Classifying Circumnutation in Pea Plants via Supervised Machine Learning

Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater performance and fitness than those that remain prostrate. Support search is characterized by oscillatory movements (i.e., circumnutation), in which...

Full description

Saved in:
Bibliographic Details
Published in:Plants (Basel) Vol. 12; no. 4; p. 965
Main Authors: Wang, Qiuran, Barbariol, Tommaso, Susto, Gian Antonio, Bonato, Bianca, Guerra, Silvia, Castiello, Umberto
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01-02-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater performance and fitness than those that remain prostrate. Support search is characterized by oscillatory movements (i.e., circumnutation), in which plants rotate around a central axis during their growth. Numerous studies have elucidated the mechanistic details of circumnutation, but how this phenomenon is controlled during support searching remains unclear. To fill this gap, here we tested whether simulation-based machine learning methods can capture differences in movement patterns nested in actual kinematical data. We compared machine learning classifiers with the aim of generating models that learn to discriminate between circumnutation patterns related to the presence/absence of a support in the environment. Results indicate that there is a difference in the pattern of circumnutation, depending on the presence of a support, that can be learned and classified rather accurately. We also identify distinctive kinematic features at the level of the junction underneath the tendrils that seems to be a superior indicator for discerning the presence/absence of the support by the plant. Overall, machine learning approaches appear to be powerful tools for understanding the movement of plants.
AbstractList Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater performance and fitness than those that remain prostrate. Support search is characterized by oscillatory movements (i.e., circumnutation), in which plants rotate around a central axis during their growth. Numerous studies have elucidated the mechanistic details of circumnutation, but how this phenomenon is controlled during support searching remains unclear. To fill this gap, here we tested whether simulation-based machine learning methods can capture differences in movement patterns nested in actual kinematical data. We compared machine learning classifiers with the aim of generating models that learn to discriminate between circumnutation patterns related to the presence/absence of a support in the environment. Results indicate that there is a difference in the pattern of circumnutation, depending on the presence of a support, that can be learned and classified rather accurately. We also identify distinctive kinematic features at the level of the junction underneath the tendrils that seems to be a superior indicator for discerning the presence/absence of the support by the plant. Overall, machine learning approaches appear to be powerful tools for understanding the movement of plants.
Audience Academic
Author Castiello, Umberto
Wang, Qiuran
Barbariol, Tommaso
Susto, Gian Antonio
Guerra, Silvia
Bonato, Bianca
AuthorAffiliation 2 Department of Information Engineering, University of Padova, 35131 Padova, Italy
1 Department of General Psychology, University of Padova, 35132 Padova, Italy
AuthorAffiliation_xml – name: 1 Department of General Psychology, University of Padova, 35132 Padova, Italy
– name: 2 Department of Information Engineering, University of Padova, 35131 Padova, Italy
Author_xml – sequence: 1
  givenname: Qiuran
  orcidid: 0000-0002-1469-7983
  surname: Wang
  fullname: Wang, Qiuran
  organization: Department of General Psychology, University of Padova, 35132 Padova, Italy
