Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition
Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between tw...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 109; no. 32; pp. 13082 - 13087 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
07-08-2012
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S . Mg1 genome. We observed that aerial growth by the Δ sfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition. |
---|---|
AbstractList | Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S . Mg1 genome. We observed that aerial growth by the Δ sfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition. Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the 5. Mg1 genome. We observed that aerial growth by the ∆sfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition. Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S . Mg1 genome. We observed that aerial growth by the Δ sfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition. Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S. Mg1 genome. We observed that aerial growth by the ΔsfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition. [PUBLICATION ABSTRACT] Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire resistance to antagonistic molecules. Few studies have investigated the interplay of these countervailing forces in direct competition between two species. We have used an imaging mass spectrometry (IMS) approach to track metabolites exchanged between Bacillus subtilis and Streptomyces sp. Mg1 cultured together. Surfactin is a cyclic lipopeptide produced by B. subtilis that inhibits the formation of aerial hyphae by streptomycetes. IMS analysis exposed an addition of 18 mass units to surfactin in the agar proximal to Streptomyces sp. Mg1 but not other streptomycetes tested. The spatially resolved change in the mass of surfactin indicated hydrolysis of the molecule. We observed that the aerial growth of Streptomyces sp. Mg1 was resistant to inhibition by surfactin, which suggests that hydrolysis was a mechanism of resistance. To identify possible enzymes from Streptomyces sp. Mg1 with surfactin hydrolase activity, we isolated secreted proteins and identified candidates by mass spectrometry. We purified one candidate enzyme that hydrolyzed surfactin in vitro. We tested the role of this enzyme in surfactin resistance by deleting the corresponding gene from the S. Mg1 genome. We observed that aerial growth by the ΔsfhA mutant strain was now sensitive to surfactin. Our results identify an enzyme that hydrolyzes surfactin and confers resistance to aerial growth inhibition, which demonstrates the effective use of an IMS approach to track natural product modifications during interspecies competition. |
Author | Hoefler, B. Christopher Yang, Jane Y Gorzelnik, Karl V Dorrestein, Pieter C Hendricks, Nathan Straight, Paul D |
