Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines
Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA, particularly for COVID-19 vaccine delivery. LNPs comprise four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids...
Saved in:
Published in: | Vaccines (Basel) Vol. 11; no. 3; p. 658 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-03-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA, particularly for COVID-19 vaccine delivery. LNPs comprise four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids attached to polyethylene glycol (PEG). In this review, we present recent the advances and insights for the design of LNPs, as well as their composition and properties, with a subsequent discussion on the development of COVID-19 vaccines. In particular, as ionizable lipids are the most critical drivers for complexing the mRNA and in vivo delivery, the role of ionizable lipids in mRNA vaccines is discussed in detail. Furthermore, the use of LNPs as effective delivery vehicles for vaccination, genome editing, and protein replacement therapy is explained. Finally, expert opinion on LNPs for mRNA vaccines is discussed, which may address future challenges in developing mRNA vaccines using highly efficient LNPs based on a novel set of ionizable lipids. Developing highly efficient mRNA delivery systems for vaccines with improved safety against some severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains difficult. |
---|---|
AbstractList | Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA, particularly for COVID-19 vaccine delivery. LNPs comprise four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids attached to polyethylene glycol (PEG). In this review, we present recent the advances and insights for the design of LNPs, as well as their composition and properties, with a subsequent discussion on the development of COVID-19 vaccines. In particular, as ionizable lipids are the most critical drivers for complexing the mRNA and in vivo delivery, the role of ionizable lipids in mRNA vaccines is discussed in detail. Furthermore, the use of LNPs as effective delivery vehicles for vaccination, genome editing, and protein replacement therapy is explained. Finally, expert opinion on LNPs for mRNA vaccines is discussed, which may address future challenges in developing mRNA vaccines using highly efficient LNPs based on a novel set of ionizable lipids. Developing highly efficient mRNA delivery systems for vaccines with improved safety against some severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains difficult. Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA, particularly for COVID-19 vaccine delivery. LNPs comprise four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids attached to polyethylene glycol (PEG). In this review, we present recent the advances and insights for the design of LNPs, as well as their composition and properties, with a subsequent discussion on the development of COVID-19 vaccines. In particular, as ionizable lipids are the most critical drivers for complexing the mRNA and in vivo delivery, the role of ionizable lipids in mRNA vaccines is discussed in detail. Furthermore, the use of LNPs as effective delivery vehicles for vaccination, genome editing, and protein replacement therapy is explained. Finally, expert opinion on LNPs for mRNA vaccines is discussed, which may address future challenges in developing mRNA vaccines using highly efficient LNPs based on a novel set of ionizable lipids. Developing highly efficient mRNA delivery systems for vaccines with improved safety against some severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains difficult.Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA, particularly for COVID-19 vaccine delivery. LNPs comprise four different lipids: ionizable lipids, helper or neutral lipids, cholesterol, and lipids attached to polyethylene glycol (PEG). In this review, we present recent the advances and insights for the design of LNPs, as well as their composition and properties, with a subsequent discussion on the development of COVID-19 vaccines. In particular, as ionizable lipids are the most critical drivers for complexing the mRNA and in vivo delivery, the role of ionizable lipids in mRNA vaccines is discussed in detail. Furthermore, the use of LNPs as effective delivery vehicles for vaccination, genome editing, and protein replacement therapy is explained. Finally, expert opinion on LNPs for mRNA vaccines is discussed, which may address future challenges in developing mRNA vaccines using highly efficient LNPs based on a novel set of ionizable lipids. Developing highly efficient mRNA delivery systems for vaccines with improved safety against some severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains difficult. |
