In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration
Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but...
Saved in:
Published in: | Genes to cells : devoted to molecular & cellular mechanisms Vol. 21; no. 4; pp. 358 - 369 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Wiley Subscription Services, Inc
01-04-2016
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification‐specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac‐Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac‐Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac‐Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration.
After amputation, ROS are immediately produced near the amputation site and its production is sustained during tail regeneration. Acetylation of H3K9 is subsequently induced at the amputation site, in particular, in the notochord from 16 to 24 hpa. |
---|---|
AbstractList | Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification‐specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac‐Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac‐Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac‐Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration.
After amputation, ROS are immediately produced near the amputation site and its production is sustained during tail regeneration. Acetylation of H3K9 is subsequently induced at the amputation site, in particular, in the notochord from 16 to 24 hpa. Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification-specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac-Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac-Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac-Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration. Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification‐specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac‐Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac‐Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species ( ROS ). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac‐Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration. Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification-specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac-Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac-Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac-Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration. After amputation, ROS are immediately produced near the amputation site and its production is sustained during tail regeneration. Acetylation of H3K9 is subsequently induced at the amputation site, in particular, in the notochord from 16 to 24 hpa. |
Author | Miura, Shinichirou Sato, Yuko Suzuki, Makoto Kamei, Yasuhiro Takagi, Chiyo Ueno, Naoto Suzuki, Ken‐ichi T. Suzuki, Miyuki Yamamoto, Takashi Kimura, Hiroshi Endo, Tetsuya Sakuma, Tetsushi Sakane, Yuto Sakamoto, Naoaki |
