Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition

Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between tw...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 32; pp. 13082 - 13087
Main Authors: Hoefler, B. Christopher, Gorzelnik, Karl V, Yang, Jane Y, Hendricks, Nathan, Dorrestein, Pieter C, Straight, Paul D
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 07-08-2012
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S . Mg1 genome. We observed that aerial growth by the Δ sfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition.
AbstractList Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S . Mg1 genome. We observed that aerial growth by the Δ sfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition.
Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the 5. Mg1 genome. We observed that aerial growth by the ∆sfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition.
Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S . Mg1 genome. We observed that aerial growth by the Δ sfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition.
Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S. Mg1 genome. We observed that aerial growth by the ΔsfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition. [PUBLICATION ABSTRACT]
Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S. Mg1 genome. We observed that aerial growth by the ΔsfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition.
Author Hoefler, B. Christopher
Yang, Jane Y
Gorzelnik, Karl V
Dorrestein, Pieter C
Hendricks, Nathan
Straight, Paul D
Author_xml – sequence: 1
  fullname: Hoefler, B. Christopher
– sequence: 2
  fullname: Gorzelnik, Karl V
– sequence: 3
  fullname: Yang, Jane Y
– sequence: 4
  fullname: Hendricks, Nathan
– sequence: 5
  fullname: Dorrestein, Pieter C
– sequence: 6
  fullname: Straight, Paul D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22826229$$D View this record in MEDLINE/PubMed
BookMark eNpVkUFvEzEQhS1URNPCmRNgiXPasb327l6QUFVapEocoGfL8c4mjrL2Ynsrpb8erxJS8MGWPN-8eaN3Qc588EjIewZXDGpxPXqTrhgHKRvFoH1FFuVmS1W1cEYWALxeNhWvzslFSlsAaGUDb8g55w1XnLcL8nzrn_eDyc7SiMmlbLxFmgPNG6Q7N4YRx-w6pGmKvbHZeWoSLR8-u95hV7gYpvWGusGsnV_TwaRE04g2xzBgjnsaeroqnRid2VEbhhGzyy74t-R1b3YJ3x3fS_L47fbXzf3y4cfd95uvD0tbtspLgSsQUnLbAhqwjNlWWqnsqhZcda1qK6wEdAJrI5Cxrpemhkp2ErGuEJi4JF8OuuO0GrCzxXo0Oz3GYjnudTBO_1_xbqPX4UmLigOrVRH4fBSI4feEKettmKIvnjUDwev5zNT1gbIxpBSxP01goOew9ByWfgmrdHz819iJ_5tOAegRmDtf5FotuGYCGl6QDwdkm3KIJ6ZiqpGqmZf_dKj3Jmizji7px59lLQXAygSuxB9uSbMd
CitedBy_id crossref_primary_10_1128_JB_02064_12
crossref_primary_10_1007_s42770_021_00597_x
crossref_primary_10_1016_j_mib_2019_06_006
crossref_primary_10_1016_j_micres_2023_127592
crossref_primary_10_1021_acs_analchem_9b04768
crossref_primary_10_1016_j_tibs_2022_07_006
crossref_primary_10_1128_mBio_00459_13
