In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration

Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but...

Full description

Saved in:
Bibliographic Details
Published in:Genes to cells : devoted to molecular & cellular mechanisms Vol. 21; no. 4; pp. 358 - 369
Main Authors: Suzuki, Miyuki, Takagi, Chiyo, Miura, Shinichirou, Sakane, Yuto, Suzuki, Makoto, Sakuma, Tetsushi, Sakamoto, Naoaki, Endo, Tetsuya, Kamei, Yasuhiro, Sato, Yuko, Kimura, Hiroshi, Yamamoto, Takashi, Ueno, Naoto, Suzuki, Ken‐ichi T.
Format: Journal Article
Language:English
Published: England Wiley Subscription Services, Inc 01-04-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification‐specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac‐Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac‐Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac‐Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration. After amputation, ROS are immediately produced near the amputation site and its production is sustained during tail regeneration. Acetylation of H3K9 is subsequently induced at the amputation site, in particular, in the notochord from 16 to 24 hpa.
AbstractList Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification‐specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac‐Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac‐Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac‐Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration. After amputation, ROS are immediately produced near the amputation site and its production is sustained during tail regeneration. Acetylation of H3K9 is subsequently induced at the amputation site, in particular, in the notochord from 16 to 24 hpa.
Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification-specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac-Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac-Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac-Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration.
Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification‐specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac‐Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac‐Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species ( ROS ). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac‐Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration.
Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular mechanisms of organ regeneration in vertebrates. Epigenetic modifications are likely to be involved in this remarkable regeneration capacity, but they remain largely unknown. To examine the involvement of histone modification during organ regeneration, we generated transgenic X. laevis ubiquitously expressing a fluorescent modification-specific intracellular antibody (Mintbody) that is able to track histone H3 lysine 9 acetylation (H3K9ac) in vivo through nuclear enhanced green fluorescent protein (EGFP) fluorescence. In embryos ubiquitously expressing H3K9ac-Mintbody, robust fluorescence was observed in the nuclei of somites. Interestingly, H3K9ac-Mintbody signals predominantly accumulated in nuclei of regenerating notochord at 24 h postamputation following activation of reactive oxygen species (ROS). Moreover, apocynin (APO), an inhibitor of ROS production, attenuated H3K9ac-Mintbody signals in regenerating notochord. Our results suggest that ROS production is involved in acetylation of H3K9 in regenerating notochord at the onset of tail regeneration. We also show this transgenic Xenopus to be a useful tool to investigate epigenetic modification, not only in organogenesis but also in organ regeneration. After amputation, ROS are immediately produced near the amputation site and its production is sustained during tail regeneration. Acetylation of H3K9 is subsequently induced at the amputation site, in particular, in the notochord from 16 to 24 hpa.
Author Miura, Shinichirou
Sato, Yuko
Suzuki, Makoto
Kamei, Yasuhiro
Takagi, Chiyo
Ueno, Naoto
Suzuki, Ken‐ichi T.
Suzuki, Miyuki
Yamamoto, Takashi
Kimura, Hiroshi
Endo, Tetsuya
Sakuma, Tetsushi
Sakane, Yuto
Sakamoto, Naoaki
Author_xml – sequence: 1
  givenname: Miyuki
  surname: Suzuki
  fullname: Suzuki, Miyuki
  organization: Hiroshima University
– sequence: 2
  givenname: Chiyo
  surname: Takagi
  fullname: Takagi, Chiyo
  organization: National Institute for Basic Biology
– sequence: 3
  givenname: Shinichirou
  surname: Miura
  fullname: Miura, Shinichirou
  organization: Aichi Gakuin University
– sequence: 4
  givenname: Yuto
  surname: Sakane
  fullname: Sakane, Yuto
  organization: Hiroshima University
– sequence: 5
  givenname: Makoto
  surname: Suzuki
  fullname: Suzuki, Makoto
  organization: the Graduate University for Advanced Studies (SOKENDAI)
– sequence: 6
  givenname: Tetsushi
  surname: Sakuma
  fullname: Sakuma, Tetsushi
  organization: Hiroshima University
– sequence: 7
  givenname: Naoaki
  surname: Sakamoto
  fullname: Sakamoto, Naoaki
  organization: Hiroshima University
– sequence: 8
  givenname: Tetsuya
  surname: Endo
  fullname: Endo, Tetsuya
  organization: Aichi Gakuin University
– sequence: 9
  givenname: Yasuhiro
  surname: Kamei
  fullname: Kamei, Yasuhiro
  organization: National Institute for Basic Biology
– sequence: 10
  givenname: Yuko
  surname: Sato
  fullname: Sato, Yuko
  organization: Tokyo Institute of Technology
– sequence: 11
  givenname: Hiroshi
  surname: Kimura
  fullname: Kimura, Hiroshi
  organization: Tokyo Institute of Technology
– sequence: 12
  givenname: Takashi
  surname: Yamamoto
  fullname: Yamamoto, Takashi
  organization: Hiroshima University
– sequence: 13
  givenname: Naoto
  surname: Ueno
  fullname: Ueno, Naoto
  organization: the Graduate University for Advanced Studies (SOKENDAI)
– sequence: 14
  givenname: Ken‐ichi T.