Audience | Academic |
Author | Bonam, Srinivasa Reddy Swetha, K Kotla, Niranjan G Kurapati, Rajendra Jayaraj, Arya Bhargava, Suresh K Tunki, Lakshmi Hu, Haitao |
AuthorAffiliation | 4 Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia 5 Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA 6 Institute for Human Infections & Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA 3 Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India 2 Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India 1 School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India |
AuthorAffiliation_xml | – name: 4 Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia – name: 1 School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India – name: 3 Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India – name: 6 Institute for Human Infections & Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA – name: 2 Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India – name: 5 Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA |
Author_xml | – sequence: 1 givenname: K surname: Swetha fullname: Swetha, K organization: School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India – sequence: 2 givenname: Niranjan G surname: Kotla fullname: Kotla, Niranjan G organization: Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India – sequence: 3 givenname: Lakshmi orcidid: 0000-0002-5713-9447 surname: Tunki fullname: Tunki, Lakshmi organization: Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia – sequence: 4 givenname: Arya surname: Jayaraj fullname: Jayaraj, Arya organization: School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India – sequence: 5 givenname: Suresh K orcidid: 0000-0002-3127-8166 surname: Bhargava fullname: Bhargava, Suresh K organization: Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3001, Australia – sequence: 6 givenname: Haitao surname: Hu fullname: Hu, Haitao organization: Institute for Human Infections & Immunity, Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA – sequence: 7 givenname: Srinivasa Reddy orcidid: 0000-0002-2888-2418 surname: Bonam fullname: Bonam, Srinivasa Reddy organization: Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA – sequence: 8 givenname: Rajendra orcidid: 0000-0002-1811-2428 surname: Kurapati fullname: Kurapati, Rajendra organization: School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36992242$$D View this record in MEDLINE/PubMed |
BookMark | eNptUstuEzEUtVARLaV7VmgkNmym-DGesVcoKq9KoUgVIHaWc30ndTSxgz2J1L_HaUKVVNgLv8459-HzkpyEGJCQ14xeCqHp-40F8AEzY1TQVqpn5IzTrq2FFr9PDvan5CLnBS1DM6Ha7gU5Fa3WnDf8jExvETCM1cRtbADMlQ_VeIfV1K-8q25siCubRg8D1t_QeTuiqz7i4DeY7qvYV8vbm0n1a5_JK_K8t0PGi_16Tn5-_vTj6ms9_f7l-moyrUFKNda267iSChVC0ykAwaVyVLfUlkKQaVC6FQ2VQC1vlaQzKAerleO0RwAU5-R6p-uiXZhV8kub7k203jxcxDQ3-6SNtI2blbqbnpVgKBQwbZ1A4JI3vVJF68NOa7WeLdFtm5HscCR6_BL8nZnHjWGUSt21TVF4t1dI8c8a82iWPgMOgw0Y19nwTnNNu5JDgb59Al3EdQqlV1sUe8AcoOa2VOBDH0tg2IqaSdeULy394wV1-R9UmQ6XHopVel_ujwh0R4AUc07YPxbJqNk6yjx1VKG8OWzOI-Gff8RfpqbHGQ |
CitedBy_id | crossref_primary_10_1002_adma_202404053 crossref_primary_10_3389_fimmu_2023_1291619 crossref_primary_10_1002_adma_202308915 crossref_primary_10_3389_fcell_2023_1198848 crossref_primary_10_1039_D4BM00439F crossref_primary_10_3389_fchem_2023_1259435 crossref_primary_10_2174_0122106812284202231228095045 crossref_primary_10_1016_j_apsb_2024_04_015 crossref_primary_10_34133_bmr_0017 crossref_primary_10_1002_adma_202310168 crossref_primary_10_1002_adfm_202310623 crossref_primary_10_3389_fimmu_2023_1246682 crossref_primary_10_1016_j_biopha_2023_115091 crossref_primary_10_2174_0113816128296588240321072042 |
Cites_doi | 10.3389/fphar.2015.00286 10.1002/anie.201809056 10.1016/j.celrep.2020.02.111 10.1038/s41565-020-0669-6 10.1016/j.addr.2020.07.002 10.1016/j.jconrel.2015.12.032 10.1016/S1473-3099(22)00054-8 10.1038/nrd4278 10.1038/s41565-022-01071-x 10.1038/s41596-022-00755-x 10.1080/17425247.2022.2131767 10.1002/anie.200902672 10.1038/ncomms5277 10.1016/j.immuni.2022.10.014 10.1146/annurev-bioeng-110220-031722 10.1016/j.jconrel.2022.02.017 10.1016/j.immuni.2021.11.001 10.1056/NEJMoa2034577 10.1007/s12195-016-0436-9 10.1021/acsnano.1c04996 10.3390/pharmaceutics14010141 10.1038/s41578-021-00358-0 10.1038/mt.2013.124 10.1016/j.jconrel.2012.12.029 10.1002/smll.201805097 10.1021/acsnano.2c04543 10.1016/j.addr.2016.01.022 10.1002/adma.201606944 10.1016/j.addr.2020.06.002 10.2217/nnm.11.19 10.1038/190581a0 10.1001/jamapediatrics.2022.3581 10.1038/s41565-019-0591-y 10.1002/smtd.201700375 10.1021/acs.analchem.7b04689 10.1038/mt.2009.36 10.1016/j.molmed.2021.03.003 