Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins
The spatial organization of functional vegetation types in river basins is a major determinant of their runoff production, biodiversity, and ecosystem services. The optimization of different objective functions has been suggested to control the adaptive behavior of plants and ecosystems, often witho...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 51; pp. 20837 - 20841 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
18-12-2012
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The spatial organization of functional vegetation types in river basins is a major determinant of their runoff production, biodiversity, and ecosystem services. The optimization of different objective functions has been suggested to control the adaptive behavior of plants and ecosystems, often without a compelling justification. Maximum entropy production (MEP), rooted in thermodynamics principles, provides a tool to justify the choice of the objective function controlling vegetation organization. The application of MEP at the ecosystem scale results in maximum productivity (i.e., maximum canopy photosynthesis) as the thermodynamic limit toward which the organization of vegetation appears to evolve. Maximum productivity, which incorporates complex hydrologic feedbacks, allows us to reproduce the spatial macroscopic organization of functional types of vegetation in a thoroughly monitored river basin, without the need for a reductionist description of the underlying microscopic dynamics. The methodology incorporates the stochastic characteristics of precipitation and the associated soil moisture on a spatially disaggregated framework. Our results suggest that the spatial organization of functional vegetation types in river basins naturally evolves toward configurations corresponding to dynamically accessible local maxima of the maximum productivity of the ecosystem. |
---|---|
Bibliography: | http://dx.doi.org/10.1073/pnas.1218636109 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: M.d.J., R.F., A.R., and I.R.-I. designed research; M.d.J., R.F., A.R., and I.R.-I. performed research; M.d.J., R.F., and I.R.-I. analyzed data; and M.d.J., A.R., and I.R.-I. wrote the paper. Contributed by Andrea Rinaldo, November 5, 2012 (sent for review September 23, 2012) |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.1218636109 |