  surname: Suzuki
  fullname: Suzuki, Ken‐ichi T.
  organization: Hiroshima University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26914410$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1vFCEYB3Bi2tgXPfgFDIkXPUz7PMPLwNFstG3SpJc28SRhWWalzsIKM2v228t2qweTNuXCc_jxB_I_IQcxRU_IO4QzrOt8ObozbBnXr8gxMimalnN2sJuFbLTQ3RE5KeUeAFkL4jU5aqVGzhGOyferSDdhk-iYrfsZ4pKmnv4IZaw30EtGh20JddLUOj9uBzuGFGmI9JuPaT0VOli_CYUuprw7O9ow0OyXPvr8QN-Qw94Oxb993E_J3dcvt7PL5vrm4mr2-bpxQmjddPP6tIWwDNTcco9ctFICc7wXgGLRS9C8xU4rrRhTziktHfC-1wocil6wU_Jxn7vO6dfky2hWoTg_DDb6NBWDnRKtAODqJRRRYCd39MN_9D5NOdaPGNTAO6YlwrOqU8B5J5Su6tNeuZxKyb436xxWNm8Ngtm1aGqL5qHFat8_Jk7zlV_8k39rq-B8D36HwW-fTjIXt7N95B9xrqRR
CODEN GECEFL
CitedBy_id crossref_primary_10_1002_dev_22466
crossref_primary_10_3390_cells12131694
crossref_primary_10_1039_D1CB00190F
crossref_primary_10_1111_dgd_12547
crossref_primary_10_1016_j_semcdb_2017_08_015
crossref_primary_10_3390_life14050594
crossref_primary_10_3390_antiox7110159
crossref_primary_10_3389_fphys_2019_00387
crossref_primary_10_1016_j_ab_2021_114395
crossref_primary_10_1021_acsomega_9b01413
crossref_primary_10_3390_ijms23168988
crossref_primary_10_1002_dvdy_386
crossref_primary_10_1016_j_semcdb_2019_04_006
crossref_primary_10_1016_j_ydbio_2022_06_001
crossref_primary_10_1038_s41576_023_00684_9
crossref_primary_10_1155_2021_8828931
crossref_primary_10_1016_j_ydbio_2017_08_012
crossref_primary_10_1016_j_jmb_2016_08_010
crossref_primary_10_1021_acsomega_0c06281
crossref_primary_10_3389_fphys_2019_00081
crossref_primary_10_1007_s10565_017_9409_6
crossref_primary_10_1038_srep45894
crossref_primary_10_1242_jcs_259664
crossref_primary_10_1093_jmicro_dfab030
crossref_primary_10_5685_plmorphol_29_3
Cites_doi 10.1242/dev.01155
10.1016/S1534-5807(03)00233-8
10.1111/dgd.12042
10.1100/tsw.2006.325
10.1016/S0960-9822(98)70443-9
10.1016/j.mod.2006.07.001
10.1016/j.mod.2012.08.001
10.1016/j.alcohol.2010.06.003
10.1242/dev.033985
10.1111/j.1440-169X.2007.00912.x
10.1002/(SICI)1097-0177(199706)209:2<227::AID-AJA8>3.0.CO;2-K
10.1002/ar.22437
10.1242/dev.122.10.3173
10.1002/jmor.1051100105
10.1016/j.bbrc.2013.01.005
10.1038/srep02436
10.1016/j.ydbio.2006.10.048
10.1016/j.semcdb.2008.12.007
10.1111/j.1460-9568.2011.07827.x
10.1111/j.1440-169X.2007.00914.x
10.1016/j.cell.2004.05.023
10.1016/j.ydbio.2008.04.030
10.1038/srep02084
10.1006/dbio.2000.9641
10.1038/srep03379
10.1242/dev.122598
10.1042/BST20140061
10.1038/ncomms6560
10.1126/scisignal.2003638
10.1016/0378-1119(94)90070-1
10.1016/S0925-4773(00)00492-5
10.1038/ncb2659
10.1093/nar/gku1354
10.1101/gad.8.12.1434
10.1016/j.ydbio.2007.09.022
10.1111/dgd.12105
10.1186/1471-213X-14-27
10.1016/j.ydbio.2008.01.032
10.1002/dvdy.21890
10.1038/nprot.2006.208
10.1177/154405910808700909
10.1007/s00018-007-7431-1
10.1016/j.ydbio.2015.08.013
10.1186/1471-213X-11-70
10.1111/j.1440-169x.2004.00767.x
10.1111/j.1365-2958.2006.05451.x
10.1371/journal.pone.0026382
10.1242/bio.20133855
10.1242/dev.02397
10.1155/2015/392476
ContentType Journal Article
Copyright 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Copyright © 2016 the Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
Copyright_xml – notice: 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
– notice: 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
– notice: Copyright © 2016 the Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7TK
7TM
8FD
FR3
M7N
P64
RC3
7X8
DOI 10.1111/gtc.12349