crossref_primary_10_1093_bioinformatics_btv251
crossref_primary_10_1128_spectrum_02038_21
crossref_primary_10_3389_fgene_2016_00004
crossref_primary_10_1007_s00425_020_03357_7
crossref_primary_10_1128_AEM_01639_15
crossref_primary_10_3389_fpls_2023_1103487
crossref_primary_10_5650_jos_ess19182
crossref_primary_10_1111_jam_14088
crossref_primary_10_3390_molecules21121670
crossref_primary_10_1007_s11356_020_09124_1
crossref_primary_10_1016_j_nbt_2019_08_003
crossref_primary_10_1016_j_mib_2021_07_011
crossref_primary_10_1002_mas_21534
crossref_primary_10_1007_s00253_014_6054_3
crossref_primary_10_1016_j_peptides_2022_170836
crossref_primary_10_1186_s13568_016_0252_6
crossref_primary_10_1021_ac504543v
crossref_primary_10_1094_PHYTOFR_10_20_0024_R
crossref_primary_10_3389_fbioe_2021_623701
crossref_primary_10_3389_fbioe_2021_678469
crossref_primary_10_3389_fmicb_2016_01234
crossref_primary_10_3390_ijms25084193
crossref_primary_10_1128_JVI_01282_19
crossref_primary_10_1007_s00253_018_9434_2
crossref_primary_10_1186_s12866_019_1687_0
crossref_primary_10_1016_j_chembiol_2017_08_008
crossref_primary_10_1039_c3np70091g
crossref_primary_10_1128_mbio_00464_23
crossref_primary_10_1093_femsre_fuw032
crossref_primary_10_1371_journal_pgen_1005722
crossref_primary_10_1021_acs_jnatprod_6b01185
crossref_primary_10_1093_femsec_fiaa142
crossref_primary_10_1007_s13361_016_1485_y
crossref_primary_10_1021_ac500290s
crossref_primary_10_1038_s42003_022_03181_7
crossref_primary_10_1080_09168451_2018_1460575
crossref_primary_10_1128_mSphere_00586_17
crossref_primary_10_1007_s10529_013_1320_5
crossref_primary_10_1021_acs_langmuir_2c02520
crossref_primary_10_1007_s00253_014_5663_1
crossref_primary_10_1021_acschembio_8b01120
crossref_primary_10_1016_j_ymeth_2024_01_014
crossref_primary_10_1039_C5AN00171D
crossref_primary_10_1371_journal_pone_0097261
crossref_primary_10_1039_C5NP00013K
crossref_primary_10_1007_s13361_014_0923_y
crossref_primary_10_1016_j_bmc_2019_03_046
crossref_primary_10_1128_mSystems_01038_21
crossref_primary_10_1016_j_ddtec_2015_01_004
crossref_primary_10_1038_s41396_022_01337_1
crossref_primary_10_1016_j_bioorg_2019_03_070
crossref_primary_10_1002_adfm_201503248
crossref_primary_10_1007_s12010_015_1832_7
crossref_primary_10_1128_mSystems_00175_19
crossref_primary_10_3390_md13127065
crossref_primary_10_3390_bioengineering9110707
crossref_primary_10_1094_PHYTOFR_1_4
crossref_primary_10_1271_kagakutoseibutsu_61_116
crossref_primary_10_3389_fmicb_2023_1117559
crossref_primary_10_1007_s00248_022_02016_6
crossref_primary_10_3389_fbioe_2020_01014
crossref_primary_10_1038_s41396_020_00871_0
crossref_primary_10_1016_j_csbj_2024_02_012
crossref_primary_10_1128_spectrum_03106_23
crossref_primary_10_1038_npjbiofilms_2015_27
crossref_primary_10_1128_mbio_00134_22
crossref_primary_10_1073_pnas_2006109117