10.1021/acs.nanolett.6b03251 10.3390/biomedicines10071538 10.1056/NEJMoa2035389 10.1126/sciadv.aba1028 10.1002/smsc.202200071 10.1073/pnas.1505629112 10.1021/acs.accounts.1c00544 10.1021/jacs.2c10670 10.1038/nrd.2017.243 10.1016/j.omtn.2021.03.008 10.1016/j.bbamem.2012.05.017 10.1016/j.ijpharm.2021.120586 10.1016/j.jconrel.2005.06.014 10.1126/scitranslmed.abq1945 10.7150/thno.18136 10.1038/s41576-021-00439-4 10.1016/j.ymthe.2019.02.012 10.1016/j.addr.2020.12.014 10.1021/acsanm.2c00886 10.1038/s41467-020-16248-y 10.1038/s41467-021-27493-0 10.1016/S0006-3495(01)75912-7 10.1038/s41587-022-01294-2 10.1002/adfm.202204692 10.1016/j.omtn.2022.09.017 10.1038/s41591-020-0997-y 10.1002/adma.201505822 10.1021/acs.nanolett.5b02497 10.1016/j.tips.2017.06.002 10.4161/hv.26796 10.1016/j.omtn.2019.01.013 10.1038/natrevmats.2017.56 10.1126/science.abm0271 10.1038/nmat3765 10.1038/s41573-020-0090-8 10.1016/j.ymthe.2018.03.010 10.1016/j.jacc.2022.08.799 10.1038/s41467-020-14527-2 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION 3V. 7T7 7XB 8FD 8FE 8FH 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ GUQSH HCIFZ LK8 M2O M7P MBDVC P64 PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.3390/vaccines11030658 |
DatabaseName | PubMed CrossRef ProQuest Central (Corporate) Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (purchase pre-March 2016) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences ProQuest_Research Library Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest - Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database Research Library Prep ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Research Library Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 2076-393X |
ExternalDocumentID | oai_doaj_org_article_5a4db9134f1c47e38c19ad3ec2524f88 A743937722 10_3390_vaccines11030658 36992242 |
Genre | Journal Article Review |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GrantInformation_xml | – fundername: Science and Engineering Research Board grantid: SRG/2022/000291 – fundername: Department of Biotechnology grantid: BT/RLF/Re-entry/24/2020 – fundername: Science and Engineering Research Board (SERB), India grantid: SRG/2022/000291 – fundername: Department of Biotechnology (DBT), India grantid: BT/RLF/Re-entry/20/2020 |
GroupedDBID | 3V. 53G 5VS 8FE 8FH 8G5 AADQD AAHBH ABUWG ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI BPHCQ CCPQU DIK DWQXO GNUQQ GROUPED_DOAJ GUQSH HCIFZ HYE IAO IHR ITC KQ8 LK8 M2O M48 M7P MODMG M~E NPM OK1 PGMZT PIMPY PQQKQ PROAC RIG RNS RPM AAYXX CITATION 7T7 7XB 8FD 8FK C1K FR3 MBDVC P64 PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c558t-a772858e8ec478cc3258d0960a030e19c8963405c0a26850bc405a98d20fecce3 |
IEDL.DBID | RPM |
ISSN | 2076-393X |
IngestDate | Tue Oct 22 14:50:44 EDT 2024 Tue Sep 17 21:35:40 EDT 2024 Sat Oct 26 04:05:27 EDT 2024 Sat Nov 09 02:05:49 EST 2024 Tue Nov 19 21:36:16 EST 2024 Tue Nov 12 23:39:23 EST 2024 Fri Nov 22 00:02:44 EST 2024 Sat Nov 02 12:24:04 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | COVID-19 lipid nanoparticles vaccine mRNA |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-a772858e8ec478cc3258d0960a030e19c8963405c0a26850bc405a98d20fecce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 These authors contributed equally to this work. |
ORCID | 0000-0002-3127-8166 0000-0002-2888-2418 0000-0002-1811-2428 0000-0002-5713-9447 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10059764/ |
PMID | 36992242 |
PQID | 2791713434 |
PQPubID | 2032320 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5a4db9134f1c47e38c19ad3ec2524f88 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10059764 proquest_miscellaneous_2792907134 proquest_journals_2791713434 gale_infotracmisc_A743937722 gale_infotracacademiconefile_A743937722 crossref_primary_10_3390_vaccines11030658 pubmed_primary_36992242 |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Vaccines (Basel) |
PublicationTitleAlternate | Vaccines (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Maeki (ref_53) 2022; 344 Cheng (ref_22) 2016; 99 Verbeke (ref_59) 2022; 55 Hou (ref_4) 2021; 6 Chen (ref_69) 2022; 24 Fenton (ref_35) 2016; 28 Fenton (ref_31) 2017; 29 ref_54 Sahin (ref_1) 2014; 13 Paunovska (ref_42) 2022; 23 Barbier (ref_70) 2022; 40 Polack (ref_11) 2020; 383 Pozzi (ref_23) 2012; 1818 Arevalo (ref_60) 2022; 378 Tenchov (ref_6) 2021; 15 Kanasty (ref_20) 2013; 12 Riley (ref_46) 2021; 7 Gao (ref_15) 2013; 1 Kim (ref_28) 2021; 170 Pardi (ref_2) 2018; 17 Eygeris (ref_14) 2022; 55 Maeki (ref_50) 2022; 5 Swingle (ref_9) 2021; 27 Jokerst (ref_26) 2011; 6 Miao (ref_34) 2020; 11 Sercombe (ref_12) 2015; 6 Suzuki (ref_48) 2022; 30 Heyes (ref_37) 2005; 107 Reusch (ref_72) 