– sequence: 2
  givenname: Tommaso
  surname: Barbariol
  fullname: Barbariol, Tommaso
  organization: Department of Information Engineering, University of Padova, 35131 Padova, Italy
– sequence: 3
  givenname: Gian Antonio
  orcidid: 0000-0001-5739-9639
  surname: Susto
  fullname: Susto, Gian Antonio
  organization: Department of Information Engineering, University of Padova, 35131 Padova, Italy
– sequence: 4
  givenname: Bianca
  surname: Bonato
  fullname: Bonato, Bianca
  organization: Department of General Psychology, University of Padova, 35132 Padova, Italy
– sequence: 5
  givenname: Silvia
  surname: Guerra
  fullname: Guerra, Silvia
  organization: Department of General Psychology, University of Padova, 35132 Padova, Italy
– sequence: 6
  givenname: Umberto
  orcidid: 0000-0003-0629-1286
  surname: Castiello
  fullname: Castiello, Umberto
  organization: Department of General Psychology, University of Padova, 35132 Padova, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36840313$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1v1DAQhi1UREvplSOKxKUctvjbyQWpWgFdaREVhbM1cZzUq8Re7GRF_z3u7lI12JZs2c-8o3k9r9GJD94i9JbgK8Yq_HHbgx8ToZjjSooX6IxSyhZKcXXy7HyKLlLa4DzKvIh8hU6ZLDlmhJ2hm2UPKbn2wfmuWLpopsFPI4wu-ML54tZCcbvPUuwcFHfT1sadS7YpvoG5d94WawvR5-A36GULfbIXx_0c_fry-efyZrH-_nW1vF4vjBBqXJhGNAorqLlhUOG2Vtxwbsqm5kwB1GWtmOBUWFJJSkWuSwFtpKlKDJRLxc7R6qDbBNjobXQDxAcdwOn9RYidhjg601ttKCdl1QLGLeW2MsAkoUwCI9IyaUzW-nTQ2k71YBtj_Rihn4nOX7y7113Y6SrbTaXIApdHgRh-TzaNenDJ2D47ZsOUNFXl3nWMM_r-P3QTpuizVZlSleCiVGWmrg5UB7kA59uQ85o8Gzs4k3-_dfn-WnHGqCTk0Y4Ps4DMjPbP2MGUkl7d_ZizR3ETQ0rRtk-VEqwfG0rPGyoHvHvuzxP-r33YX3PGxtA
CitedBy_id crossref_primary_10_1080_15592324_2024_2355739
crossref_primary_10_1007_s40626_023_00304_1
Cites_doi 10.1017/CBO9780511897658
10.1016/j.eja.2019.01.004
10.1126/science.1223304
10.1002/aps3.1029
10.1093/aobpla/plv013
10.1016/S1532-0464(03)00034-0
10.1016/j.cell.2020.11.040
10.1016/j.jneumeth.2013.11.016
10.1037/com0000239
10.1016/j.bbrc.2020.06.160
10.5962/bhl.title.37759
10.1080/00378941.1946.10834469
10.1186/s12862-017-1014-z
10.1186/s13059-019-1689-0
10.1038/s41598-020-76588-z
10.1007/s11738-017-2528-0
10.1371/journal.pone.0235750
10.3390/ani11071854
10.3389/fpls.2017.01190
10.3389/fpls.2018.01770
10.1037/com0000289
10.3897/BDJ.5.e21139
10.5962/bhl.title.56998
10.1109/ICIICII.2017.76
10.1016/j.tplants.2015.10.015
10.1023/A:1010933404324
10.1038/s41598-019-53118-0
10.3732/ajb.0900045
10.3390/biology11030405
10.3758/s13423-020-01753-4
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID NPM
AAYXX
CITATION
ISR
3V.
7SN
7SS
7T7
7X2
8FD
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
LK8
M0K
M7P
P64
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PYCSY
7X8
5PM
DOA
DOI 10.3390/plants12040965
DatabaseName PubMed
CrossRef
Gale In Context: Science
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Agricultural Science Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Agriculture Science Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Agricultural Science Collection
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Agricultural Science Database
CrossRef

PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 2223-7747
ExternalDocumentID oai_doaj_org_article_c24189fa00f24e9ca361236a316e36cc
A743326117
10_3390_plants12040965
36840313
Genre Journal Article
GeographicLocations Italy
GeographicLocations_xml – name: Italy
GrantInformation_xml – fundername: SEED BADAˆ3 project, the Department of Information Engineering, University of Padova
GroupedDBID 5VS
7X2
7XC
8FE
8FH
AADQD
AAHBH
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ATCPS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
ECGQY
GROUPED_DOAJ
HCIFZ
HYE
IAG
IAO
IGH
ISR
ITC
KQ8
LK8
M0K
M48
M7P
MODMG
M~E
NPM
OK1
OZF
PATMY
PGMZT
PIMPY
PROAC
PYCSY
RIG
RPM
53G
AAYXX
CITATION
3V.