Author_xml | – sequence: 1 fullname: Hoefler, B. Christopher – sequence: 2 fullname: Gorzelnik, Karl V – sequence: 3 fullname: Yang, Jane Y – sequence: 4 fullname: Hendricks, Nathan – sequence: 5 fullname: Dorrestein, Pieter C – sequence: 6 fullname: Straight, Paul D |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22826229$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUFvEzEQhS1URNPCmRNgiXPasb327l6QUFVapEocoGfL8c4mjrL2Ynsrpb8erxJS8MGWPN-8eaN3Qc588EjIewZXDGpxPXqTrhgHKRvFoH1FFuVmS1W1cEYWALxeNhWvzslFSlsAaGUDb8g55w1XnLcL8nzrn_eDyc7SiMmlbLxFmgPNG6Q7N4YRx-w6pGmKvbHZeWoSLR8-u95hV7gYpvWGusGsnV_TwaRE04g2xzBgjnsaeroqnRid2VEbhhGzyy74t-R1b3YJ3x3fS_L47fbXzf3y4cfd95uvD0tbtspLgSsQUnLbAhqwjNlWWqnsqhZcda1qK6wEdAJrI5Cxrpemhkp2ErGuEJi4JF8OuuO0GrCzxXo0Oz3GYjnudTBO_1_xbqPX4UmLigOrVRH4fBSI4feEKettmKIvnjUDwev5zNT1gbIxpBSxP01goOew9ByWfgmrdHz819iJ_5tOAegRmDtf5FotuGYCGl6QDwdkm3KIJ6ZiqpGqmZf_dKj3Jmizji7px59lLQXAygSuxB9uSbMd |
CitedBy_id | crossref_primary_10_1128_JB_02064_12 crossref_primary_10_1007_s42770_021_00597_x crossref_primary_10_1016_j_mib_2019_06_006 crossref_primary_10_1016_j_micres_2023_127592 crossref_primary_10_1021_acs_analchem_9b04768 crossref_primary_10_1016_j_tibs_2022_07_006 crossref_primary_10_1128_mBio_00459_13 crossref_primary_10_1093_bioinformatics_btv251 crossref_primary_10_1128_spectrum_02038_21 crossref_primary_10_3389_fgene_2016_00004 crossref_primary_10_1007_s00425_020_03357_7 crossref_primary_10_1128_AEM_01639_15 crossref_primary_10_3389_fpls_2023_1103487 crossref_primary_10_5650_jos_ess19182 crossref_primary_10_1111_jam_14088 crossref_primary_10_3390_molecules21121670 crossref_primary_10_1007_s11356_020_09124_1 crossref_primary_10_1016_j_nbt_2019_08_003 crossref_primary_10_1016_j_mib_2021_07_011 crossref_primary_10_1002_mas_21534 crossref_primary_10_1007_s00253_014_6054_3 crossref_primary_10_1016_j_peptides_2022_170836 crossref_primary_10_1186_s13568_016_0252_6 crossref_primary_10_1021_ac504543v crossref_primary_10_1094_PHYTOFR_10_20_0024_R crossref_primary_10_3389_fbioe_2021_623701 crossref_primary_10_3389_fbioe_2021_678469 crossref_primary_10_3389_fmicb_2016_01234 crossref_primary_10_3390_ijms25084193 crossref_primary_10_1128_JVI_01282_19 crossref_primary_10_1007_s00253_018_9434_2 crossref_primary_10_1186_s12866_019_1687_0 crossref_primary_10_1016_j_chembiol_2017_08_008 crossref_primary_10_1039_c3np70091g crossref_primary_10_1128_mbio_00464_23 crossref_primary_10_1093_femsre_fuw032 crossref_primary_10_1371_journal_pgen_1005722 crossref_primary_10_1021_acs_jnatprod_6b01185 crossref_primary_10_1093_femsec_fiaa142 crossref_primary_10_1007_s13361_016_1485_y crossref_primary_10_1021_ac500290s crossref_primary_10_1038_s42003_022_03181_7 crossref_primary_10_1080_09168451_2018_1460575 crossref_primary_10_1128_mSphere_00586_17 crossref_primary_10_1007_s10529_013_1320_5 crossref_primary_10_1021_acs_langmuir_2c02520 crossref_primary_10_1007_s00253_014_5663_1 crossref_primary_10_1021_acschembio_8b01120 crossref_primary_10_1016_j_ymeth_2024_01_014 crossref_primary_10_1039_C5AN00171D crossref_primary_10_1371_journal_pone_0097261 crossref_primary_10_1039_C5NP00013K crossref_primary_10_1007_s13361_014_0923_y crossref_primary_10_1016_j_bmc_2019_03_046 