crossref_primary_10_1007_s13361_013_0620_2
crossref_primary_10_1016_j_copbio_2013_09_012
crossref_primary_10_1073_pnas_2013759118
crossref_primary_10_1128_JB_00275_16
Cites_doi 10.1128/JB.186.8.2376-2384.2004
10.1038/nrmicro2259
10.1016/j.mib.2010.08.005
10.1073/pnas.97.7.3526
10.1111/j.1365-2958.2004.03996.x
10.1038/nature02429
10.1073/pnas.0608949103
10.1126/science.1176950
10.1038/nrmicro888
10.1126/science.1094318
10.7164/antibiotics.40.761
10.1007/s002530051432
10.1007/s00438-004-1056-y
10.1080/00021369.1969.10859409
10.1111/j.1365-2672.1991.tb04452.x
10.1007/BF02635884
10.1099/mic.0.048454-0
10.1023/A:1005444717166
10.1016/S1572-5995(08)80016-6
10.1038/nchembio.252
10.1007/s00018-004-4060-9
10.1039/c0cc05111j
10.1007/BF01237726
10.1128/JB.185.18.5627-5631.2003
10.1016/S0005-2736(03)00029-4
10.1073/pnas.0810940106
10.1002/bip.360340716
10.1016/S0168-6496(03)00125-9
10.1128/JB.01343-06
10.1128/JB.00162-06
10.1111/j.1462-2920.2006.01202.x
10.1111/j.1365-2958.2005.04587.x
10.1007/s10532-010-9431-3
10.1073/pnas.78.10.6324
10.1039/b613652b
10.1038/nchembio.739
10.1002/cbic.201000067
10.1039/b720018h
10.1128/aem.63.1.44-49.1997
10.1104/pp.103.028712
10.1038/nrmicro2634
10.1128/aem.61.8.3145-3150.1995
10.1016/S0022-5193(86)80226-0
10.1099/00221287-61-3-361
10.1128/AAC.49.1.230-240.2005
10.1021/cr100101c
10.1126/science.1120800
10.1128/AEM.69.1.18-23.2003
ContentType Journal Article
Copyright copyright © 1993-2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Aug 7, 2012
Copyright_xml – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Aug 7, 2012
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
DOI 10.1073/pnas.1205586109
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
DatabaseTitleList


Virology and AIDS Abstracts
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Imaging the activity of a surfactin hydrolase
EISSN 1091-6490
EndPage 13087
ExternalDocumentID 2731941341
10_1073_pnas_1205586109
22826229
109_32_13082
41685681
US201600129326
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: AI095125
– fundername: NIAID NIH HHS
  grantid: R01 AI095125
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
5PM
ID FETCH-LOGICAL-c558t-3eb03552c90ea0c11c95c56cb7326d9694e430d3e7a3e11df5a7045d5ee74e013
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:01:57 EDT 2024
Thu Oct 10 15:10:26 EDT 2024
Thu Nov 21 21:36:24 EST 2024
Sat Sep 28 08:30:33 EDT 2024
Wed Nov 11 00:30:18 EST 2020
Fri Feb 02 07:04:38 EST 2024
Wed Dec 27 19:01:36 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c558t-3eb03552c90ea0c11c95c56cb7326d9694e430d3e7a3e11df5a7045d5ee74e013
Notes http://dx.doi.org/10.1073/pnas.1205586109
Author contributions: B.C.H., P.C.D., and P.D.S. designed research; B.C.H., K.V.G., J.Y.Y., and N.H. performed research; B.C.H., K.V.G., P.C.D., and P.D.S. analyzed data; and P.D.S. wrote the paper.