7SN
7SS
7T7
8FD
8FK
ABUWG
AZQEC
C1K
DWQXO
FR3
GNUQQ
P64
PQEST
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c557t-cd5d707ab4c3a90fb74c44c8db437aab8b735425e1962250967a2d6c980a24673
IEDL.DBID RPM
ISSN 2223-7747
IngestDate Tue Oct 22 15:13:22 EDT 2024
Tue Sep 17 21:32:15 EDT 2024
Sat Oct 05 06:27:41 EDT 2024
Fri Nov 08 22:55:04 EST 2024
Tue Nov 12 23:36:55 EST 2024
Sat Sep 28 21:38:08 EDT 2024
Thu Nov 21 22:11:41 EST 2024
Sat Sep 28 08:16:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords kinematics
circumnutation
classification
machine learning
plant movement
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-cd5d707ab4c3a90fb74c44c8db437aab8b735425e1962250967a2d6c980a24673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5739-9639
0000-0002-1469-7983
0000-0003-0629-1286
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965265/
PMID 36840313
PQID 2779545878
PQPubID 2032347
ParticipantIDs doaj_primary_oai_doaj_org_article_c24189fa00f24e9ca361236a316e36cc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9965265
proquest_miscellaneous_2780080000
proquest_journals_2779545878
gale_infotracacademiconefile_A743326117
gale_incontextgauss_ISR_A743326117
crossref_primary_10_3390_plants12040965
pubmed_primary_36840313
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Plants (Basel)
PublicationTitleAlternate Plants (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Tronchet (ref_24) 1946; 93
Mochida (ref_14) 2018; 9
Salvatore (ref_18) 2014; 222
Manevitz (ref_34) 2001; 2
Botella (ref_10) 2018; 6
Gerbode (ref_23) 2012; 337
Gianoli (ref_3) 2015; 7
Schuettpelz (ref_12) 2017; 5
Ubbens (ref_16) 2017; 8
ref_19
Liaw (ref_32) 2002; 2
Unger (ref_7) 2020; 183
Raja (ref_21) 2020; 10
Stolarz (ref_5) 2017; 39
Xu (ref_13) 2019; 20
Castiello (ref_28) 2020; 135
Isnard (ref_20) 2009; 96
Ceccarini (ref_27) 2020; 27
Guerra (ref_30) 2021; 135
Ceccarini (ref_26) 2020; 564
Yu (ref_11) 2019; 104
Singh (ref_15) 2016; 21
ref_25
Guerra (ref_29) 2019; 9
Pedregosa (ref_17) 2011; 12
ref_22
Breiman (ref_31) 2001; 45
ref_1
ref_2
Dreiseitl (ref_33) 2002; 35
ref_9
ref_8
ref_4
ref_6
References_xml – ident: ref_4
  doi: 10.1017/CBO9780511897658
– volume: 104
  start-page: 78
  year: 2019
  ident: ref_11
  article-title: Deep learning for image-based weed detection in turfgrass
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2019.01.004
  contributor:
    fullname: Yu
– volume: 337
  start-page: 1087
  year: 2012
  ident: ref_23
  article-title: How the cucumber tendril coils and overwinds
  publication-title: Science
  doi: 10.1126/science.1223304
  contributor:
    fullname: Gerbode
– volume: 6
  start-page: e1029
  year: 2018
  ident: ref_10
  article-title: Species distribution modeling based on the automated identification of citizen observations
  publication-title: Appl. Plant Sci.
  doi: 10.1002/aps3.1029
  contributor:
    fullname: Botella
– volume: 7
  start-page: plv013
  year: 2015
  ident: ref_3
  article-title: The behavioural ecology of climbing plants
  publication-title: AoB Plants
  doi: 10.1093/aobpla/plv013
  contributor:
    fullname: Gianoli
– volume: 35
  start-page: 352
  year: 2002
  ident: ref_33
  article-title: Logistic regression and artificial neural network classification models: A method-ology review
  publication-title: J. Biomed. Inform.
  doi: 10.1016/S1532-0464(03)00034-0
  contributor:
    fullname: Dreiseitl
– volume: 183
  start-page: 1986
  year: 2020
  ident: ref_7
  article-title: Directed evolution of a selective and sensitive serotonin sensor via machine learning
  publication-title: Cell
  doi: 10.1016/j.cell.2020.11.040
  contributor:
    fullname: Unger
– volume: 222
  start-page: 230
  year: 2014
  ident: ref_18
  article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2013.11.016
  contributor:
    fullname: Salvatore
– volume: 135
  start-page: 127
  year: 2020
  ident: ref_28
  article-title: (Re) claiming plants in comparative psychology
  publication-title: J. Comp. Psychol.
  doi: 10.1037/com0000239
  contributor:
    fullname: Castiello
– volume: 564
  start-page: 86
  year: 2020
  ident: ref_26
  article-title: On-line control of movement in plants
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2020.06.160
  contributor:
    fullname: Ceccarini
– ident: ref_1
  doi: 10.5962/bhl.title.37759
– volume: 93
  start-page: 13
  year: 1946
  ident: ref_24
  article-title: Suite de nos observations sur le comportement des vrilles en présence de tuteurs
  publication-title: Bull. Société Bot. Fr.
  doi: 10.1080/00378941.1946.10834469
  contributor:
    fullname: Tronchet
– ident: ref_8
  doi: 10.1186/s12862-017-1014-z
– volume: 20
  start-page: 76
  year: 2019
  ident: ref_13
  article-title: Machine learning and complex biological data
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1689-0
  contributor:
    fullname: Xu
– volume: 10
  start-page: 19465
  year: 2020
  ident: ref_21
  article-title: The dynamics of plant nutation
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76588-z
  contributor:
    fullname: Raja
– volume: 39
  start-page: 234
  year: 2017
  ident: ref_5
  article-title: Spontaneous action potentials and circumnutation in Helianthus annuus
  publication-title: Acta Physiol. Plant.