crossref_primary_10_1128_mSystems_01038_21 crossref_primary_10_1016_j_ddtec_2015_01_004 crossref_primary_10_1038_s41396_022_01337_1 crossref_primary_10_1016_j_bioorg_2019_03_070 crossref_primary_10_1002_adfm_201503248 crossref_primary_10_1007_s12010_015_1832_7 crossref_primary_10_1128_mSystems_00175_19 crossref_primary_10_3390_md13127065 crossref_primary_10_3390_bioengineering9110707 crossref_primary_10_1094_PHYTOFR_1_4 crossref_primary_10_1271_kagakutoseibutsu_61_116 crossref_primary_10_3389_fmicb_2023_1117559 crossref_primary_10_1007_s00248_022_02016_6 crossref_primary_10_3389_fbioe_2020_01014 crossref_primary_10_1038_s41396_020_00871_0 crossref_primary_10_1016_j_csbj_2024_02_012 crossref_primary_10_1128_spectrum_03106_23 crossref_primary_10_1038_npjbiofilms_2015_27 crossref_primary_10_1128_mbio_00134_22 crossref_primary_10_1073_pnas_2006109117 crossref_primary_10_1007_s13361_013_0620_2 crossref_primary_10_1016_j_copbio_2013_09_012 crossref_primary_10_1073_pnas_2013759118 crossref_primary_10_1128_JB_00275_16 |
Cites_doi | 10.1128/JB.186.8.2376-2384.2004 10.1038/nrmicro2259 10.1016/j.mib.2010.08.005 10.1073/pnas.97.7.3526 10.1111/j.1365-2958.2004.03996.x 10.1038/nature02429 10.1073/pnas.0608949103 10.1126/science.1176950 10.1038/nrmicro888 10.1126/science.1094318 10.7164/antibiotics.40.761 10.1007/s002530051432 10.1007/s00438-004-1056-y 10.1080/00021369.1969.10859409 10.1111/j.1365-2672.1991.tb04452.x 10.1007/BF02635884 10.1099/mic.0.048454-0 10.1023/A:1005444717166 10.1016/S1572-5995(08)80016-6 10.1038/nchembio.252 10.1007/s00018-004-4060-9 10.1039/c0cc05111j 10.1007/BF01237726 10.1128/JB.185.18.5627-5631.2003 10.1016/S0005-2736(03)00029-4 10.1073/pnas.0810940106 10.1002/bip.360340716 10.1016/S0168-6496(03)00125-9 10.1128/JB.01343-06 10.1128/JB.00162-06 10.1111/j.1462-2920.2006.01202.x 10.1111/j.1365-2958.2005.04587.x 10.1007/s10532-010-9431-3 10.1073/pnas.78.10.6324 10.1039/b613652b 10.1038/nchembio.739 10.1002/cbic.201000067 10.1039/b720018h 10.1128/aem.63.1.44-49.1997 10.1104/pp.103.028712 10.1038/nrmicro2634 10.1128/aem.61.8.3145-3150.1995 10.1016/S0022-5193(86)80226-0 10.1099/00221287-61-3-361 10.1128/AAC.49.1.230-240.2005 10.1021/cr100101c 10.1126/science.1120800 10.1128/AEM.69.1.18-23.2003 |
ContentType | Journal Article |
Copyright | copyright © 1993-2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Aug 7, 2012 |
Copyright_xml | – notice: copyright © 1993-2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Aug 7, 2012 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
DOI | 10.1073/pnas.1205586109 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Imaging the activity of a surfactin hydrolase |
EISSN | 1091-6490 |
EndPage | 13087 |
ExternalDocumentID | 2731941341 10_1073_pnas_1205586109 22826229 109_32_13082 41685681 US201600129326 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: AI095125 – fundername: NIAID NIH HHS grantid: R01 AI095125 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 5PM |