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Neurosciences Abstracts
Nucleic Acids Abstracts
Technology Research Database
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
Genetics Abstracts
CrossRef
MEDLINE
Genetics Abstracts
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1365-2443
EndPage 369
ExternalDocumentID 4019774181
10_1111_gtc_12349
26914410
GTC12349
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MEXT KAKENHI
  funderid: 25124708
– fundername: JSPS KAKENHI
  funderid: 24510083
– fundername: NIBB Collaborative Research Programs
  funderid: 15‐379; 14‐391
GroupedDBID ---
.3N
.55
.GA
.Y3
05W
0R~
10A
18M
1OC
24P
29H
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
7.U
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAKAS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C1A
C45
CAG
COF
CS3
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRSTM
DU5
E3Z
EAD
EAP
EAS
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
F00
F01
F04
F5P
G-S
G.N
GODZA
GX1
H.T
H.X
HF~
HGLYW
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OBS
OEB
OIG
OK1
OVD
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
Q~Q
R.K
ROL
RX1
SUPJJ
SV3
TEORI
TKC
TR2
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WQJ
WRC
WXSBR
WYISQ
X7M
XG1
YFH
YUY
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7TK
7TM
8FD
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c5599-7b013d5a308ba4e14526603c4f5015df60942179898338cc896c04ff980c15f53
IEDL.DBID 33P
ISSN 1356-9597
IngestDate Fri Aug 16 09:45:01 EDT 2024
Fri Aug 16 07:49:51 EDT 2024
Tue Nov 19 05:21:22 EST 2024
Tue Nov 19 05:55:08 EST 2024
Thu Nov 21 21:00:11 EST 2024
Tue Aug 27 13:45:02 EDT 2024
Sat Aug 24 00:49:54 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2016 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5599-7b013d5a308ba4e14526603c4f5015df60942179898338cc896c04ff980c15f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1111/gtc.12349
PMID 26914410
PQID 1780447589
PQPubID 1066354
PageCount 12
ParticipantIDs proquest_miscellaneous_1785250048
proquest_miscellaneous_1781151768
proquest_journals_1904739610
proquest_journals_1780447589
crossref_primary_10_1111_gtc_12349
pubmed_primary_26914410
wiley_primary_10_1111_gtc_12349_GTC12349
PublicationCentury 2000
PublicationDate April 2016
PublicationDateYYYYMMDD 2016-04-01
PublicationDate_xml – month: 04
  year: 2016
  text: April 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Tokyo
PublicationTitle Genes to cells : devoted to molecular & cellular mechanisms
PublicationTitleAlternate Genes Cells
PublicationYear 2016
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2001; 100
2007; 301
2013; 3
2013; 2
2009; 20
2015; 142
2004; 46
2011; 11
2006; 6
2015; 406
1996; 122
1994
2011; 34
2006; 1
2011; 6
2013; 6
2009; 136
2012; 129
2006; 133
2009; 238
2014; 42
2007; 312
2010; 44
1994; 8
2012; 295
2004; 131
2013; 15
2014; 5
1994; 147
2006; 62
2013; 55
1962; 110
2015; 43
2008; 319
2013; 431
2015; 2015
2008; 316
2014; 14
2003; 5
2008; 65
2008; 87
2000; 220
1997; 209
2004; 117
2006; 123
2014; 56
2007; 49
1998; 8
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Nieuwkoop P. (e_1_2_6_31_1) 1994
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_50_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 44
  start-page: 531
  year: 2010
  end-page: 540
  article-title: Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes
  publication-title: Alcohol
– volume: 6
  start-page: 26
  issue: Suppl 1
  year: 2006
  end-page: 37
  article-title: Limb regeneration in froglet
  publication-title: ScientificWorldJournal
– volume: 20
  start-page: 565
  year: 2009
  end-page: 574
  article-title: Repatterning in amphibian limb regeneration: a model for study of genetic and epigenetic control of organ regeneration
  publication-title: Semin. Cell Dev. Biol.
– volume: 406
  start-page: 271
  year: 2015
  end-page: 282
  article-title: Epigenetic modification maintains intrinsic limb‐cell identity in limb bud regeneration
  publication-title: Dev. Biol.
– volume: 34
  start-page: 908
  year: 2011
  end-page: 916
  article-title: The role of peripheral nerves in urodele limb regeneration
  publication-title: Eur. J. Neurosci.
– volume: 220
  start-page: 296
  year: 2000
  end-page: 306
  article-title: Analysis of gene expressions during forelimb regeneration
  publication-title: Dev. Biol.
– volume: 49
  start-page: 155
  year: 2007
  end-page: 161
  article-title: Tail regeneration in the tadpole
  publication-title: Dev. Growth Differ.
– volume: 129
  start-page: 208
  year: 2012
  end-page: 218
  article-title: Histone deacetylases are required for amphibian tail and limb regeneration but not development
  publication-title: Mech. Dev.
– volume: 316
  start-page: 323
  year: 2008
  end-page: 335
  article-title: Requirement for Wnt and FGF signaling in tadpole tail regeneration
  publication-title: Dev. Biol.
– volume: 110
  start-page: 61
  year: 1962
  end-page: 77
  article-title: Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad
  publication-title: J. Morphol.
– volume: 319
  start-page: 321
  year: 2008
  end-page: 335
  article-title: Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl ( )
  publication-title: Dev. Biol.
– volume: 431
  start-page: 152
  year: 2013
  end-page: 157
  article-title: Expression analysis of XPhyH‐like during development and tail regeneration in tadpoles: possible role of XPhyH‐like expressing immune cells in impaired tail regenerative ability
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 100
  start-page: 45
  year: 2001
  end-page: 58
  article-title: Some distal limb structures develop in mice lacking Sonic hedgehog signaling
  publication-title: Mech. Dev.
– volume: 2
  start-page: 448
  year: 2013
  end-page: 452
  article-title: High efficiency TALENs enable F0 functional analysis by targeted gene disruption in embryos
  publication-title: Biol. Open
– year: 1994
– volume: 5
  start-page: 5560
  year: 2014
  article-title: Microhomology‐mediated end‐joining‐dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9
  publication-title: Nat. Commun.
– volume: 56
  start-page: 108
  year: 2014
  end-page: 114
  article-title: Targeted mutagenesis of multiple and paralogous genes in using two pairs of transcription activator‐like effector nucleases
  publication-title: Dev. Growth Differ.
– volume: 43
  start-page: 1433
  year: 2015
  end-page: 1443
  article-title: Opposing roles of H3‐ and H4‐acetylation in the regulation of nucleosome structure—a FRET study
  publication-title: Nucleic Acids Res.
– volume: 312
  start-page: 171
  year: 2007
  end-page: 182
  article-title: Correlation between Shh expression and DNA methylation status of the limb‐specific Shh enhancer region during limb regeneration in amphibians
  publication-title: Dev. Biol.