2022; 2022 Knapp (ref_44) 2016; 9 Baden (ref_10) 2021; 384 Kauffman (ref_5) 2016; 240 Akinc (ref_29) 2009; 17 Patel (ref_24) 2020; 11 Whitehead (ref_41) 2014; 5 Hajnik (ref_74) 2022; 14 Fenton (ref_32) 2018; 57 Davies (ref_67) 2021; 24 Maier (ref_40) 2013; 21 Mitchell (ref_13) 2021; 20 Ju (ref_76) 2022; 16 Kauffman (ref_38) 2015; 15 Shah (ref_49) 2020; 154–155 Naveed (ref_71) 2022; 80 Phua (ref_64) 2013; 166 Hanna (ref_79) 2022; 176 Knop (ref_27) 2010; 49 Sabnis (ref_43) 2018; 26 Jansen (ref_63) 2022; 19 ref_78 Zhu (ref_39) 2015; 112 Hajj (ref_19) 2017; 2 Akinc (ref_8) 2019; 14 Utharala (ref_52) 2018; 90 Harper (ref_21) 2001; 81 Han (ref_36) 2021; 12 Hajj (ref_45) 2019; 15 Alameh (ref_68) 2021; 54 Liu (ref_51) 2017; 17 Chen (ref_7) 2022; 32 Cheng (ref_56) 2020; 15 Wang (ref_55) 2023; 18 Kowalski (ref_3) 2019; 27 Tilstra (ref_18) 2023; 145 Samaridou (ref_47) 2020; 154–155 Nieuwenhuijse (ref_58) 2020; 26 Bolhassani (ref_73) 2014; 10 Rosenblum (ref_75) 2022; 22 Gros (ref_57) 1961; 190 Schoenmaker (ref_16) 2021; 601 Ols (ref_66) 2020; 30 Hashiba (ref_17) 2023; 3 Evers (ref_25) 2018; 2 Szebeni (ref_77) 2022; 17 Zhu (ref_30) 2017; 7 Zhang (ref_33) 2020; 6 Vaca (ref_62) 2023; 11 Bonam (ref_61) 2017; 38 Hassett (ref_65) 2019; 15 |
References_xml | – volume: 6 start-page: 286 year: 2015 ident: ref_12 article-title: Advances and Challenges of Liposome Assisted Drug Delivery publication-title: Front. Pharmacol. doi: 10.3389/fphar.2015.00286 contributor: fullname: Sercombe – volume: 57 start-page: 13582 year: 2018 ident: ref_32 article-title: Customizable Lipid Nanoparticle Materials for the Delivery of siRNAs and mRNAs publication-title: Angew. Chem. (Int. Ed. Engl.) doi: 10.1002/anie.201809056 contributor: fullname: Fenton – volume: 30 start-page: 3964 year: 2020 ident: ref_66 article-title: Route of Vaccine Administration Alters Antigen Trafficking but Not Innate or Adaptive Immunity publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.02.111 contributor: fullname: Ols – volume: 15 start-page: 313 year: 2020 ident: ref_56 article-title: Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0669-6 contributor: fullname: Cheng – volume: 154–155 start-page: 102 year: 2020 ident: ref_49 article-title: Liposomes: Advancements and innovation in the manufacturing process publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.07.002 contributor: fullname: Shah – volume: 240 start-page: 227 year: 2016 ident: ref_5 article-title: Materials for non-viral intracellular delivery of messenger RNA therapeutics publication-title: J. Control Release doi: 10.1016/j.jconrel.2015.12.032 contributor: fullname: Kauffman – volume: 22 start-page: 802 year: 2022 ident: ref_75 article-title: Safety of mRNA vaccines administered during the initial 6 months of the US COVID-19 vaccination programme: An observational study of reports to the Vaccine Adverse Event Reporting System and v-safe publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(22)00054-8 contributor: fullname: Rosenblum – volume: 13 start-page: 759 year: 2014 ident: ref_1 article-title: mRNA-based therapeutics—Developing a new class of drugs publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4278 contributor: fullname: Sahin – volume: 17 start-page: 337 year: 2022 ident: ref_77 article-title: Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01071-x contributor: fullname: Szebeni – volume: 18 start-page: 265 year: 2023 ident: ref_55 article-title: Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery publication-title: Nat. Protoc. doi: 10.1038/s41596-022-00755-x contributor: fullname: Wang – volume: 19 start-page: 1471 year: 2022 ident: ref_63 article-title: Are inhaled mRNA vaccines safe and effective? A review of preclinical studies publication-title: Expert Opin. Drug Deliv. doi: 10.1080/17425247.2022.2131767 contributor: fullname: Jansen – volume: 49 start-page: 6288 year: 2010 ident: ref_27 article-title: Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200902672 contributor: fullname: Knop – volume: 5 start-page: 4277 year: 2014 ident: ref_41 article-title: Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity publication-title: Nat. Commun. doi: 10.1038/ncomms5277 contributor: fullname: Whitehead – volume: 55 start-page: 1993 year: 2022 ident: ref_59 article-title: Innate immune mechanisms of mRNA vaccines publication-title: Immunity doi: 10.1016/j.immuni.2022.10.014 contributor: fullname: Verbeke – volume: 24 start-page: 85 year: 2022 ident: ref_69 article-title: Current Developments and Challenges of mRNA Vaccines publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-110220-031722 contributor: fullname: Chen – volume: 344 start-page: 80 year: 2022 ident: ref_53 