_1471_4159_2009_06080_x crossref_primary_10_1186_1741_7007_8_84 crossref_primary_10_3390_foods10020253 crossref_primary_10_1007_s00421_011_1923_2 crossref_primary_10_1002_dta_331 crossref_primary_10_1038_s41598_023_38064_2 crossref_primary_10_1155_2019_9526725 crossref_primary_10_1111_sms_12497 crossref_primary_10_1097_HTR_0000000000000191 crossref_primary_10_3390_genes13040574 crossref_primary_10_1136_bjsports_2014_093529 crossref_primary_10_3109_07853890_2014_927713 crossref_primary_10_1016_j_lab_2005_10_005 crossref_primary_10_1016_j_ymeth_2018_11_012 crossref_primary_10_1111_j_1600_0838_2006_00620_x crossref_primary_10_1258_ebm_2009_009209 crossref_primary_10_1161_CIRCGENETICS_113_000121 crossref_primary_10_1111_sms_12400 crossref_primary_10_1152_japplphysiol_00066_2006 crossref_primary_10_1152_japplphysiol_00387_2014 crossref_primary_10_1080_15548627_2015_1009776 crossref_primary_10_1371_journal_pbio_2002690 crossref_primary_10_1080_1744666X_2023_2214364 |
Cites_doi | 10.1093/humrep/deg231 10.1111/j.1469-7793.2000.t01-1-00647.x 10.1023/A:1025809808697 10.1074/jbc.M204044200 10.1016/S0197-4580(03)00126-X 10.1152/jappl.1984.56.3.628 10.1667/0033-7587(2002)157[0478:EIOCPA]2.0.CO;2 10.1097/00075198-200206000-00008 10.1159/000060100 10.2174/1566524013363816 10.1097/00003246-200201000-00014 10.1097/00002281-200305000-00009 10.1016/S0039-6109(02)00202-5 10.1161/01.CIR.0000058702.69484.A0 10.1097/00003677-200301000-00006 10.1111/j.1469-7793.2000.00157.x 10.1152/ajpheart.01098.2001 10.1016/S1568-9972(02)00085-X 10.1016/S1367-5931(02)00345-9 10.1023/B:ABME.0000007788.41804.0d 10.1063/1.364119 10.1542/peds.110.4.681 10.1016/j.tips.2003.10.004 10.1080/08977190290024192 10.1002/jlb.52.3.303 10.1189/jlb.0903412 10.1111/j.1469-7793.1998.949bp.x 10.2165/00007256-200333040-00002 10.1007/s00018-003-2370-y 10.1055/s-2007-972825 10.1152/jappl.1994.77.1.93 10.1073/pnas.252784499 10.1189/jlb.69.5.747 10.2165/00007256-200333110-00004 10.1097/00005768-200007000-00006 10.1152/jappl.1997.82.6.1946 10.1002/hipo.10109 10.1007/s00018-002-8525-4 10.1038/labinvest.3780186 10.1016/S0167-9473(01)00046-9 10.1074/jbc.M010192200 10.1093/bioinformatics/17.6.509 10.1055/s-2002-33741 10.1016/S0083-6729(00)58022-4 10.1159/000058402 10.1046/j.1365-2796.2001.00867.x 10.1096/fasebj.14.1.6 10.1152/japplphysiol.01031.2003 10.1097/00024382-200304000-00004 10.1152/ajpregu.1990.259.1.R163 10.1111/j.1472-8206.1999.tb00314.x 10.1046/j.0014-2956.2002.02754.x 10.1016/S0003-4975(02)03658-5 10.1016/S0090-6980(02)00042-4 10.1152/ajpgi.00178.2002 10.1152/jappl.2000.89.4.1499 10.1016/S1359-6101(02)00020-5 10.1097/00001573-200209000-00009 10.1152/jappl.2000.89.2.704 10.1038/sj.ijo.0802498 10.1002/jcb.10584 10.1111/j.1469-7793.1999.287ad.x 10.1016/j.amjmed.2003.09.016 10.1152/ajpendo.1989.257.3.E405 10.1152/ajpcell.2001.280.4.C769 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS Copyright American Physiological Society Oct 2004 |
Copyright_xml | – notice: 2005 INIST-CNRS – notice: Copyright American Physiological Society Oct 2004 |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