– volume: 49
  start-page: 121
  year: 2007
  end-page: 129
  article-title: Brain regeneration in anuran amphibians
  publication-title: Dev. Growth Differ.
– volume: 11
  start-page: 70
  year: 2011
  article-title: Genome‐wide analysis of gene expression during tadpole tail regeneration
  publication-title: BMC Dev. Biol.
– volume: 3
  start-page: 3379
  year: 2013
  article-title: Repeating pattern of non‐RVD variations in DNA‐binding modules enhances TALEN activity
  publication-title: Sci. Rep.
– volume: 3
  start-page: 2084
  year: 2013
  article-title: Sustained production of ROS triggers compensatory proliferation and is required for regeneration to proceed
  publication-title: Sci. Rep.
– volume: 8
  start-page: 1434
  year: 1994
  end-page: 1447
  article-title: Expression of achaete‐scute homolog 3 in embryos converts ectodermal cells to a neural fate
  publication-title: Genes Dev.
– volume: 6
  start-page: e26382
  year: 2011
  article-title: HDAC activity is required during tail regeneration
  publication-title: PLoS One
– volume: 3
  start-page: 2436
  year: 2013
  article-title: Genetically encoded system to track histone modification
  publication-title: Sci. Rep.
– volume: 65
  start-page: 54
  year: 2008
  end-page: 63
  article-title: The tadpole: a new model for regeneration research
  publication-title: Cell. Mol. Life Sci.
– volume: 238
  start-page: 1226
  year: 2009
  end-page: 1248
  article-title: Beyond early development: as an emerging model for the study of regenerative mechanisms
  publication-title: Dev. Dyn.
– volume: 2015
  start-page: 392476
  year: 2015
  article-title: Reactive oxygen species in planarian regeneration: an upstream necessity for correct patterning and brain formation
  publication-title: Oxid. Med. Cell. Longev.
– volume: 136
  start-page: 2323
  year: 2009
  end-page: 2327
  article-title: Suppression of the immune response potentiates tadpole tail regeneration during the refractory period
  publication-title: Development
– volume: 14
  start-page: 27
  year: 2014
  article-title: Notochord‐derived hedgehog is essential for tail regeneration in tadpole
  publication-title: BMC Dev. Biol.
– volume: 42
  start-page: 617
  year: 2014
  end-page: 623
  article-title: Tadpole tail regeneration in
  publication-title: Biochem. Soc. Trans.
– volume: 131
  start-page: 2669
  year: 2004
  end-page: 2679
  article-title: Cell lineage tracing during tail regeneration
  publication-title: Development
– volume: 55
  start-page: 422
  year: 2013
  end-page: 433
  article-title: Transgenic for live imaging in cell and developmental biology
  publication-title: Dev. Growth Differ.
– volume: 147
  start-page: 223
  year: 1994
  end-page: 226
  article-title: pXeX, a vector for efficient expression of cloned sequences in embryos
  publication-title: Gene
– volume: 1
  start-page: 1703
  year: 2006
  end-page: 1710
  article-title: High‐throughput transgenesis in using I‐SceI meganuclease
  publication-title: Nat. Protoc.
– volume: 15
  start-page: 222
  year: 2013
  end-page: 228
  article-title: Amputation‐induced reactive oxygen species are required for successful tadpole tail regeneration
  publication-title: Nat. Cell Biol.
– volume: 295
  start-page: 1532
  year: 2012
  end-page: 1540
  article-title: Transgenic analysis of signaling pathways required for tadpole spinal cord and muscle regeneration
  publication-title: Anat. Rec. (Hoboken)
– volume: 8
  start-page: 1058
  year: 1998
  end-page: 1068
  article-title: Sonic hedgehog signaling is essential for hair development
  publication-title: Curr. Biol.
– volume: 117
  start-page: 721
  year: 2004
  end-page: 733
  article-title: Mapping global histone acetylation patterns to gene expression
  publication-title: Cell
– volume: 301
  start-page: 62
  year: 2007
  end-page: 69
  article-title: Apoptosis is required during early stages of tail regeneration in
  publication-title: Dev. Biol.
– volume: 123
  start-page: 674
  year: 2006
  end-page: 688
  article-title: Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of tadpoles
  publication-title: Mech. Dev.