article-title: Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2022.02.017 contributor: fullname: Maeki – volume: 54 start-page: 2877 year: 2021 ident: ref_68 article-title: Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses publication-title: Immunity doi: 10.1016/j.immuni.2021.11.001 contributor: fullname: Alameh – volume: 383 start-page: 2603 year: 2020 ident: ref_11 article-title: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2034577 contributor: fullname: Polack – volume: 9 start-page: 305 year: 2016 ident: ref_44 article-title: Lipidoid Tail Structure Strongly Influences siRNA Delivery Activity publication-title: Cell. Mol. Bioeng. doi: 10.1007/s12195-016-0436-9 contributor: fullname: Knapp – volume: 15 start-page: 16982 year: 2021 ident: ref_6 article-title: Lipid Nanoparticles─From Liposomes to mRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement publication-title: ACS Nano doi: 10.1021/acsnano.1c04996 contributor: fullname: Tenchov – ident: ref_54 doi: 10.3390/pharmaceutics14010141 – volume: 6 start-page: 1078 year: 2021 ident: ref_4 article-title: Lipid nanoparticles for mRNA delivery publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-021-00358-0 contributor: fullname: Hou – volume: 21 start-page: 1570 year: 2013 ident: ref_40 article-title: Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics publication-title: Mol. Ther. doi: 10.1038/mt.2013.124 contributor: fullname: Maier – volume: 166 start-page: 227 year: 2013 ident: ref_64 article-title: Transfection efficiency and transgene expression kinetics of mRNA delivered in naked and nanoparticle format publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.12.029 contributor: fullname: Phua – volume: 15 start-page: 1805097 year: 2019 ident: ref_45 article-title: Branched-Tail Lipid Nanoparticles Potently Deliver mRNA In Vivo due to Enhanced Ionization at Endosomal pH publication-title: Small doi: 10.1002/smll.201805097 contributor: fullname: Hajj – volume: 16 start-page: 11769 year: 2022 ident: ref_76 article-title: Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine publication-title: ACS Nano doi: 10.1021/acsnano.2c04543 contributor: fullname: Ju – volume: 99 start-page: 129 year: 2016 ident: ref_22 article-title: The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2016.01.022 contributor: fullname: Cheng – volume: 29 start-page: 1606944 year: 2017 ident: ref_31 article-title: Synthesis and Biological Evaluation of Ionizable Lipid Materials for the In Vivo Delivery of Messenger RNA to B Lymphocytes publication-title: Adv. Mater. doi: 10.1002/adma.201606944 contributor: fullname: Fenton – volume: 6 start-page: 34 year: 2020 ident: ref_33 article-title: Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing publication-title: Sci. Adv. contributor: fullname: Zhang – volume: 154–155 start-page: 37 year: 2020 ident: ref_47 article-title: Lipid nanoparticles for nucleic acid delivery: Current perspectives publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.06.002 contributor: fullname: Samaridou – volume: 6 start-page: 715 year: 2011 ident: ref_26 article-title: Nanoparticle PEGylation for imaging and therapy publication-title: Nanomedicine doi: 10.2217/nnm.11.19 contributor: fullname: Jokerst – volume: 190 start-page: 581 year: 1961 ident: ref_57 article-title: Unstable Ribonucleic Acid Revealed by Pulse Labelling of Escherichia Coli publication-title: Nature doi: 10.1038/190581a0 contributor: fullname: Gros – volume: 176 start-page: 1268 year: 2022 ident: ref_79 article-title: Detection of Messenger RNA COVID-19 Vaccines in Human Breast Milk publication-title: JAMA Pediatr. doi: 10.1001/jamapediatrics.2022.3581 contributor: fullname: Hanna – volume: 14 start-page: 1084 year: 2019 ident: ref_8 article-title: The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0591-y contributor: fullname: Akinc – volume: 2 start-page: 1700375 year: 2018 ident: ref_25 article-title: State-of-the-Art Design and Rapid-Mixing Production Techniques of Lipid Nanoparticles for Nucleic Acid Delivery publication-title: Small Methods doi: 10.1002/smtd.201700375 contributor: fullname: Evers – volume: 90 start-page: 5982 year: 2018 ident: ref_52 article-title: A Versatile, Low-Cost, Multiway Microfluidic Sorter for Droplets, Cells, and Embryos publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b04689 contributor: fullname: Utharala – volume: 11 start-page: 523616 year: 2023 ident: ref_62 article-title: Intranasal mRNA-LNP vaccination protects hamsters from SARS-CoV-2 infection publication-title: bioRxiv contributor: fullname: Vaca – volume: 17 start-page: 872 year: 2009 ident: ref_29 article-title: Development of Lipidoid–siRNA Formulations