Author_xml | – sequence: 1 givenname: Miyuki surname: Suzuki fullname: Suzuki, Miyuki organization: Hiroshima University – sequence: 2 givenname: Chiyo surname: Takagi fullname: Takagi, Chiyo organization: National Institute for Basic Biology – sequence: 3 givenname: Shinichirou surname: Miura fullname: Miura, Shinichirou organization: Aichi Gakuin University – sequence: 4 givenname: Yuto surname: Sakane fullname: Sakane, Yuto organization: Hiroshima University – sequence: 5 givenname: Makoto surname: Suzuki fullname: Suzuki, Makoto organization: the Graduate University for Advanced Studies (SOKENDAI) – sequence: 6 givenname: Tetsushi surname: Sakuma fullname: Sakuma, Tetsushi organization: Hiroshima University – sequence: 7 givenname: Naoaki surname: Sakamoto fullname: Sakamoto, Naoaki organization: Hiroshima University – sequence: 8 givenname: Tetsuya surname: Endo fullname: Endo, Tetsuya organization: Aichi Gakuin University – sequence: 9 givenname: Yasuhiro surname: Kamei fullname: Kamei, Yasuhiro organization: National Institute for Basic Biology – sequence: 10 givenname: Yuko surname: Sato fullname: Sato, Yuko organization: Tokyo Institute of Technology – sequence: 11 givenname: Hiroshi surname: Kimura fullname: Kimura, Hiroshi organization: Tokyo Institute of Technology – sequence: 12 givenname: Takashi surname: Yamamoto fullname: Yamamoto, Takashi organization: Hiroshima University – sequence: 13 givenname: Naoto surname: Ueno fullname: Ueno, Naoto organization: the Graduate University for Advanced Studies (SOKENDAI) – sequence: 14 givenname: Ken‐ichi T. surname: Suzuki fullname: Suzuki, Ken‐ichi T. organization: Hiroshima University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26914410$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U1vFCEYB3Bi2tgXPfgFDIkXPUz7PMPLwNFstG3SpJc28SRhWWalzsIKM2v228t2qweTNuXCc_jxB_I_IQcxRU_IO4QzrOt8ObozbBnXr8gxMimalnN2sJuFbLTQ3RE5KeUeAFkL4jU5aqVGzhGOyferSDdhk-iYrfsZ4pKmnv4IZaw30EtGh20JddLUOj9uBzuGFGmI9JuPaT0VOli_CYUuprw7O9ow0OyXPvr8QN-Qw94Oxb993E_J3dcvt7PL5vrm4mr2-bpxQmjddPP6tIWwDNTcco9ctFICc7wXgGLRS9C8xU4rrRhTziktHfC-1wocil6wU_Jxn7vO6dfky2hWoTg_DDb6NBWDnRKtAODqJRRRYCd39MN_9D5NOdaPGNTAO6YlwrOqU8B5J5Su6tNeuZxKyb436xxWNm8Ngtm1aGqL5qHFat8_Jk7zlV_8k39rq-B8D36HwW-fTjIXt7N95B9xrqRR |
CODEN | GECEFL |
CitedBy_id | crossref_primary_10_1002_dev_22466 crossref_primary_10_3390_cells12131694 crossref_primary_10_1039_D1CB00190F crossref_primary_10_1111_dgd_12547 crossref_primary_10_1016_j_semcdb_2017_08_015 crossref_primary_10_3390_life14050594 crossref_primary_10_3390_antiox7110159 crossref_primary_10_3389_fphys_2019_00387 crossref_primary_10_1016_j_ab_2021_114395 crossref_primary_10_1021_acsomega_9b01413 crossref_primary_10_3390_ijms23168988 crossref_primary_10_1002_dvdy_386 crossref_primary_10_1016_j_semcdb_2019_04_006 crossref_primary_10_1016_j_ydbio_2022_06_001 crossref_primary_10_1038_s41576_023_00684_9 crossref_primary_10_1155_2021_8828931 crossref_primary_10_1016_j_ydbio_2017_08_012 crossref_primary_10_1016_j_jmb_2016_08_010 crossref_primary_10_1021_acsomega_0c06281 crossref_primary_10_3389_fphys_2019_00081 crossref_primary_10_1007_s10565_017_9409_6 crossref_primary_10_1038_srep45894 crossref_primary_10_1242_jcs_259664 crossref_primary_10_1093_jmicro_dfab030 crossref_primary_10_5685_plmorphol_29_3 |