DOI | 10.1152/japplphysiol.00316.2004 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Physical Education Index Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Toxicology Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Physical Education Index Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1522-1601 |
EndPage | 1469 |
ExternalDocumentID | 776862541 10_1152_japplphysiol_00316_2004 15194674 16134452 jap_97_4_1461 |
Genre | Research Support, U.S. Gov't, P.H.S Clinical Trial Research Support, Non-U.S. Gov't Journal Article Feature |
GrantInformation_xml | – fundername: NICHD NIH HHS grantid: HD-26939 – fundername: NCRR NIH HHS grantid: MO1 RR-00827 – fundername: NIGMS NIH HHS grantid: GM-55073 – fundername: NIAMS NIH HHS grantid: AR-46856 – fundername: NIGMS NIH HHS grantid: GM-68903 |
GroupedDBID | - 02 2WC 39C 3O- 4.4 53G 55 5VS 85S AALRV ABFLS ABOCM ABUFD ACGFS ACIWK ACPRK ADBBV ADBIT AEILP AENEX AEULQ AFDAS AFRAH AGCDD ALMA_UNASSIGNED_HOLDINGS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P FRP GJ GX1 H13 H~9 KQ8 L7B MVM MYA NEJ O0- OHT OK1 P-O P2P PQEST PQQKQ RAP RHF RHI RPL SJN UHB UKR UPT WH7 WOQ X X7M YCJ ZXP --- -~X .55 .GJ 08R 18M 1CY 29J 476 8M5 AAFWJ AAUGY ABCQX ABDNZ ABKWE ACBEA ACGFO ACKIV ACYGS ADFNX AETEA AFMIJ AFOSN AGNAY AI. AIDAL AJUXI BKKCC BTFSW C2- EMOBN F3I IQODW ITBOX J5H P6G RPRKH TR2 VH1 W8F XOL XSW YBH YQJ YQT YWH ~02 CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7TS 7U7 8FD C1K FR3 P64 7X8 |
ID | FETCH-LOGICAL-c559t-2c9e4758cb7d99be7116e123a488e483d85ee874c790e4db4ffe3e428a649863 |
ISSN | 8750-7587 |
IngestDate | Fri Oct 25 04:41:33 EDT 2024 Thu Oct 10 17:48:04 EDT 2024 Thu Nov 21 21:20:12 EST 2024 Sat Sep 28 07:42:50 EDT 2024 Sun Oct 29 17:07:13 EDT 2023 Tue Jan 05 17:53:21 EST 2021 Mon May 06 11:51:06 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Physical exercise Human Vertebrata Blood cell microarray Mammalia Mononuclear cell Growth Inflammation Gene expression Immunity |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c559t-2c9e4758cb7d99be7116e123a488e483d85ee874c790e4db4ffe3e428a649863 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://escholarship.org/content/qt4b7136mv/qt4b7136mv.pdf?t=pqd3cx |
PMID | 15194674 |
PQID | 222230750 |
PQPubID | 40905 |
PageCount | 9 |
ParticipantIDs | pubmed_primary_15194674 proquest_journals_222230750 crossref_primary_10_1152_japplphysiol_00316_2004 highwire_physiology_jap_97_4_1461 proquest_miscellaneous_66860891 pascalfrancis_primary_16134452 |
PublicationCentury | 2000 |
PublicationDate | 2004-10-01 |
PublicationDateYYYYMMDD | 2004-10-01 |
PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Bethesda, MD |
PublicationPlace_xml | – name: Bethesda, MD – name: United States – name: Bethesda |
PublicationTitle | Journal of applied physiology (1985) |
PublicationTitleAlternate | J Appl Physiol (1985) |
PublicationYear | 2004 |
Publisher | Am Physiological Soc American Physiological Society |
Publisher_xml | – name: Am Physiological Soc – name: American Physiological Society |