for Systemic Delivery to the Liver publication-title: Mol. Ther. doi: 10.1038/mt.2009.36 contributor: fullname: Akinc – volume: 27 start-page: 616 year: 2021 ident: ref_9 article-title: Lipid Nanoparticle-Mediated Delivery of mRNA Therapeutics and Vaccines publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2021.03.003 contributor: fullname: Swingle – volume: 17 start-page: 606 year: 2017 ident: ref_51 article-title: Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03251 contributor: fullname: Liu – ident: ref_78 doi: 10.3390/biomedicines10071538 – volume: 384 start-page: 403 year: 2021 ident: ref_10 article-title: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2035389 contributor: fullname: Baden – volume: 7 start-page: eaba1028 year: 2021 ident: ref_46 article-title: Ionizable lipid nanoparticles for in utero mRNA delivery publication-title: Sci. Adv. doi: 10.1126/sciadv.aba1028 contributor: fullname: Riley – volume: 3 start-page: 2200071 year: 2023 ident: ref_17 article-title: Branching Ionizable Lipids Can Enhance the Stability, Fusogenicity, and Functional Delivery of mRNA publication-title: Small Sci. doi: 10.1002/smsc.202200071 contributor: fullname: Hashiba – volume: 112 start-page: 7779 year: 2015 ident: ref_39 article-title: Long-circulating siRNA nanoparticles for validating Prohibitin1-targeted non-small cell lung cancer treatment publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1505629112 contributor: fullname: Zhu – volume: 55 start-page: 2 year: 2022 ident: ref_14 article-title: Chemistry of Lipid Nanoparticles for RNA Delivery publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.1c00544 contributor: fullname: Eygeris – volume: 145 start-page: 2294 year: 2023 ident: ref_18 article-title: Iterative Design of Ionizable Lipids for Intramuscular mRNA Delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c10670 contributor: fullname: Tilstra – volume: 17 start-page: 261 year: 2018 ident: ref_2 article-title: mRNA vaccines—A new era in vaccinology publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.243 contributor: fullname: Pardi – volume: 24 start-page: 369 year: 2021 ident: ref_67 article-title: Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein publication-title: Mol. Ther. —Nucleic Acids doi: 10.1016/j.omtn.2021.03.008 contributor: fullname: Davies – volume: 1818 start-page: 2335 year: 2012 ident: ref_23 article-title: Transfection efficiency boost of cholesterol-containing lipoplexes publication-title: Biochim. Biophys. Acta (BBA)—Biomembr. doi: 10.1016/j.bbamem.2012.05.017 contributor: fullname: Pozzi – volume: 601 start-page: 120586 year: 2021 ident: ref_16 article-title: mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120586 contributor: fullname: Schoenmaker – volume: 107 start-page: 276 year: 2005 ident: ref_37 article-title: Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids publication-title: J. Control. Release doi: 10.1016/j.jconrel.2005.06.014 contributor: fullname: Heyes – volume: 14 start-page: eabq1945 year: 2022 ident: ref_74 article-title: Dual spike and nucleocapsid mRNA vaccination confer protection against SARS-CoV-2 Omicron and Delta variants in preclinical models publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.abq1945 contributor: fullname: Hajnik – volume: 7 start-page: 1990 year: 2017 ident: ref_30 article-title: Surface De-PEGylation Controls Nanoparticle-Mediated siRNA Delivery In Vitro and In Vivo publication-title: Theranostics doi: 10.7150/thno.18136 contributor: fullname: Zhu – volume: 23 start-page: 265 year: 2022 ident: ref_42 article-title: Drug delivery systems for RNA therapeutics publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-021-00439-4 contributor: fullname: Paunovska – volume: 27 start-page: 710 year: 2019 ident: ref_3 article-title: Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery publication-title: Mol. Ther. J. Am. Soc. Gene Ther. doi: 10.1016/j.ymthe.2019.02.012 contributor: fullname: Kowalski – volume: 170 start-page: 83 year: 2021 ident: ref_28 article-title: Self-assembled mRNA vaccines publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.12.014 contributor: fullname: Kim – volume: 5 start-page: 7867 year: 2022 ident: ref_50 article-title: Microfluidic Device-Enabled Mass Production of Lipid-Based Nanoparticles for Applications in Nanomedicine and Cosmetics publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c00886 contributor: fullname: Maeki – volume: 11 start-page: 2424 year: 2020 ident: ref_34 article-title: Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver publication-title: Nat. Commun. doi: 10.1038/s41467-020-16248-y contributor: fullname: Miao – volume: 12 start-page: 7233 