Cites_doi | 10.1242/dev.01155 10.1016/S1534-5807(03)00233-8 10.1111/dgd.12042 10.1100/tsw.2006.325 10.1016/S0960-9822(98)70443-9 10.1016/j.mod.2006.07.001 10.1016/j.mod.2012.08.001 10.1016/j.alcohol.2010.06.003 10.1242/dev.033985 10.1111/j.1440-169X.2007.00912.x 10.1002/(SICI)1097-0177(199706)209:2<227::AID-AJA8>3.0.CO;2-K 10.1002/ar.22437 10.1242/dev.122.10.3173 10.1002/jmor.1051100105 10.1016/j.bbrc.2013.01.005 10.1038/srep02436 10.1016/j.ydbio.2006.10.048 10.1016/j.semcdb.2008.12.007 10.1111/j.1460-9568.2011.07827.x 10.1111/j.1440-169X.2007.00914.x 10.1016/j.cell.2004.05.023 10.1016/j.ydbio.2008.04.030 10.1038/srep02084 10.1006/dbio.2000.9641 10.1038/srep03379 10.1242/dev.122598 10.1042/BST20140061 10.1038/ncomms6560 10.1126/scisignal.2003638 10.1016/0378-1119(94)90070-1 10.1016/S0925-4773(00)00492-5 10.1038/ncb2659 10.1093/nar/gku1354 10.1101/gad.8.12.1434 10.1016/j.ydbio.2007.09.022 10.1111/dgd.12105 10.1186/1471-213X-14-27 10.1016/j.ydbio.2008.01.032 10.1002/dvdy.21890 10.1038/nprot.2006.208 10.1177/154405910808700909 10.1007/s00018-007-7431-1 10.1016/j.ydbio.2015.08.013 10.1186/1471-213X-11-70 10.1111/j.1440-169x.2004.00767.x 10.1111/j.1365-2958.2006.05451.x 10.1371/journal.pone.0026382 10.1242/bio.20133855 10.1242/dev.02397 10.1155/2015/392476 |
ContentType | Journal Article |
Copyright | 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. Copyright © 2016 the Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd |
Copyright_xml | – notice: 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd – notice: 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. – notice: Copyright © 2016 the Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7TK 7TM 8FD FR3 M7N P64 RC3 7X8 |
DOI | 10.1111/gtc.12349 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1365-2443 |
EndPage | 369 |
ExternalDocumentID | 4019774181 10_1111_gtc_12349 26914410 GTC12349 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MEXT KAKENHI funderid: 25124708 – fundername: JSPS KAKENHI funderid: 24510083 – fundername: NIBB Collaborative Research Programs funderid: 15‐379; 14‐391 |
GroupedDBID | --- .3N .55 .GA .Y3 05W 0R~ 10A 18M 1OC 24P 29H 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 7.U 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAKAS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C1A C45 CAG COF CS3 D-E D-F DCZOG DIK DPXWK DR2 DRFUL DRSTM DU5 E3Z EAD EAP EAS EBC EBD EBS EJD EMB EMK EMOBN ESX F00 F01 F04 F5P G-S G.N GODZA GX1 H.T H.X HF~ HGLYW HZI HZ~ IHE IPNFZ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OEB OIG OK1 OVD P2P P2W P2X P4D Q.N Q11 QB0 Q~Q R.K ROL RX1 SUPJJ SV3 TEORI TKC TR2 TUS UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WQJ WRC WXSBR WYISQ X7M XG1 YFH YUY ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7TK 7TM 8FD FR3 M7N P64 RC3 7X8 |
ID | FETCH-LOGICAL-c5599-7b013d5a308ba4e14526603c4f5015df60942179898338cc896c04ff980c15f53 |
IEDL.DBID | 33P |
ISSN | 1356-9597 |
IngestDate | Fri Aug 16 09:45:01 EDT 2024 Fri Aug 16 07:49:51 EDT 2024 Tue Nov 19 05:21:22 EST 2024 Tue Nov 19 05:55:08 EST 2024 Thu Nov 21 21:00:11 EST 2024 Tue Aug 27 13:45:02 EDT 2024 Sat Aug 24 00:49:54 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5599-7b013d5a308ba4e14526603c4f5015df60942179898338cc896c04ff980c15f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1111/gtc.12349 |
PMID | 26914410 |
PQID | 1780447589 |
PQPubID | 1066354 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1785250048 proquest_miscellaneous_1781151768 proquest_journals_1904739610 proquest_journals_1780447589 crossref_primary_10_1111_gtc_12349 pubmed_primary_26914410 wiley_primary_10_1111_gtc_12349_GTC12349 |
