Discordant transmission of bacteria and viruses from mothers to babies at birth
The earliest microbial colonizers of the human gut can have life-long consequences for their hosts. Precisely how the neonatal gut bacterial microbiome and virome are initially populated is not well understood. To better understand how the maternal gut microbiome influences acquisition of the infant...
Saved in:
Published in: | Microbiome Vol. 7; no. 1; p. 156 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central
10-12-2019
BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The earliest microbial colonizers of the human gut can have life-long consequences for their hosts. Precisely how the neonatal gut bacterial microbiome and virome are initially populated is not well understood. To better understand how the maternal gut microbiome influences acquisition of the infant gut microbiome, we studied the early life bacterial microbiomes and viromes of 28 infant twin pairs and their mothers.
Infant bacterial and viral communities more closely resemble those of their related co-twin than unrelated infants. We found that 63% of an infant's bacterial microbiome can be traced to their mother's gut microbiota. In contrast, only 15% of their viral communities are acquired from their mother. Delivery route did not determine how much of the bacterial microbiome or virome was shared from mother to infant. However, bacteria-bacteriophage interactions were altered by delivery route.
The maternal gut microbiome significantly influences infant gut microbiome acquisition. Vertical transmission of the bacterial microbiome is substantially higher compared to vertical transmission of the virome. However, the degree of similarity between the maternal and infant gut bacterial microbiome and virome did not vary by delivery route. The greater similarity of the bacterial microbiome and virome between twin pairs than unrelated twins may reflect a shared environmental exposure. Thus, differences of the inter-generation transmissibility at birth between the major kingdoms of microbes indicate that the foundation of these microbial communities are shaped by different rules. Video Abstract. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2049-2618 2049-2618 |
DOI: | 10.1186/s40168-019-0766-7 |