– volume: 133
  start-page: 2303
  year: 2006
  end-page: 2313
  article-title: Control of muscle regeneration in the tadpole tail by Pax7
  publication-title: Development
– volume: 209
  start-page: 227
  year: 1997
  end-page: 232
  article-title: Shh expression in developing and regenerating limb buds of
  publication-title: Dev. Dyn.
– volume: 5
  start-page: 429
  year: 2003
  end-page: 439
  article-title: Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate
  publication-title: Dev. Cell
– volume: 142
  start-page: 2916
  year: 2015
  end-page: 2927
  article-title: Leg regeneration is epigenetically regulated by histone H3K27 methylation in the cricket
  publication-title: Development
– volume: 6
  start-page: ra8
  year: 2013
  article-title: Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development
  publication-title: Sci. Signal.
– volume: 122
  start-page: 3173
  year: 1996
  end-page: 3183
  article-title: Transgenic embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation
  publication-title: Development
– volume: 87
  start-page: 806
  year: 2008
  end-page: 816
  article-title: Tail regeneration in as a model for understanding tissue repair
  publication-title: J. Dent. Res.
– volume: 46
  start-page: 523
  year: 2004
  end-page: 534
  article-title: Successful reconstitution of the non‐regenerating adult telencephalon by cell transplantation in
  publication-title: Dev. Growth Differ.
– volume: 62
  start-page: 1433
  year: 2006
  end-page: 1446
  article-title: H4 acetylation does not replace H3 acetylation in chromatin remodelling and transcription activation of Adr1‐dependent genes
  publication-title: Mol. Microbiol.
– ident: e_1_2_6_15_1
  doi: 10.1242/dev.01155
– ident: e_1_2_6_4_1
  doi: 10.1016/S1534-5807(03)00233-8
– ident: e_1_2_6_43_1
  doi: 10.1111/dgd.12042
– ident: e_1_2_6_42_1
  doi: 10.1100/tsw.2006.325
– ident: e_1_2_6_39_1
  doi: 10.1016/S0960-9822(98)70443-9
– ident: e_1_2_6_3_1
  doi: 10.1016/j.mod.2006.07.001
– ident: e_1_2_6_45_1
  doi: 10.1016/j.mod.2012.08.001
– ident: e_1_2_6_8_1
  doi: 10.1016/j.alcohol.2010.06.003
– ident: e_1_2_6_13_1
  doi: 10.1242/dev.033985
– ident: e_1_2_6_28_1
  doi: 10.1111/j.1440-169X.2007.00912.x
– ident: e_1_2_6_11_1
  doi: 10.1002/(SICI)1097-0177(199706)209:2<227::AID-AJA8>3.0.CO;2-K
– ident: e_1_2_6_24_1
  doi: 10.1002/ar.22437
– ident: e_1_2_6_22_1
  doi: 10.1242/dev.122.10.3173
– ident: e_1_2_6_9_1
  doi: 10.1002/jmor.1051100105
– ident: e_1_2_6_30_1
  doi: 10.1016/j.bbrc.2013.01.005
– ident: e_1_2_6_36_1
  doi: 10.1038/srep02436
– ident: e_1_2_6_46_1
  doi: 10.1016/j.ydbio.2006.10.048
– ident: e_1_2_6_51_1
  doi: 10.1016/j.semcdb.2008.12.007
– ident: e_1_2_6_40_1
  doi: 10.1111/j.1460-9568.2011.07827.x
– ident: e_1_2_6_12_1