PublicationCentury | 2000 |
PublicationDate | April 2016 |
PublicationDateYYYYMMDD | 2016-04-01 |
PublicationDate_xml | – month: 04 year: 2016 text: April 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Tokyo |
PublicationTitle | Genes to cells : devoted to molecular & cellular mechanisms |
PublicationTitleAlternate | Genes Cells |
PublicationYear | 2016 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2001; 100 2007; 301 2013; 3 2013; 2 2009; 20 2015; 142 2004; 46 2011; 11 2006; 6 2015; 406 1996; 122 1994 2011; 34 2006; 1 2011; 6 2013; 6 2009; 136 2012; 129 2006; 133 2009; 238 2014; 42 2007; 312 2010; 44 1994; 8 2012; 295 2004; 131 2013; 15 2014; 5 1994; 147 2006; 62 2013; 55 1962; 110 2015; 43 2008; 319 2013; 431 2015; 2015 2008; 316 2014; 14 2003; 5 2008; 65 2008; 87 2000; 220 1997; 209 2004; 117 2006; 123 2014; 56 2007; 49 1998; 8 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 Nieuwkoop P. (e_1_2_6_31_1) 1994 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_50_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 44 start-page: 531 year: 2010 end-page: 540 article-title: Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes publication-title: Alcohol – volume: 6 start-page: 26 issue: Suppl 1 year: 2006 end-page: 37 article-title: Limb regeneration in froglet publication-title: ScientificWorldJournal – volume: 20 start-page: 565 year: 2009 end-page: 574 article-title: Repatterning in amphibian limb regeneration: a model for study of genetic and epigenetic control of organ regeneration publication-title: Semin. Cell Dev. Biol. – volume: 406 start-page: 271 year: 2015 end-page: 282 article-title: Epigenetic modification maintains intrinsic limb‐cell identity in limb bud regeneration publication-title: Dev. Biol. – volume: 34 start-page: 908 year: 2011 end-page: 916 article-title: The role of peripheral nerves in urodele limb regeneration publication-title: Eur. J. Neurosci. – volume: 220 start-page: 296 year: 2000 end-page: 306 article-title: Analysis of gene expressions during forelimb regeneration publication-title: Dev. Biol. – volume: 49 start-page: 155 year: 2007 end-page: 161 article-title: Tail regeneration in the tadpole publication-title: Dev. Growth Differ. – volume: 129 start-page: 208 year: 2012 end-page: 218 article-title: Histone deacetylases are required for amphibian tail and limb regeneration but not development publication-title: Mech. Dev. – volume: 316 start-page: 323 year: 2008 end-page: 335 article-title: Requirement for Wnt and FGF signaling in tadpole tail regeneration publication-title: Dev. Biol. – volume: 110 start-page: 61 year: 1962 end-page: 77 article-title: Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad publication-title: J. Morphol. – volume: 319 start-page: 321 year: 2008 end-page: 335 article-title: Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl ( ) publication-title: Dev. Biol. – volume: 431 start-page: 152 year: 2013 end-page: 157 article-title: Expression analysis of XPhyH‐like during development and tail regeneration in tadpoles: possible role of XPhyH‐like expressing immune cells in impaired tail regenerative ability publication-title: Biochem. Biophys. Res. Commun. – volume: 100 start-page: 45 year: 2001 end-page: 58 article-title: Some distal limb structures develop in mice lacking Sonic hedgehog signaling publication-title: Mech. Dev. – volume: 2 start-page: 448 year: 2013 end-page: 452 article-title: High efficiency TALENs enable F0 functional analysis by targeted gene disruption in embryos publication-title: Biol. Open – year: 1994 – volume: 5 start-page: 5560 year: 2014 article-title: Microhomology‐mediated end‐joining‐dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9 publication-title: Nat. Commun. – volume: 56 start-page: 108 year: 2014 end-page: 114 article-title: Targeted mutagenesis of multiple and paralogous genes in using two pairs of transcription activator‐like effector nucleases publication-title: Dev. Growth Differ. – volume: 43 start-page: 1433 year: 2015 end-page: 1443 article-title: Opposing roles of H3‐ and H4‐acetylation in the regulation of nucleosome structure—a FRET study publication-title: Nucleic Acids Res. – volume: 312 start-page: 171 year: 2007 end-page: 182 article-title: Correlation between Shh expression and DNA methylation status of the limb‐specific Shh enhancer region during limb regeneration in amphibians publication-title: Dev. Biol. – volume: 49 start-page: 121 year: 2007 end-page: 129 article-title: Brain regeneration in anuran amphibians publication-title: Dev. Growth Differ. – volume: 11 start-page: 70 year: 2011 article-title: Genome‐wide analysis of gene expression during tadpole tail regeneration publication-title: BMC Dev. Biol. – volume: 3 start-page: 3379 year: 2013 article-title: Repeating pattern of non‐RVD variations in DNA‐binding modules enhances TALEN activity publication-title: Sci. Rep. – volume: 3 start-page: 2084 year: 2013 article-title: Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed publication-title: Sci. Rep. – volume: 8 start-page: 1434 year: 1994 end-page: 1447 article-title: Expression of achaete‐scute homolog 3 in embryos converts ectodermal cells to a neural fate publication-title: Genes Dev. – volume: 6 start-page: e26382 year: 2011 article-title: HDAC activity is required during tail regeneration publication-title: PLoS One – volume: 3 start-page: 2436 year: 2013 article-title: Genetically encoded system to track histone modification publication-title: Sci. Rep. – volume: 65 start-page: 54 year: 2008 end-page: 63 article-title: The tadpole: a new model for regeneration research publication-title: Cell. Mol. Life Sci. – volume: 238 start-page: 1226 year: 2009 end-page: 1248 article-title: Beyond early development: as an emerging model for the study of regenerative mechanisms publication-title: Dev. Dyn. – volume: 2015 start-page: 392476 year: 2015 article-title: Reactive oxygen species in planarian regeneration: an upstream necessity for correct patterning and brain formation publication-title: Oxid. Med. Cell. Longev. – volume: 136 start-page: 2323 year: 2009 end-page: 2327 article-title: Suppression of the immune response potentiates tadpole tail regeneration during the refractory period publication-title: Development – volume: 14 start-page: 27 year: 2014 article-title: Notochord‐derived hedgehog is essential for tail regeneration in tadpole