References | R61 R60 R63 R62 R21 R65 R20 R64 R23 R67 R22 R66 R25 R69 R24 R68 R27 R26 R29 R28 R2 R3 R4 R5 R6 R7 R8 R9 R70 R71 R30 R32 R31 R34 R33 R36 R35 R38 R39 R41 R40 R43 R42 R45 R44 R47 R46 R49 R48 R50 R52 R51 R10 R54 R53 R12 R56 R11 R55 R14 R58 R13 R57 R16 R15 R59 R18 R17 R19 |
References_xml | – ident: R68 doi: 10.1093/humrep/deg231 – ident: R58 doi: 10.1111/j.1469-7793.2000.t01-1-00647.x – ident: R10 doi: 10.1023/A:1025809808697 – ident: R29 doi: 10.1074/jbc.M204044200 – ident: R33 doi: 10.1016/S0197-4580(03)00126-X – ident: R14 doi: 10.1152/jappl.1984.56.3.628 – ident: R16 doi: 10.1667/0033-7587(2002)157[0478:EIOCPA]2.0.CO;2 – ident: R61 doi: 10.1097/00075198-200206000-00008 – ident: R51 doi: 10.1159/000060100 – ident: R70 doi: 10.2174/1566524013363816 – ident: R56 – ident: R40 doi: 10.1097/00003246-200201000-00014 – ident: R55 doi: 10.1097/00002281-200305000-00009 – ident: R15 doi: 10.1016/S0039-6109(02)00202-5 – ident: R54 doi: 10.1161/01.CIR.0000058702.69484.A0 – ident: R53 doi: 10.1097/00003677-200301000-00006 – ident: R31 doi: 10.1111/j.1469-7793.2000.00157.x – ident: R25 doi: 10.1152/ajpheart.01098.2001 – ident: R36 doi: 10.1016/S1568-9972(02)00085-X – ident: R26 doi: 10.1016/S1367-5931(02)00345-9 – ident: R27 doi: 10.1023/B:ABME.0000007788.41804.0d – ident: R9 doi: 10.1063/1.364119 – ident: R44 doi: 10.1542/peds.110.4.681 – ident: R62 doi: 10.1016/j.tips.2003.10.004 – ident: R22 – ident: R34 doi: 10.1080/08977190290024192 – ident: R3 doi: 10.1002/jlb.52.3.303 – ident: R71 doi: 10.1189/jlb.0903412 – ident: R49 doi: 10.1111/j.1469-7793.1998.949bp.x – ident: R57 doi: 10.2165/00007256-200333040-00002 – ident: R8 doi: 10.1007/s00018-003-2370-y – ident: R11 doi: 10.1055/s-2007-972825 – ident: R63 doi: 10.1152/jappl.1994.77.1.93 – ident: R67 doi: 10.1073/pnas.252784499 – ident: R21 doi: 10.1189/jlb.69.5.747 – ident: R30 doi: 10.2165/00007256-200333110-00004 – ident: R47 doi: 10.1097/00005768-200007000-00006 – ident: R28 doi: 10.1152/jappl.1997.82.6.1946 – ident: R41 doi: 10.1002/hipo.10109 – ident: R66 doi: 10.1007/s00018-002-8525-4 – ident: R42 doi: 10.1038/labinvest.3780186 – ident: R2 doi: 10.1016/S0167-9473(01)00046-9 – ident: R39 doi: 10.1074/jbc.M010192200 – ident: R6 doi: 10.1093/bioinformatics/17.6.509 – ident: R46 doi: 10.1055/s-2002-33741 – ident: R65 doi: 10.1016/S0083-6729(00)58022-4 – ident: R50 doi: 10.1159/000058402 – ident: R5 doi: 10.1046/j.1365-2796.2001.00867.x – ident: R12 doi: 10.1096/fasebj.14.1.6 – ident: R35 doi: 10.1152/japplphysiol.01031.2003 – ident: R69 doi: 10.1097/00024382-200304000-00004 – ident: R7 doi: 10.1152/ajpregu.1990.259.1.R163 – ident: R32 doi: 10.1111/j.1472-8206.1999.tb00314.x – ident: R60 doi: 10.1046/j.0014-2956.2002.02754.x – ident: R23 doi: 10.1016/S0003-4975(02)03658-5 – ident: R64 doi: 10.1016/S0090-6980(02)00042-4 – ident: R18 doi: 10.1152/ajpgi.00178.2002 – ident: R43 doi: 10.1152/jappl.2000.89.4.1499 – ident: R45 – ident: R4 doi: 10.1016/S1359-6101(02)00020-5 – ident: R52 doi: 10.1097/00001573-200209000-00009 – ident: R20 doi: 10.1152/jappl.2000.89.2.704 – ident: R38 doi: 10.1038/sj.ijo.0802498 – ident: R19 doi: 10.1002/jcb.10584 – ident: R48 doi: 10.1111/j.1469-7793.1999.287ad.x – ident: R24 doi: 10.1016/j.amjmed.2003.09.016 – ident: R13 doi: 10.1152/ajpendo.1989.257.3.E405 – ident: R59 doi: 10.1152/ajpcell.2001.280.4.C769 – ident: R17 |