year: 2021 ident: ref_36 article-title: An ionizable lipid toolbox for RNA delivery publication-title: Nat. Commun. doi: 10.1038/s41467-021-27493-0 contributor: fullname: Han – volume: 81 start-page: 2693 year: 2001 ident: ref_21 article-title: X-Ray Diffraction Structures of Some Phosphatidylethanolamine Lamellar and Inverted Hexagonal Phases* publication-title: Biophys. J. doi: 10.1016/S0006-3495(01)75912-7 contributor: fullname: Harper – volume: 40 start-page: 840 year: 2022 ident: ref_70 article-title: The clinical progress of mRNA vaccines and immunotherapies publication-title: Nat. Biotechnol. doi: 10.1038/s41587-022-01294-2 contributor: fullname: Barbier – volume: 32 start-page: 2204692 year: 2022 ident: ref_7 article-title: mRNA Vaccines Against SARS-CoV-2 Variants Delivered by Lipid Nanoparticles Based on Novel Ionizable Lipids publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202204692 contributor: fullname: Chen – volume: 30 start-page: 226 year: 2022 ident: ref_48 article-title: Design and lyophilization of lipid nanoparticles for mRNA vaccine and its robust immune response in mice and nonhuman primates. Molecular therapy publication-title: Nucleic Acids doi: 10.1016/j.omtn.2022.09.017 contributor: fullname: Suzuki – volume: 1 start-page: 6569 year: 2013 ident: ref_15 article-title: Liposome-like Nanostructures for Drug Delivery publication-title: J. Mater. Chem. contributor: fullname: Gao – volume: 26 start-page: 1405 year: 2020 ident: ref_58 article-title: The Dutch-Covid-19 response, t., Rapid SARS-CoV-2 whole-genome sequencing and analysis for informed public health decision-making in the Netherlands publication-title: Nat. Med. doi: 10.1038/s41591-020-0997-y contributor: fullname: Nieuwenhuijse – volume: 28 start-page: 2939 year: 2016 ident: ref_35 article-title: Bioinspired Alkenyl Amino Alcohol Ionizable Lipid Materials for Highly Potent In Vivo mRNA Delivery publication-title: Adv. Mater. (Deerfield Beach Fla.) doi: 10.1002/adma.201505822 contributor: fullname: Fenton – volume: 15 start-page: 7300 year: 2015 ident: ref_38 article-title: Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02497 contributor: fullname: Kauffman – volume: 38 start-page: 771 year: 2017 ident: ref_61 article-title: An Overview of Novel Adjuvants Designed for Improving Vaccine Efficacy publication-title: Trends Pharmacol. Sci. doi: 10.1016/j.tips.2017.06.002 contributor: fullname: Bonam – volume: 10 start-page: 321 year: 2014 ident: ref_73 article-title: Polymeric nanoparticles: Potent vectors for vaccine delivery targeting cancer and infectious diseases publication-title: Hum. Vaccines Immunother. doi: 10.4161/hv.26796 contributor: fullname: Bolhassani – volume: 15 start-page: 1 year: 2019 ident: ref_65 article-title: Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines publication-title: Mol. Ther. Nucleic Acids doi: 10.1016/j.omtn.2019.01.013 contributor: fullname: Hassett – volume: 2 start-page: 17056 year: 2017 ident: ref_19 article-title: Tools for translation: Non-viral materials for therapeutic mRNA delivery publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.56 contributor: fullname: Hajj – volume: 2022 start-page: 22281982 year: 2022 ident: ref_72 article-title: Bivalent BNT162b2mRNA original/Omicron BA.4-5 booster vaccination: Adverse reactions and inability to work compared to the monovalent COVID-19 booster publication-title: medRxiv contributor: fullname: Reusch – volume: 378 start-page: 899 year: 2022 ident: ref_60 article-title: A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes publication-title: Science doi: 10.1126/science.abm0271 contributor: fullname: Arevalo – volume: 12 start-page: 967 year: 2013 ident: ref_20 article-title: Delivery materials for siRNA therapeutics publication-title: Nat. Mater. doi: 10.1038/nmat3765 contributor: fullname: Kanasty – volume: 20 start-page: 101 year: 2021 ident: ref_13 article-title: Engineering precision nanoparticles for drug delivery publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-020-0090-8 contributor: fullname: Mitchell – volume: 26 start-page: 1509 year: 2018 ident: ref_43 article-title: A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2018.03.010 contributor: fullname: Sabnis – volume: 80 start-page: 1900 year: 2022 ident: ref_71 article-title: Comparative Risk of Myocarditis/Pericarditis Following Second Doses of BNT162b2 and mRNA-1273 Coronavirus Vaccines publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2022.08.799 contributor: fullname: Naveed – volume: 11 start-page: 983 year: 2020 ident: ref_24 article-title: Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA publication-title: Nat. Commun. doi: 10.1038/s41467-020-14527-2 contributor: fullname: Patel |