publication-title: BMC Dev. Biol. – volume: 42 start-page: 617 year: 2014 end-page: 623 article-title: Tadpole tail regeneration in publication-title: Biochem. Soc. Trans. – volume: 131 start-page: 2669 year: 2004 end-page: 2679 article-title: Cell lineage tracing during tail regeneration publication-title: Development – volume: 55 start-page: 422 year: 2013 end-page: 433 article-title: Transgenic for live imaging in cell and developmental biology publication-title: Dev. Growth Differ. – volume: 147 start-page: 223 year: 1994 end-page: 226 article-title: pXeX, a vector for efficient expression of cloned sequences in embryos publication-title: Gene – volume: 1 start-page: 1703 year: 2006 end-page: 1710 article-title: High‐throughput transgenesis in using I‐SceI meganuclease publication-title: Nat. Protoc. – volume: 15 start-page: 222 year: 2013 end-page: 228 article-title: Amputation‐induced reactive oxygen species are required for successful tadpole tail regeneration publication-title: Nat. Cell Biol. – volume: 295 start-page: 1532 year: 2012 end-page: 1540 article-title: Transgenic analysis of signaling pathways required for tadpole spinal cord and muscle regeneration publication-title: Anat. Rec. (Hoboken) – volume: 8 start-page: 1058 year: 1998 end-page: 1068 article-title: Sonic hedgehog signaling is essential for hair development publication-title: Curr. Biol. – volume: 117 start-page: 721 year: 2004 end-page: 733 article-title: Mapping global histone acetylation patterns to gene expression publication-title: Cell – volume: 301 start-page: 62 year: 2007 end-page: 69 article-title: Apoptosis is required during early stages of tail regeneration in publication-title: Dev. Biol. – volume: 123 start-page: 674 year: 2006 end-page: 688 article-title: Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of tadpoles publication-title: Mech. Dev. – volume: 133 start-page: 2303 year: 2006 end-page: 2313 article-title: Control of muscle regeneration in the tadpole tail by Pax7 publication-title: Development – volume: 209 start-page: 227 year: 1997 end-page: 232 article-title: Shh expression in developing and regenerating limb buds of publication-title: Dev. Dyn. – volume: 5 start-page: 429 year: 2003 end-page: 439 article-title: Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate publication-title: Dev. Cell – volume: 142 start-page: 2916 year: 2015 end-page: 2927 article-title: Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket publication-title: Development – volume: 6 start-page: ra8 year: 2013 article-title: Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development publication-title: Sci. Signal. – volume: 122 start-page: 3173 year: 1996 end-page: 3183 article-title: Transgenic embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation publication-title: Development – volume: 87 start-page: 806 year: 2008 end-page: 816 article-title: Tail regeneration in as a model for understanding tissue repair publication-title: J. Dent. Res. – volume: 46 start-page: 523 year: 2004 end-page: 534 article-title: Successful reconstitution of the non‐regenerating adult telencephalon by cell transplantation in publication-title: Dev. Growth Differ. – volume: 62 start-page: 1433 year: 2006 end-page: 