ID | FETCH-LOGICAL-c558t-3eb03552c90ea0c11c95c56cb7326d9694e430d3e7a3e11df5a7045d5ee74e013 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:01:57 EDT 2024 Thu Oct 10 15:10:26 EDT 2024 Thu Nov 21 21:36:24 EST 2024 Sat Sep 28 08:30:33 EDT 2024 Wed Nov 11 00:30:18 EST 2020 Fri Feb 02 07:04:38 EST 2024 Wed Dec 27 19:01:36 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c558t-3eb03552c90ea0c11c95c56cb7326d9694e430d3e7a3e11df5a7045d5ee74e013 |
Notes | http://dx.doi.org/10.1073/pnas.1205586109 Author contributions: B.C.H., P.C.D., and P.D.S. designed research; B.C.H., K.V.G., J.Y.Y., and N.H. performed research; B.C.H., K.V.G., P.C.D., and P.D.S. analyzed data; and P.D.S. wrote the paper. Edited by Richard Losick, Harvard University, Cambridge, MA, and approved June 28, 2012 (received for review April 3, 2012) |
OpenAccessLink | https://www.pnas.org/content/pnas/109/32/13082.full.pdf |
PMID | 22826229 |
PQID | 1032777776 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1205586109 pubmed_primary_22826229 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3420176 pnas_primary_109_32_13082 proquest_journals_1032777776 jstor_primary_41685681 fao_agris_US201600129326 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2012-08-07 |
PublicationDateYYYYMMDD | 2012-08-07 |
PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2012 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 Kieser T (e_1_3_3_48_2) 2000 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 |
References_xml | – ident: e_1_3_3_6_2 doi: 10.1128/JB.186.8.2376-2384.2004 – ident: e_1_3_3_2_2 doi: 10.1038/nrmicro2259 – ident: e_1_3_3_12_2 doi: 10.1016/j.mib.2010.08.005 – ident: e_1_3_3_17_2 doi: 10.1073/pnas.97.7.3526 – ident: e_1_3_3_24_2 doi: 10.1111/j.1365-2958.2004.03996.x – ident: e_1_3_3_4_2 doi: 10.1038/nature02429 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.0608949103 – ident: e_1_3_3_11_2 doi: 10.1126/science.1176950 – ident: e_1_3_3_42_2 doi: 10.1038/nrmicro888 – volume-title: Practical Streptomyces Genetics year: 2000 ident: e_1_3_3_48_2 contributor: fullname: Kieser T – ident: e_1_3_3_43_2 doi: 10.1126/science.1094318 – ident: e_1_3_3_46_2 doi: 10.7164/antibiotics.40.761 – ident: e_1_3_3_21_2 doi: 10.1007/s002530051432 – ident: e_1_3_3_27_2 doi: 10.1007/s00438-004-1056-y – ident: e_1_3_3_35_2 doi: 10.1080/00021369.1969.10859409 – ident: e_1_3_3_5_2 doi: 10.1111/j.1365-2672.1991.tb04452.x – ident: e_1_3_3_36_2 doi: 10.1007/BF02635884 – ident: e_1_3_3_47_2 doi: 10.1099/mic.0.048454-0 – ident: e_1_3_3_37_2 doi: 10.1023/A:1005444717166 – ident: e_1_3_3_20_2 doi: 10.1016/S1572-5995(08)80016-6 – ident: e_1_3_3_31_2 doi: 10.1038/nchembio.252 – ident: e_1_3_3_15_2 doi: 10.1007/s00018-004-4060-9 – ident: e_1_3_3_13_2 doi: 10.1039/c0cc05111j – ident: e_1_3_3_9_2 doi: 10.1007/BF01237726 – ident: e_1_3_3_25_2 doi: 10.1128/JB.185.18.5627-5631.2003 – ident: e_1_3_3_33_2 doi: 10.1016/S0005-2736(03)00029-4 – ident: e_1_3_3_26_2 doi: 10.1073/pnas.0810940106 – ident: e_1_3_3_34_2 doi: 10.1002/bip.360340716 – ident: e_1_3_3_16_2 doi: 10.1016/S0168-6496(03)00125-9 – ident: e_1_3_3_41_2 doi: 