Edited by Richard Losick, Harvard University, Cambridge, MA, and approved June 28, 2012 (received for review April 3, 2012)
OpenAccessLink https://www.pnas.org/content/pnas/109/32/13082.full.pdf
PMID 22826229
PQID 1032777776
PQPubID 42026
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1205586109
pubmed_primary_22826229
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3420176
pnas_primary_109_32_13082
proquest_journals_1032777776
jstor_primary_41685681
fao_agris_US201600129326
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2012-08-07
PublicationDateYYYYMMDD 2012-08-07
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2012
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
Kieser T (e_1_3_3_48_2) 2000
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
References_xml – ident: e_1_3_3_6_2
  doi: 10.1128/JB.186.8.2376-2384.2004
– ident: e_1_3_3_2_2
  doi: 10.1038/nrmicro2259
– ident: e_1_3_3_12_2
  doi: 10.1016/j.mib.2010.08.005
– ident: e_1_3_3_17_2
  doi: 10.1073/pnas.97.7.3526
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1365-2958.2004.03996.x
– ident: e_1_3_3_4_2
  doi: 10.1038/nature02429
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.0608949103
– ident: e_1_3_3_11_2
  doi: 10.1126/science.1176950
– ident: e_1_3_3_42_2
  doi: 10.1038/nrmicro888
– volume-title: Practical Streptomyces Genetics
  year: 2000
  ident: e_1_3_3_48_2
  contributor:
    fullname: Kieser T
– ident: e_1_3_3_43_2
  doi: 10.1126/science.1094318
– ident: e_1_3_3_46_2
  doi: 10.7164/antibiotics.40.761
– ident: e_1_3_3_21_2
  doi: 10.1007/s002530051432
– ident: e_1_3_3_27_2
  doi: 10.1007/s00438-004-1056-y
– ident: e_1_3_3_35_2
  doi: 10.1080/00021369.1969.10859409
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1365-2672.1991.tb04452.x
– ident: e_1_3_3_36_2
  doi: 10.1007/BF02635884
– ident: e_1_3_3_47_2
  doi: 10.1099/mic.0.048454-0
– ident: e_1_3_3_37_2
  doi: 10.1023/A:1005444717166
– ident: e_1_3_3_20_2
  doi: 10.1016/S1572-5995(08)80016-6
– ident: e_1_3_3_31_2
  doi: 10.1038/nchembio.252
– ident: e_1_3_3_15_2
  doi: 10.1007/s00018-004-4060-9
– ident: e_1_3_3_13_2
  doi: 10.1039/c0cc05111j
– ident: e_1_3_3_9_2
  doi: 10.1007/BF01237726
– ident: e_1_3_3_25_2
  doi: 10.1128/JB.185.18.5627-5631.2003
– ident: e_1_3_3_33_2
  doi: 10.1016/S0005-2736(03)00029-4
– ident: e_1_3_3_26_2
  doi: 10.1073/pnas.0810940106
– ident: e_1_3_3_34_2
  doi: 10.1002/bip.360340716
– ident: e_1_3_3_16_2
  doi: 10.1016/S0168-6496(03)00125-9
– ident: e_1_3_3_41_2
  doi: 10.1128/JB.01343-06
– ident: e_1_3_3_30_2
  doi: 10.1128/JB.00162-06
– ident: e_1_3_3_28_2
  doi: 10.1111/j.1462-2920.2006.01202.x
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1365-2958.2005.04587.x
– ident: e_1_3_3_32_2
  doi: 10.1007/s10532-010-9431-3
– ident: e_1_3_3_1_2