1446 article-title: H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1‐dependent genes publication-title: Mol. Microbiol. – ident: e_1_2_6_15_1 doi: 10.1242/dev.01155 – ident: e_1_2_6_4_1 doi: 10.1016/S1534-5807(03)00233-8 – ident: e_1_2_6_43_1 doi: 10.1111/dgd.12042 – ident: e_1_2_6_42_1 doi: 10.1100/tsw.2006.325 – ident: e_1_2_6_39_1 doi: 10.1016/S0960-9822(98)70443-9 – ident: e_1_2_6_3_1 doi: 10.1016/j.mod.2006.07.001 – ident: e_1_2_6_45_1 doi: 10.1016/j.mod.2012.08.001 – ident: e_1_2_6_8_1 doi: 10.1016/j.alcohol.2010.06.003 – ident: e_1_2_6_13_1 doi: 10.1242/dev.033985 – ident: e_1_2_6_28_1 doi: 10.1111/j.1440-169X.2007.00912.x – ident: e_1_2_6_11_1 doi: 10.1002/(SICI)1097-0177(199706)209:2<227::AID-AJA8>3.0.CO;2-K – ident: e_1_2_6_24_1 doi: 10.1002/ar.22437 – ident: e_1_2_6_22_1 doi: 10.1242/dev.122.10.3173 – ident: e_1_2_6_9_1 doi: 10.1002/jmor.1051100105 – ident: e_1_2_6_30_1 doi: 10.1016/j.bbrc.2013.01.005 – ident: e_1_2_6_36_1 doi: 10.1038/srep02436 – ident: e_1_2_6_46_1 doi: 10.1016/j.ydbio.2006.10.048 – ident: e_1_2_6_51_1 doi: 10.1016/j.semcdb.2008.12.007 – ident: e_1_2_6_40_1 doi: 10.1111/j.1460-9568.2011.07827.x – ident: e_1_2_6_12_1 doi: 10.1111/j.1440-169X.2007.00914.x – ident: e_1_2_6_23_1 doi: 10.1016/j.cell.2004.05.023 – ident: e_1_2_6_37_1 doi: 10.1016/j.ydbio.2008.04.030 – ident: e_1_2_6_16_1 doi: 10.1038/srep02084 – ident: e_1_2_6_10_1 doi: 10.1006/dbio.2000.9641 – ident: e_1_2_6_35_1 doi: 10.1038/srep03379 – ident: e_1_2_6_17_1 doi: 10.1242/dev.122598 – ident: e_1_2_6_7_1 doi: 10.1042/BST20140061 – ident: e_1_2_6_29_1 doi: 10.1038/ncomms6560 – ident: e_1_2_6_18_1 doi: 10.1126/scisignal.2003638 – ident: e_1_2_6_20_1 doi: 10.1016/0378-1119(94)90070-1 – ident: e_1_2_6_21_1 doi: 10.1016/S0925-4773(00)00492-5 – ident: e_1_2_6_27_1 doi: 10.1038/ncb2659 – ident: e_1_2_6_14_1 doi: 10.1093/nar/gku1354 – ident: e_1_2_6_49_1 doi: 10.1101/gad.8.12.1434 – ident: e_1_2_6_50_1 doi: 10.1016/j.ydbio.2007.09.022 – ident: e_1_2_6_34_1 doi: 10.1111/dgd.12105 – ident: e_1_2_6_44_1 doi: 10.1186/1471-213X-14-27 – ident: e_1_2_6_25_1 doi: 10.1016/j.ydbio.2008.01.032 – ident: e_1_2_6_5_1 doi: 10.1002/dvdy.21890 – ident: e_1_2_6_32_1 doi: 10.1038/nprot.2006.208 – ident: e_1_2_6_48_1 doi: 10.1177/154405910808700909 – volume-title: Normal Table of Xenopus laevis (Daudin) year: 1994 ident: e_1_2_6_31_1 contributor: fullname: Nieuwkoop P. – ident: e_1_2_6_38_1 doi: 10.1007/s00018-007-7431-1 – ident: e_1_2_6_19_1 doi: 10.1016/j.ydbio.2015.08.013 – ident: e_1_2_6_26_1 doi: 10.1186/1471-213X-11-70 – ident: e_1_2_6_52_1 doi: 10.1111/j.1440-169x.2004.00767.x – ident: e_1_2_6_2_1 doi: 10.1111/j.1365-2958.2006.05451.x – ident: e_1_2_6_47_1 doi: 10.1371/journal.pone.0026382 – ident: e_1_2_6_41_1 doi: 10.1242/bio.20133855 – ident: e_1_2_6_6_1 doi: 10.1242/dev.02397 – ident: e_1_2_6_33_1 doi: 10.1155/2015/392476 |
SSID | ssj0013205 |
Score | 2.3511395 |
Snippet | Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular... Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 358 |
SubjectTerms | Acetylation Animals Animals, Genetically Modified Appendages Embryonic Development Embryos Epigenetics Frogs Green fluorescent protein Histone Code Histone H3 Histones - metabolism Limbs Lysine Molecular modelling Notochord Nuclei Organogenesis Reactive oxygen species Reactive Oxygen Species - metabolism Regeneration Somites Tail - physiology Tails Xenopus laevis Xenopus Proteins - metabolism |