  doi: 10.1111/j.1440-169X.2007.00914.x
– ident: e_1_2_6_23_1
  doi: 10.1016/j.cell.2004.05.023
– ident: e_1_2_6_37_1
  doi: 10.1016/j.ydbio.2008.04.030
– ident: e_1_2_6_16_1
  doi: 10.1038/srep02084
– ident: e_1_2_6_10_1
  doi: 10.1006/dbio.2000.9641
– ident: e_1_2_6_35_1
  doi: 10.1038/srep03379
– ident: e_1_2_6_17_1
  doi: 10.1242/dev.122598
– ident: e_1_2_6_7_1
  doi: 10.1042/BST20140061
– ident: e_1_2_6_29_1
  doi: 10.1038/ncomms6560
– ident: e_1_2_6_18_1
  doi: 10.1126/scisignal.2003638
– ident: e_1_2_6_20_1
  doi: 10.1016/0378-1119(94)90070-1
– ident: e_1_2_6_21_1
  doi: 10.1016/S0925-4773(00)00492-5
– ident: e_1_2_6_27_1
  doi: 10.1038/ncb2659
– ident: e_1_2_6_14_1
  doi: 10.1093/nar/gku1354
– ident: e_1_2_6_49_1
  doi: 10.1101/gad.8.12.1434
– ident: e_1_2_6_50_1
  doi: 10.1016/j.ydbio.2007.09.022
– ident: e_1_2_6_34_1
  doi: 10.1111/dgd.12105
– ident: e_1_2_6_44_1
  doi: 10.1186/1471-213X-14-27
– ident: e_1_2_6_25_1
  doi: 10.1016/j.ydbio.2008.01.032
– ident: e_1_2_6_5_1
  doi: 10.1002/dvdy.21890
– ident: e_1_2_6_32_1
  doi: 10.1038/nprot.2006.208
– ident: e_1_2_6_48_1
  doi: 10.1177/154405910808700909
– volume-title: Normal Table of Xenopus laevis (Daudin)
  year: 1994
  ident: e_1_2_6_31_1
  contributor:
    fullname: Nieuwkoop P.
– ident: e_1_2_6_38_1
  doi: 10.1007/s00018-007-7431-1
– ident: e_1_2_6_19_1
  doi: 10.1016/j.ydbio.2015.08.013
– ident: e_1_2_6_26_1
  doi: 10.1186/1471-213X-11-70
– ident: e_1_2_6_52_1
  doi: 10.1111/j.1440-169x.2004.00767.x
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1365-2958.2006.05451.x
– ident: e_1_2_6_47_1
  doi: 10.1371/journal.pone.0026382
– ident: e_1_2_6_41_1
  doi: 10.1242/bio.20133855
– ident: e_1_2_6_6_1
  doi: 10.1242/dev.02397
– ident: e_1_2_6_33_1
  doi: 10.1155/2015/392476
SSID ssj0013205
Score 2.3511395
Snippet Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular...
Xenopus laevis tadpoles can completely regenerate their appendages, such as tail and limbs, and therefore provide a unique model to decipher the molecular...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 358
SubjectTerms Acetylation
Animals
Animals, Genetically Modified
Appendages
Embryonic Development
Embryos
Epigenetics
Frogs
Green fluorescent protein
Histone Code
Histone H3
Histones - metabolism
Limbs
Lysine
Molecular modelling
Notochord
Nuclei
Organogenesis
Reactive oxygen species
Reactive Oxygen Species - metabolism
Regeneration
Somites
Tail - physiology
Tails
Xenopus laevis
Xenopus Proteins - metabolism
Title In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgtc.12349
https://www.ncbi.nlm.nih.gov/pubmed/26914410
https://www.proquest.com/docview/1780447589
https://www.proquest.com/docview/1904739610
https://search.proquest.com/docview/1781151768
https://search.proquest.com/docview/1785250048