SSID | ssj0014451 |
Score | 2.2758803 |
Snippet | Departments of 2 Pediatrics, 3 Orthopedics, 4 Microbiology and Molecular Genetics, and 5 Biological Chemistry, 1 Center for the Study of Health Effects of... Exercise leads to increases in circulating levels of peripheral blood mononuclear cells (PBMCs) and to a simultaneous, seemingly paradoxical increase in both... |
SourceID | proquest crossref pubmed pascalfrancis highwire |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1461 |
SubjectTerms | Adolescent Adult Biological and medical sciences Blood Proteins - immunology Cells Cells, Cultured Cytokines - blood Cytokines - immunology Exercise Exercise - physiology Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation - immunology Gene Expression Regulation - physiology Human subjects Humans Leukocytes, Mononuclear - immunology Leukocytes, Mononuclear - physiology Male Physical Exertion - physiology |
Title | Effects of exercise on gene expression in human peripheral blood mononuclear cells |
URI | http://jap.physiology.org/cgi/content/abstract/97/4/1461 https://www.ncbi.nlm.nih.gov/pubmed/15194674 https://www.proquest.com/docview/222230750 https://search.proquest.com/docview/66860891 |
Volume | 97 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwELa6ISFeEGzAwmAYCfEyBZLUdezHaes0oVEQC2jixXISV6q0JdPSIjHx47mzkziTVgEPvFRt6sSO78v57vzljpA3MtbcFEyEeZkXIStjHuooTUPOtMhh-dF5gTHdk7N0di6Opmw6Gv3qvP7-2H-VNBwDWeObs_8g7f6icAC-g8zhE6QOn38l96knaHTllHBDANobTOfvaK-W3ujK82GmY5ta4MKR2PdhpHWFWY719T6G9Zs19qtu7VcbG3GZnDDpkxSTQXRhWM3aUoH9yxCHelHf3NhI7bdFhSRRv0X1XV-Uix-O-23LyvuY9aXbPTlqUd0FLFhPffOczigENyUdKmFH0m3BxgYaFeuOD1Zn-Cnv1vyTxFYcgHtv7_sdKizLQmF-ses2-Gef1PHX01OVTc-zDXIvATWFWvLsw6zfg8LUbS467IbbsgOho_drurlt23T5ppFuqxt44uauVMp6X8baNNkj8rAVJj1wKHpMRqbaItsHlV7Wlz_pW_q5F-0Wuf-xZWFsky8txmg9px3GaF1RxBj1GKOLilqMUY8xajFGBxijFmNPSHY8zQ5PwrY2R1iAD7oMk0IaBrNS5GkpZW7SOOYGrCANC4JhYlyKiTEiZUUqI8PKnMHAxgZ8Xc2ZFHz8lGxCR2aH0FzkMhYa1hnNGE9SLbAGwTiZC57HsTQBibpJVVcuA4uynuskUUM52Cy3HMuqsoCE3eQr_xAoDOpkgAI8TaaKodsbq6tyHpDXd7WHZqpvF5C9W1L0YwGDGKCSBGS3E6tq9UGjEjS_0SoPyKv-X1DgOLW6MvWqUZwLHgkJHTxzWPBXBu8KiwE9_-O5u-SBf9JekM3l9cq8JBtNudqzmP4NxQnFHQ |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Multiple Vendors |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+exercise+on+gene+expression+in+human+peripheral+blood+mononuclear+cells&rft.jtitle=Journal+of+applied+physiology+%281985%29&rft.au=Connolly%2C+Peter+H&rft.au=Caiozzo%2C+Vincent+J&rft.au=Zaldivar%2C+Frank&rft.au=Nemet%2C+Dan&rft.date=2004-10-01&rft.issn=8750-7587&rft.volume=97&rft.issue=4&rft.spage=1461&rft.epage=1469&rft_id=info:doi/10.1152%2Fjapplphysiol.00316.2004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8750-7587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8750-7587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8750-7587&client=summon |