  doi: 10.1073/pnas.78.10.6324
– ident: e_1_3_3_44_2
  doi: 10.1039/b613652b
– ident: e_1_3_3_39_2
  doi: 10.1038/nchembio.739
– ident: e_1_3_3_14_2
  doi: 10.1002/cbic.201000067
– ident: e_1_3_3_40_2
  doi: 10.1039/b720018h
– ident: e_1_3_3_29_2
  doi: 10.1128/aem.63.1.44-49.1997
– ident: e_1_3_3_23_2
  doi: 10.1104/pp.103.028712
– ident: e_1_3_3_38_2
  doi: 10.1038/nrmicro2634
– ident: e_1_3_3_45_2
  doi: 10.1128/aem.61.8.3145-3150.1995
– ident: e_1_3_3_7_2
  doi: 10.1016/S0022-5193(86)80226-0
– ident: e_1_3_3_19_2
  doi: 10.1099/00221287-61-3-361
– ident: e_1_3_3_49_2
  doi: 10.1128/AAC.49.1.230-240.2005
– ident: e_1_3_3_18_2
  doi: 10.1021/cr100101c
– ident: e_1_3_3_10_2
  doi: 10.1126/science.1120800
– ident: e_1_3_3_3_2
  doi: 10.1128/AEM.69.1.18-23.2003
SSID ssj0009580
Score 2.4247963
Snippet Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 13082
SubjectTerms agar
Antibiotic resistance
Antibiotics
Bacillus subtilis
Bacillus subtilis - metabolism
Bacillus subtilis - physiology
Bacteria
Biological Sciences
Chromatography, Liquid
Drug resistance
Drug Resistance, Bacterial - physiology
Electrophoresis, Polyacrylamide Gel
Enzymes
genes
growth retardation
Hydrolases - genetics
Hydrolases - metabolism
Hydrolysis
Hyphae
image analysis
Imaging
Lipopeptides - metabolism
Magnetic Resonance Spectroscopy
Mass spectrometry
Mass spectroscopy
metabolites
Microbial Interactions - physiology
Molecules
mutants
Natural products
Peptides, Cyclic - metabolism
Physical Sciences
proteins
Streptomyces
Streptomyces - enzymology
Streptomyces - metabolism
Streptomyces - physiology
surfactin
Tandem Mass Spectrometry
SummonAdditionalLinks – databaseName: JSTOR Health & General Sciences
  dbid: JSG
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2xPXEBCpQGCvIBpHIIdcZO7BwRbKk4cFkqcYsc24GV2mS12T20X8_YSbZbBBK5ZuKMMmP7OX7zDPCW10KgtnkqvZapxLqkLlWY1POgPc5dUYtQKHyxUN9-6M_zIJPzbqqFCbTKyAuMu_gEkOorf0agQQehrBnMdOx9Xxdf9pR19VBngjTcSpSTfo8SZ6vW9B8y5Hmui0g53Jt6Zo3pJg5iEDYl07-BzD-5knuTz_nj_3T7CTwa0SX7OKTDITzw7VM4HPtvz05Hken3z-B23t7eRLlWRgvuACLJgm06RoCQXS1X3SrQXZxn_XYdix9aZnq2dAO5yDs2HvDDltfxnCN2TSicxbrNIICwWd-wrmH1oAVNLtmIzyM_7Dlcns-_f7pIx3MYUktfbpMKX3OCJWhL7g23WWbL3OaFrRVhP1cWpfSSwiq8MsJnmWtyowgputx7JT1hzCM4aLvWHwNTNjMCGywbwaXT2giTGTTcYa6VdiaB0ylE1WqQ26jiNrkSVQhRdRfNBI4phJX5SYNhdbnAIJUX_qqRTwkcxWDsmpgikUASW7lruqwEhi09jQmcTNGvxn5Mr-MCVbiozRdDIuweRlqtFojkiLqXIjuDoNx9_067_BUVvIUkd1Xx8l9-voKHZICRaKhO4GCz3vrXMOvd9k1M_t_ynP97
  priority: 102
  providerName: JSTOR
Title Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition
URI https://www.jstor.org/stable/41685681
http://www.pnas.org/content/109/32/13082.abstract
https://www.ncbi.nlm.nih.gov/pubmed/22826229
https://www.proquest.com/docview/1032777776
https://pubmed.ncbi.nlm.nih.gov/PMC3420176
Volume 109