Title | In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgtc.12349 https://www.ncbi.nlm.nih.gov/pubmed/26914410 https://www.proquest.com/docview/1780447589 https://www.proquest.com/docview/1904739610 https://search.proquest.com/docview/1781151768 https://search.proquest.com/docview/1785250048 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5aEHzxPqpVovjgy8puczTBJ_GqCCKo4JNLNkcpyLb0EPz3zmTboogi-LIEkt3NNck3ycw3hBxp4zLW8jLxUquEC-aSwjmdWNFMhSiEyjh6I7cfWnfP6uISaXJOp74wFT_E7MANJSOu1yjgphh-EvLOyJ7AssvReQ-0hOi-we4_3SBE88WMCZloQM0TViG04pm9-XUv-gYwv-LVuOFcLf-rqitkaYIz6Vk1MVbJnC_XyEIVefJ9nbzclPSt-9ajo4GxeFpOe4FG7uHS0zajSFQCKU2N9aP3yl6Odkv67Mtefzykrwa90mnl5EjRCpUOfCdSWGPRDfJ0dfl43k4moRZgUITWSQuPQ50wLFWF4T7DwOMyZZYHAXjBBQlaYBO5zbQCndZapaVNeQhapTYTQbBNUiuhhtuESgwSqA0PuP3zIhgVCpmGwinnQ9PIOjmcdnrerxg18qkmAh2Vx46qk8Z0OPKJUA3zDMmSOCg4P2TrlLeYBjxYJwezbJAWvAIxpe-N4ycAAmegY_1aBu96YWmrk61qJswq2pQaNVD4w3Ec8J9bkF8_nsfEzt-L7pJFwGOyMgxqkNpoMPZ7ZH7oxvtxcsPz4ub2Ay1a-Vo |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-qpdgXbaut11pNxQdfVnYvH5dAX8SPntSK4Ak-uWTzcQhlT-5D8L_vTPbuUEQR-hZIdjebzCS_SWZ-A7BjrC94J6gsKKMzIbnPKu9N5mQ7l7KSuhAUjdy96Jxd6cMjosn5OYuFafgh5gdupBlpvSYFpwPpB1reH7s9XHeFWYC3QqEgUgAHP39wh5AcGAsuVWYQN095hciPZ_7o493oCcR8jFjTlnO88n-d_QDLU6jJ9hvZ-AhvQv0J3jXJJ-9X4fqkZnc3dwM2HlpHB-ZsEFmiH64D63JGXCVYMsy6ML5vXObYTc2uQj24nYzYX0uB6ayJc2TkiMqGoZ9YrKnpGlweH_UOutk02wLOizQm69CJqJeW57qyIhSUe1zl3IkoETL4qNAQbBO9mdFo1jqnjXK5iNHo3BUySv4ZFmvs4TowRXkCjRWREICootWxUnmsvPYhtq1qwfZs1MvbhlSjnBkjOFBlGqgWbMzmo5zq1agsiC9JoI3zTLXJRYcbhIQt-DGvRoWhWxBbh8EkvQJRcIFm1ott6LoXV7cWfGlEYd7RtjJkhOIXdtOMP_8H5a_eQSp8fX3TLVjq9v6clqcnZ7-_wXuEZ6rxE9qAxfFwEr7DwshPNpOk_wMQ4vyJ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6ahJRe2jR9uU1bNfTQy4Zd62GJnooT16HFGOJCTl20eoRAWRu_wP--M1rbJISUQG8CaXe1kkb6ZjTzDcBnY33BO0FlQRmdCcl9VnlvMifbuZSV1IWgaOT-RWdwqU_PiCbn6yYWpuGH2BrcSDLSfk0CPvHxhpBfzd0JbrvC7MCeQBhOxPmcD29cIST_xYJLlRmEzWtaIXLj2T56-zC6gzBvA9Z04vSe_VdfD-DpGmiyb83KeA6PQn0I-03qydUL-H1es-X1cszmU-vIXM7GkSXy4TqwPmfEVIIlw6wL81XjMMeua3YZ6vFkMWN_LIWlsybKkZEbKpuGq8RhTU1fwq_e2ajbz9a5FnBWpDFZh-yhXlqe68qKUFDmcZVzJ6JEwOCjQjWwTeRmRqNS65w2yuUiRqNzV8go-SvYrbGHb4ApyhJorIh0_osqWh0rlcfKax9i26oWHG8GvZw0lBrlRhXBgSrTQLXgaDMd5VqqZmVBbEkCNZx7qk0uOtwgIGzBp201igvdgdg6jBfpFYiBC1Sy_tmGLntxb2vB62YlbDvaVoZUUPzClzTh9_9B-X3UTYW3D2_6ER4PT3vlz_PBj3fwBLGZapyEjmB3Pl2E97Az84sPaZ3_Bfos-y8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+tracking+of+histone+H3+lysine+9+acetylation+in+Xenopus+laevis+during+tail+regeneration&rft.jtitle=Genes+to+cells+%3A+devoted+to+molecular+%26+cellular+mechanisms&rft.au=Suzuki%2C+Miyuki&rft.au=Takagi%2C+Chiyo&rft.au=Miura%2C+Shinichirou&rft.au=Sakane%2C+Yuto&rft.date=2016-04-01&rft.issn=1356-9597&rft.eissn=1365-2443&rft.volume=21&rft.issue=4&rft.spage=358&rft.epage=369&rft_id=info:doi/10.1111%2Fgtc.12349&rft.externalDBID=10.1111%252Fgtc.12349&rft.externalDocID=GTC12349 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1356-9597&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1356-9597&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1356-9597&client=summon |