SSID | ssj0000913867 |
Score | 2.4423878 |
SecondaryResourceType | review_article |
Snippet | Lipid nanoparticles (LNPs) have recently emerged as one of the most advanced technologies for the highly efficient in vivo delivery of exogenous mRNA,... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 658 |
SubjectTerms | Acids Biocompatibility Cholesterol Coronaviruses COVID-19 COVID-19 vaccines Drug delivery systems Drugs Efficiency Evaluation Forecasts and trends Genomes Health aspects Immunization lipid nanoparticles Lipids mRNA mRNA vaccines Nanoparticles Polyethylene glycol Proteins Review Severe acute respiratory syndrome coronavirus 2 Structure vaccine Vaccines Vehicles |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDLdgJy6IbwoDBQkNIa1am6RpenywTTvANMFA3KI0H2IS9CG6h_T-e-yke3uFAxeObdI0sePElu2fAV66Jla21aoUUtlSBqvKvqYYMeG9l3XsecqvOPnYnn7Rh0cEk7Mp9UUxYRkeOBPuoLHS9-QejrWTbRDa1Z31IjjecBl1TvOt1JYxlc5g_EKrNvslBdr1B7-sI0_1WFNdLUUV3rfuoQTX__ehvHUrzSMmt66g4ztwe9Id2SLP-S7cCMM92DvL4NPrfXZ-nUs17rM9dnYNS72-D-9QQ8Rx2SJ7_Ud2MTDU_hhVr_YMT1k0n_PI5ftUvyN4dhi-UdzGmi0j-_7hdME-T-t7AJ-Oj87fnpRTLYXSNY2-LC1q0brRQQekonZO8EZ7Ml8skiPUndMoiai8ucpypZuqd_hgO-15FZHLQTyEnWE5hMfAeNS9D33XNg6NSyp7WgWveZRViKHytoDXV5Q1PzJkhkFTg7hg_uRCAW-I9Jt-BHadXuAWMNOizb-2QAGviHGGRBK54-yUWYDTJXArsyCjSyABeAG7s54oSm7efMV6M4nyaHiLFi3-XMgCXmya6UsKTxvCcpX68C6l5RbwKO-UzZKEIuhfiYPr2R6arXneMlx8TUDfNaUGt0o--R9Uegq3OCpoOX5uF3Yuf67CM7g5-tXzJDu_Aeg4Hpg priority: 102 providerName: Directory of Open Access Journals |
Title | Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36992242 https://www.proquest.com/docview/2791713434 https://www.proquest.com/docview/2792907134 https://pubmed.ncbi.nlm.nih.gov/PMC10059764 https://doaj.org/article/5a4db9134f1c47e38c19ad3ec2524f88 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfonnhBjM_AqIyEhpCWNbEdx3ks-9AQbKpgIN4sx3ag0ppOyzqp_z13TtI18MZjasexfT77fvXd7wh5Z7MqMbmSMRfSxMIbGZcp-ohx55xIq5KF-Iqzb_nFT3V8gjQ5so-FCU77tpwf1leLw3r-O_hWXi_spPcTm8zOj1IMmcylmIzICIzDLYwe9t8i5Urm7Z0kB0w_uTMWb6mbFHNqSczuvnUGBar-fzfkrRNp6C25dfycPiaPOruRTtv-7ZIHvn5C9mct8fT6gF7ex1E1B3Sfzu4pqddPyRewDqFdOm1v_Bs6rylYfhQzVzsKOyxA57bl-Dzk7vCOHvsr9NlY02VFF18vpvRHN75n5PvpyeXRWdzlUYhtlqnb2IAFrTLllbciV9ZylimH0MXAdPi0sAq0EAw3mxgmVZaUFh5MoRxLKpCw58_JTr2s_UtCWaVK58sizywAS0x5mninWCUSX_nEmYh86GdWX7d0GRpgBkpB_y2FiHzEqd_UQ6Lr8MPy5pfuBq0zI1yJ3gFVCp33XNm0MI57yzImKgWNvEfBaVRHkI41XVQBdBeJrfQUAReHCWAR2RvUBDWyw-Je9LpT40azHNAsfJyLiLzdFOOb6JpW--Uq1GFFCMmNyIt2pWyGxCXS_gpoXA3W0GDMwxJY84Hku1_jr_7_1dfkIQOTrPWY2yM7tzcr_4aMGrcaA3j49Hkc_oAYB-35A63nH5I |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfYeICX8T0CA4yEhpCWNbGdxHks-1ARbVVBQbxZju2wSms6rStS_3vunKRr4G2PjR3X9t3Zd8rvfkfIB5OUkc5kGnKR6lA4nYZFjBgxbq0VcVkwn18x-J6Nf8nTM6TJSdtcGA_aN8XsuLqcH1ezC4-tvJqbXosT601GJzGmTGap6O2Q-2CwUbQVpfsTOI-5TLP6qySHqL73Rxv8Tr2MsapWivXdt24hT9b__5G8dSd18ZJbF9D5o7tO_THZa1xO2q_bn5B7rnpKDic1Z_X6iE5vU7CWR_SQTm7ZrNfPyBAcS5gQ7ddggSWdVRScRopFry2Fwxmi7nrkcOTLfjhLT90lwj3WdFHS-bdxn_5sNuY5-XF-Nj0ZhE0JhtAkibwJNTjfMpFOOiMyaQxnibQY9WjYRxfnRoIBg89nIs1SmUSFgR86l5ZFJSiH4y_IbrWo3EtCWSkL64o8SwzEpFgtNXJWslJErnSR1QH51IpEXdVMGwoiFBSf-ld8AfmMMtv0Q45s_2Bx_Vs1i1aJFrZAYEEZw-QdlybOteXOsISJUsIgH1HiCi0ZxGp0k5AA00VOLNXHWI3DBrCAHHR6ggWabnOrM6o5AZaKZRAIw59zEZD3m2Z8E1FtlVusfB-W-2zegOzXKrZZEk-RMVjA4LKjfJ01d1tA5zw_eKtjr-7-6jvyYDAdDdXwy_jra_KQgWdXA-8OyO7N9cq9ITtLu3rrze4vmMwzXQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELfYkBAvfH8EBhgJDSEtS2I7icNbWVcNsVUVDMSb5dgOVFrTalmR-t9z56RdA2_w2Nhxbd-dfaf87neEvDFpFetcZiEXmQ6F01lYJogR49ZakVQl8_kVJ1_y8Xc5PEaanPfrXBgP2jfl9LC-mB3W058eW7mYmWiNE4smZ0cJpkzmmYgWtop2yE0w2phtRer-FC4SLrO8_TLJIbKPfmmD36qbBCtrZVjjfesm8oT9fx_LW_dSHzO5dQmN7v7P9O-RO53rSQdtn_vkhqsfkP1Jy129OqDn16lYzQHdp5NrVuvVQ3IKDiZMig5a0EBDpzUF55Fi8WtL4ZCG6LsdOTzz5T-cpUN3gbCPFZ1XdPZ5PKDfus15RL6Ojs-PTsKuFENo0lRehRqccJlKJ50RuTSGs1RajH407KVLCiPBkMH3M7FmmUzj0sAPXUjL4gqUxPHHZLee1-4poaySpXVlkacGYlOsmho7K1klYle52OqAvFuLRS1axg0FkQqKUP0pwoB8QLlt-iFXtn8wv_yhukWrVAtbIsCgSmDyjkuTFNpyZ1jKRCVhkLcodYUWDaI1uktMgOkiN5YaYMzGYQNYQPZ6PcESTb95rTeqOwkaxXIIiOHPuQjI600zvonottrNl74PK3xWb0CetGq2WRLPkDlYwOCyp4C9NfdbQO88T_haz579-6uvyK3JcKROP44_PSe3GTh4Lf5uj-xeXS7dC7LT2OVLb3m_AS59Nd0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+in+the+Lipid+Nanoparticle-Mediated+Delivery+of+mRNA+Vaccines&rft.jtitle=Vaccines+%28Basel%29&rft.au=Swetha%2C+K&rft.au=Kotla%2C+Niranjan+G&rft.au=Tunki%2C+Lakshmi&rft.au=Jayaraj%2C+Arya&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.eissn=2076-393X&rft.volume=11&rft.issue=3&rft.spage=658&rft_id=info:doi/10.3390%2Fvaccines11030658&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-393X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-393X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-393X&client=summon |