10.1128/JB.01343-06 – ident: e_1_3_3_30_2 doi: 10.1128/JB.00162-06 – ident: e_1_3_3_28_2 doi: 10.1111/j.1462-2920.2006.01202.x – ident: e_1_3_3_22_2 doi: 10.1111/j.1365-2958.2005.04587.x – ident: e_1_3_3_32_2 doi: 10.1007/s10532-010-9431-3 – ident: e_1_3_3_1_2 doi: 10.1073/pnas.78.10.6324 – ident: e_1_3_3_44_2 doi: 10.1039/b613652b – ident: e_1_3_3_39_2 doi: 10.1038/nchembio.739 – ident: e_1_3_3_14_2 doi: 10.1002/cbic.201000067 – ident: e_1_3_3_40_2 doi: 10.1039/b720018h – ident: e_1_3_3_29_2 doi: 10.1128/aem.63.1.44-49.1997 – ident: e_1_3_3_23_2 doi: 10.1104/pp.103.028712 – ident: e_1_3_3_38_2 doi: 10.1038/nrmicro2634 – ident: e_1_3_3_45_2 doi: 10.1128/aem.61.8.3145-3150.1995 – ident: e_1_3_3_7_2 doi: 10.1016/S0022-5193(86)80226-0 – ident: e_1_3_3_19_2 doi: 10.1099/00221287-61-3-361 – ident: e_1_3_3_49_2 doi: 10.1128/AAC.49.1.230-240.2005 – ident: e_1_3_3_18_2 doi: 10.1021/cr100101c – ident: e_1_3_3_10_2 doi: 10.1126/science.1120800 – ident: e_1_3_3_3_2 doi: 10.1128/AEM.69.1.18-23.2003 |
SSID | ssj0009580 |
Score | 2.4247963 |
Snippet | Many species of bacteria secrete natural products that inhibit the growth or development of competing species. In turn, competitors may develop or acquire... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 13082 |
SubjectTerms | agar Antibiotic resistance Antibiotics Bacillus subtilis Bacillus subtilis - metabolism Bacillus subtilis - physiology Bacteria Biological Sciences Chromatography, Liquid Drug resistance Drug Resistance, Bacterial - physiology Electrophoresis, Polyacrylamide Gel Enzymes genes growth retardation Hydrolases - genetics Hydrolases - metabolism Hydrolysis Hyphae image analysis Imaging Lipopeptides - metabolism Magnetic Resonance Spectroscopy Mass spectrometry Mass spectroscopy metabolites Microbial Interactions - physiology Molecules mutants Natural products Peptides, Cyclic - metabolism Physical Sciences proteins Streptomyces Streptomyces - enzymology Streptomyces - metabolism Streptomyces - physiology surfactin Tandem Mass Spectrometry |
SummonAdditionalLinks | – databaseName: JSTOR Health & General Sciences dbid: JSG link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2xPXEBCpQGCvIBpHIIdcZO7BwRbKk4cFkqcYsc24GV2mS12T20X8_YSbZbBBK5ZuKMMmP7OX7zDPCW10KgtnkqvZapxLqkLlWY1POgPc5dUYtQKHyxUN9-6M_zIJPzbqqFCbTKyAuMu_gEkOorf0agQQehrBnMdOx9Xxdf9pR19VBngjTcSpSTfo8SZ6vW9B8y5Hmui0g53Jt6Zo3pJg5iEDYl07-BzD-5knuTz_nj_3T7CTwa0SX7OKTDITzw7VM4HPtvz05Hken3z-B23t7eRLlWRgvuACLJgm06RoCQXS1X3SrQXZxn_XYdix9aZnq2dAO5yDs2HvDDltfxnCN2TSicxbrNIICwWd-wrmH1oAVNLtmIzyM_7Dlcns-_f7pIx3MYUktfbpMKX3OCJWhL7g23WWbL3OaFrRVhP1cWpfSSwiq8MsJnmWtyowgputx7JT1hzCM4aLvWHwNTNjMCGywbwaXT2giTGTTcYa6VdiaB0ylE1WqQ26jiNrkSVQhRdRfNBI4phJX5SYNhdbnAIJUX_qqRTwkcxWDsmpgikUASW7lruqwEhi09jQmcTNGvxn5Mr-MCVbiozRdDIuweRlqtFojkiLqXIjuDoNx9_067_BUVvIUkd1Xx8l9-voKHZICRaKhO4GCz3vrXMOvd9k1M_t_ynP97 priority: 102 providerName: JSTOR |
Title | Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition |
URI | https://www.jstor.org/stable/41685681 http://www.pnas.org/content/109/32/13082.abstract https://www.ncbi.nlm.nih.gov/pubmed/22826229 https://www.proquest.com/docview/1032777776 https://pubmed.ncbi.nlm.nih.gov/PMC3420176 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV0xb9QwFH7iOrEgWihNKScPDGXInWM7sTOi9qouIKRSiS1ybAci9ZLocje0v55nJ7mjiIksGWK_WH5-8ef4e58BPtKSc6ZMGgunRCxYmWNIZTp21GuPU5uV3CcK397Jrz_U9crL5KRTLkwg7ZuyXjQP60VT_wrcym5tlhNPbPntyxUXOG3JbDmDGWLDaYm-V9pVQ94Jw8-vYGLS85F82TW6XySMpqnyKuNeCBhXHBkL-PIwK80q3U70RK95irX-hT__plH-MS_dvIZXI6Akn4eGH8ML15zA8RiyPbkcdaU_vYGnVfP0GBRaCa6xPW7EEmTbEsSA5KHu2s4zXKwj_W4T8h0aontS24FP5CwZz_Qh9TocbUTWCLxJSNX0mgfbzSNpK1IO8s_YJBMgeaCEvYX7m9X3q9t4PHohNtg525i7kiISYSanTlOTJCZPTZqZUiLcs3mWCyfQk9xJzV2S2CrVEsGhTZ2TwiGsPIWjpm3cGRBpEs1ZxfKKU2GV0lwnmmlqWaqksjqCy6nri25Q2CjCzrjkhe_64uCwCM7QNYX-id-_4v6OeXU8_yMN2xTBafDX3gQCTeXF1SKIgpWD6bzgzO_iKRbBxeTVYgxdfB3lTPoLbb4bHLyvPA2XCOQz1-8LeLHu509wDAfR7nHMnv93zffwEu8skA_lBRxtNzv3AWa93c0DkXUeTsuYh2D4DRtJCeQ |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwEB2x5QAXoEBpoIAPIJVDqGM7sXNEsNUiSi9tJW6WYzuwUpusNruH9usZO8l2i0Ai10ycUcZjP8dvngHe0YpzpmyeCq9EKlhVYkoVJvU0aI9TV1Q8FArPzuTpD_VlGmRy3o-1MIFWGXmBcRcfAVJ16Y8QNKgglDWB-7miXPbMvS1tXdVXmjAccAUTo4KP5EeLxnQfM0bzXBWRdLg1-Uxq044sxCBtiqZ_g5l_siW3pp_jx__p-BN4NOBL8qnvELtwzzdPYXfI4I4cDjLTH57BzbS5uY6CrQSX3AFGogVZtQQhIbmcL9pFILw4T7r1MpY_NMR0ZO56epF3ZDjih8yv4klH5ApxOImVm0ECYbW8Jm1Nql4NGl2yEaFHhthzuDienn-epcNJDKnFL7dKua8oAhNmS-oNtVlmy9zmha0koj9XFqXwAgPLvTTcZ5mrcyMRK7rceyk8osw92Gnaxu8DkTYznNWsrDkVTinDTWaYoY7lSipnEjgcQ6QXveCGjhvlkusQIn0bzQT2MYTa_MThUF-csSCWF_6roU8J7MVgbJoYI5FAElu5bbrUnIVNPcUSOBijr4dMxtdRzmS4sM0XfUfYPMxwvVowho7IO11kYxC0u-_eaea_ooY3F-iuLF7-y8-38GB2_v1En3w9_fYKHqIxi7RDeQA7q-Xav4ZJ59ZvYiL8BqLfAu0 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2xRUJcKAVKUwr4wKE9hHVsJ3aOiO6qCFQhlUrcIsd2ykptEm12D-2vZ-wk2y2CA7nGmYwy_niO37wB-EBLzpkyaSycErFgZY5DKtOxo157nNqs5D5R-OxCnv9UpzMvk3My5sJ4WmXgBYZTfARI5bWbtraaInBQXixrAo9T3NWovjjAlr6u6rNNGE66golRxUfyaVvr7mPCaJqqLBAPtxagSaWbkYno5U2x6d-g5p-Mya0laL77H84_h2cDziSf-o6xB49c_QL2hpHckeNBbvrkJdzN6rvbINxKcOvt4SS2IKuGIDQk14u2aT3xxTrSrZchDaImuiML29OMnCVDqR-yuAkVj8gN4nESMji9FMJqeUuaipS9KjS6ZAJSD0yxV3A5n_34fBYPFRlig19vFXNXUgQozOTUaWqSxOSpSTNTSkSBNs9y4QQGmDupuUsSW6VaIma0qXNSOESb-7BTN7U7ACJNojmrWF5xKqxSmutEM00txlYqqyM4HsNUtL3wRhEOzCUvfJiK-4hGcIBhLPQVTovF5QXzonn-_xr6FMF-CMjGxBiJCKJg5d50XnDmD_cUi-Bo7AHFMKLxdZQz6S-0-brvDJuHGe5bM8bQEfmgm2waeA3vh3fqxa-g5c0Fuiuzw3_5-R6efD-dF9--nH99A0-xLQvsQ3kEO6vl2r2FSWfX78JY-A30KgVm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enzymatic+resistance+to+the+lipopeptide+surfactin+as+identified+through+imaging+mass+spectrometry+of+bacterial+competition&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Hoefler%2C+B.+Christopher&rft.au=Gorzelnik%2C+Karl+V.&rft.au=Yang%2C+Jane+Y.&rft.au=Hendricks%2C+Nathan&rft.date=2012-08-07&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=109&rft.issue=32&rft.spage=13082&rft.epage=13087&rft_id=info:doi/10.1073%2Fpnas.1205586109&rft.externalDocID=41685681 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F32.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F109%2F32.cover.gif |