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV0xb9QwFH7iOrEgWihNKScPDGXInWM7sTOi9qouIKRSiS1ybAci9ZLocje0v55nJ7mjiIksGWK_WH5-8ef4e58BPtKSc6ZMGgunRCxYmWNIZTp21GuPU5uV3CcK397Jrz_U9crL5KRTLkwg7ZuyXjQP60VT_wrcym5tlhNPbPntyxUXOG3JbDmDGWLDaYm-V9pVQ94Jw8-vYGLS85F82TW6XySMpqnyKuNeCBhXHBkL-PIwK80q3U70RK95irX-hT__plH-MS_dvIZXI6Akn4eGH8ML15zA8RiyPbkcdaU_vYGnVfP0GBRaCa6xPW7EEmTbEsSA5KHu2s4zXKwj_W4T8h0aontS24FP5CwZz_Qh9TocbUTWCLxJSNX0mgfbzSNpK1IO8s_YJBMgeaCEvYX7m9X3q9t4PHohNtg525i7kiISYSanTlOTJCZPTZqZUiLcs3mWCyfQk9xJzV2S2CrVEsGhTZ2TwiGsPIWjpm3cGRBpEs1ZxfKKU2GV0lwnmmlqWaqksjqCy6nri25Q2CjCzrjkhe_64uCwCM7QNYX-id-_4v6OeXU8_yMN2xTBafDX3gQCTeXF1SKIgpWD6bzgzO_iKRbBxeTVYgxdfB3lTPoLbb4bHLyvPA2XCOQz1-8LeLHu509wDAfR7nHMnv93zffwEu8skA_lBRxtNzv3AWa93c0DkXUeTsuYh2D4DRtJCeQ
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2x5QAXoEBpoIAPIJVDqGM7sXNEsNUiSi9tJW6WYzuwUpusNruH9usZO8l2i0Ai10ycUcZjP8dvngHe0YpzpmyeCq9EKlhVYkoVJvU0aI9TV1Q8FArPzuTpD_VlGmRy3o-1MIFWGXmBcRcfAVJ16Y8QNKgglDWB-7miXPbMvS1tXdVXmjAccAUTo4KP5EeLxnQfM0bzXBWRdLg1-Uxq044sxCBtiqZ_g5l_siW3pp_jx__p-BN4NOBL8qnvELtwzzdPYXfI4I4cDjLTH57BzbS5uY6CrQSX3AFGogVZtQQhIbmcL9pFILw4T7r1MpY_NMR0ZO56epF3ZDjih8yv4klH5ApxOImVm0ECYbW8Jm1Nql4NGl2yEaFHhthzuDienn-epcNJDKnFL7dKua8oAhNmS-oNtVlmy9zmha0koj9XFqXwAgPLvTTcZ5mrcyMRK7rceyk8osw92Gnaxu8DkTYznNWsrDkVTinDTWaYoY7lSipnEjgcQ6QXveCGjhvlkusQIn0bzQT2MYTa_MThUF-csSCWF_6roU8J7MVgbJoYI5FAElu5bbrUnIVNPcUSOBijr4dMxtdRzmS4sM0XfUfYPMxwvVowho7IO11kYxC0u-_eaea_ooY3F-iuLF7-y8-38GB2_v1En3w9_fYKHqIxi7RDeQA7q-Xav4ZJ59ZvYiL8BqLfAu0
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2xRUJcKAVKUwr4wKE9hHVsJ3aOiO6qCFQhlUrcIsd2ykptEm12D-2vZ-wk2y2CA7nGmYwy_niO37wB-EBLzpkyaSycErFgZY5DKtOxo157nNqs5D5R-OxCnv9UpzMvk3My5sJ4WmXgBYZTfARI5bWbtraaInBQXixrAo9T3NWovjjAlr6u6rNNGE66golRxUfyaVvr7mPCaJqqLBAPtxagSaWbkYno5U2x6d-g5p-Mya0laL77H84_h2cDziSf-o6xB49c_QL2hpHckeNBbvrkJdzN6rvbINxKcOvt4SS2IKuGIDQk14u2aT3xxTrSrZchDaImuiML29OMnCVDqR-yuAkVj8gN4nESMji9FMJqeUuaipS9KjS6ZAJSD0yxV3A5n_34fBYPFRlig19vFXNXUgQozOTUaWqSxOSpSTNTSkSBNs9y4QQGmDupuUsSW6VaIma0qXNSOESb-7BTN7U7ACJNojmrWF5xKqxSmutEM00txlYqqyM4HsNUtL3wRhEOzCUvfJiK-4hGcIBhLPQVTovF5QXzonn-_xr6FMF-CMjGxBiJCKJg5d50XnDmD_cUi-Bo7AHFMKLxdZQz6S-0-brvDJuHGe5bM8bQEfmgm2waeA3vh3fqxa-g5c0Fuiuzw3_5-R6efD-dF9--nH99A0-xLQvsQ3kEO6vl2r2FSWfX78JY-A30KgVm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+resistance+to+the+lipopeptide+surfactin+as+identified+through+imaging+mass+spectrometry+of+bacterial+competition&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hoefler%2C+B.+Christopher&rft.au=Gorzelnik%2C+Karl+V.&rft.au=Yang%2C+Jane+Y.&rft.au=Hendricks%2C+Nathan&rft.date=2012-08-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=32&rft.spage=13082&rft.epage=13087&rft_id=info:doi/10.1073%2Fpnas.1205586109&rft.externalDocID=41685681
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F32.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F32.cover.gif