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5aEHzxPqpVovjgy8puczTBJ_GqCCKo4JNLNkcpyLb0EPz3zmTboogi-LIEkt3NNck3ycw3hBxp4zLW8jLxUquEC-aSwjmdWNFMhSiEyjh6I7cfWnfP6uISaXJOp74wFT_E7MANJSOu1yjgphh-EvLOyJ7AssvReQ-0hOi-we4_3SBE88WMCZloQM0TViG04pm9-XUv-gYwv-LVuOFcLf-rqitkaYIz6Vk1MVbJnC_XyEIVefJ9nbzclPSt-9ajo4GxeFpOe4FG7uHS0zajSFQCKU2N9aP3yl6Odkv67Mtefzykrwa90mnl5EjRCpUOfCdSWGPRDfJ0dfl43k4moRZgUITWSQuPQ50wLFWF4T7DwOMyZZYHAXjBBQlaYBO5zbQCndZapaVNeQhapTYTQbBNUiuhhtuESgwSqA0PuP3zIhgVCpmGwinnQ9PIOjmcdnrerxg18qkmAh2Vx46qk8Z0OPKJUA3zDMmSOCg4P2TrlLeYBjxYJwezbJAWvAIxpe-N4ycAAmegY_1aBu96YWmrk61qJswq2pQaNVD4w3Ec8J9bkF8_nsfEzt-L7pJFwGOyMgxqkNpoMPZ7ZH7oxvtxcsPz4ub2Ay1a-Vo
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB-qpdgXbaut11pNxQdfVnYvH5dAX8SPntSK4Ak-uWTzcQhlT-5D8L_vTPbuUEQR-hZIdjebzCS_SWZ-A7BjrC94J6gsKKMzIbnPKu9N5mQ7l7KSuhAUjdy96Jxd6cMjosn5OYuFafgh5gdupBlpvSYFpwPpB1reH7s9XHeFWYC3QqEgUgAHP39wh5AcGAsuVWYQN095hciPZ_7o493oCcR8jFjTlnO88n-d_QDLU6jJ9hvZ-AhvQv0J3jXJJ-9X4fqkZnc3dwM2HlpHB-ZsEFmiH64D63JGXCVYMsy6ML5vXObYTc2uQj24nYzYX0uB6ayJc2TkiMqGoZ9YrKnpGlweH_UOutk02wLOizQm69CJqJeW57qyIhSUe1zl3IkoETL4qNAQbBO9mdFo1jqnjXK5iNHo3BUySv4ZFmvs4TowRXkCjRWREICootWxUnmsvPYhtq1qwfZs1MvbhlSjnBkjOFBlGqgWbMzmo5zq1agsiC9JoI3zTLXJRYcbhIQt-DGvRoWhWxBbh8EkvQJRcIFm1ott6LoXV7cWfGlEYd7RtjJkhOIXdtOMP_8H5a_eQSp8fX3TLVjq9v6clqcnZ7-_wXuEZ6rxE9qAxfFwEr7DwshPNpOk_wMQ4vyJ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxsxEB6ahJRe2jR9uU1bNfTQy4Zd62GJnooT16HFGOJCTl20eoRAWRu_wP--M1rbJISUQG8CaXe1kkb6ZjTzDcBnY33BO0FlQRmdCcl9VnlvMifbuZSV1IWgaOT-RWdwqU_PiCbn6yYWpuGH2BrcSDLSfk0CPvHxhpBfzd0JbrvC7MCeQBhOxPmcD29cIST_xYJLlRmEzWtaIXLj2T56-zC6gzBvA9Z04vSe_VdfD-DpGmiyb83KeA6PQn0I-03qydUL-H1es-X1cszmU-vIXM7GkSXy4TqwPmfEVIIlw6wL81XjMMeua3YZ6vFkMWN_LIWlsybKkZEbKpuGq8RhTU1fwq_e2ajbz9a5FnBWpDFZh-yhXlqe68qKUFDmcZVzJ6JEwOCjQjWwTeRmRqNS65w2yuUiRqNzV8go-SvYrbGHb4ApyhJorIh0_osqWh0rlcfKax9i26oWHG8GvZw0lBrlRhXBgSrTQLXgaDMd5VqqZmVBbEkCNZx7qk0uOtwgIGzBp201igvdgdg6jBfpFYiBC1Sy_tmGLntxb2vB62YlbDvaVoZUUPzClzTh9_9B-X3UTYW3D2_6ER4PT3vlz_PBj3fwBLGZapyEjmB3Pl2E97Az84sPaZ3_Bfos-y8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+tracking+of+histone+H3+lysine+9+acetylation+in+Xenopus+laevis+during+tail+regeneration&rft.jtitle=Genes+to+cells+%3A+devoted+to+molecular+%26+cellular+mechanisms&rft.au=Suzuki%2C+Miyuki&rft.au=Takagi%2C+Chiyo&rft.au=Miura%2C+Shinichirou&rft.au=Sakane%2C+Yuto&rft.date=2016-04-01&rft.issn=1356-9597&rft.eissn=1365-2443&rft.volume=21&rft.issue=4&rft.spage=358&rft.epage=369&rft_id=info:doi/10.1111%2Fgtc.12349&rft.externalDBID=10.1111%252Fgtc.12349&rft.externalDocID=GTC12349
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1356-9597&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1356-9597&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1356-9597&client=summon