  doi: 10.1007/s11738-017-2528-0
  contributor:
    fullname: Stolarz
– ident: ref_19
  doi: 10.1371/journal.pone.0235750
– ident: ref_22
  doi: 10.3390/ani11071854
– volume: 8
  start-page: 1190
  year: 2017
  ident: ref_16
  article-title: Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01190
  contributor:
    fullname: Ubbens
– volume: 9
  start-page: 1770
  year: 2018
  ident: ref_14
  article-title: Statistical and machine learning approaches to predict gene regulatory networks from transcriptome datasets
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2018.01770
  contributor:
    fullname: Mochida
– ident: ref_25
– volume: 2
  start-page: 139
  year: 2001
  ident: ref_34
  article-title: One-class SVMs for document classification
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Manevitz
– volume: 135
  start-page: 495
  year: 2021
  ident: ref_30
  article-title: The coding of object thickness in plants: When roots matter
  publication-title: J. Comp. Psychol.
  doi: 10.1037/com0000289
  contributor:
    fullname: Guerra
– volume: 5
  start-page: e21139
  year: 2017
  ident: ref_12
  article-title: Applications of deep convolutional neural networks to digitized natural history collections
  publication-title: Biodivers. Data J.
  doi: 10.3897/BDJ.5.e21139
  contributor:
    fullname: Schuettpelz
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_17
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– ident: ref_2
  doi: 10.5962/bhl.title.56998
– ident: ref_9
  doi: 10.1109/ICIICII.2017.76
– volume: 21
  start-page: 110
  year: 2016
  ident: ref_15
  article-title: Machine learning for high-throughput stress phenotyping in plants
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2015.10.015
  contributor:
    fullname: Singh
– volume: 45
  start-page: 5
  year: 2001
  ident: ref_31
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 9
  start-page: 16570
  year: 2019
  ident: ref_29
  article-title: Flexible control of movement in plants
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-53118-0
  contributor:
    fullname: Guerra
– volume: 96
  start-page: 1205
  year: 2009
  ident: ref_20
  article-title: Moving with climbing plants from Charles Darwin’s time into the 21st century
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.0900045
  contributor:
    fullname: Isnard
– ident: ref_6
  doi: 10.3390/biology11030405
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_32
  article-title: Classification and regression by randomForest
  publication-title: R News
  contributor:
    fullname: Liaw
– volume: 27
  start-page: 966
  year: 2020
  ident: ref_27
  article-title: Speed—accuracy trade-off in plants
  publication-title: Psychon. Bull. Rev.
  doi: 10.3758/s13423-020-01753-4
  contributor:
    fullname: Ceccarini
SSID ssj0000800816
Score 2.2962167
Snippet Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater...
SourceID doaj
pubmedcentral
proquest
gale
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 965
SubjectTerms Accuracy
Botany
circumnutation
Classification
Comparative analysis
Environmental aspects
Flowers & plants
Gene expression
Kinematics
Learning algorithms
Machine learning
Morphology
Peas
Physiological aspects
plant movement
Simulation methods
Supervised learning
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAF8SalVAYhcYrq2N7YPral1XIAIRYkbpZfKUE0u2oaJP49M0662qgHLlzjOXhmPK_M-DMhb7GzA5FLl0yFppRViKUOPJZMJCZ44sFH_A-5XKlP3_X7M4TJ2T71hTNhIzzwKLijACFGm8Yx1nCZTHAiA4Y4UdVJ1CFk78vqnWLq55QH6aoeURoF1PVHm184V1JxOLQGI8lOFMpg_bdd8k5Mms9L7gSg84fkwZQ50uNxx4_IndQ9JvdO1pDd_XlClvl1yzbfWqKn7VUYLrthbLPTtqPg-ejnvDf6u3V0NWzQR_Qp0o95mjLRCWj14in5dn729XRZTq8klGGxUNdliIuomHJeBuEMa7ySQcqgo5dCOee1V2IBGklga2C8wL1yPNbBaOY4uEnxjOx16y69IFTzqtaNdlCTKGk8994FE2JjdOJe1lVB3t1IzW5GMAwLRQTK187lW5ATFOqWCkGs8wdQrZ1Ua_-l2oK8QZVYhKnocA7mwg19bz-svthjhbhrdVUp2NNE1KxBOcFN1wqAI0S2mlEe3KjWTobaW66Uwd6h0gV5vV0GE8O-ievSekAanQ8UYwV5Pp6ELWMCwXJEJQqiZmdkxvl8pWt_ZBhvqDTxbYL9_yGql-Q-h-xrHCc_IHvXV0N6Re72cTjMhvEXsVIRlA
  priority: 102
  providerName: Directory of Open Access Journals
Title Classifying Circumnutation in Pea Plants via Supervised Machine Learning
URI https://www.ncbi.nlm.nih.gov/pubmed/36840313
https://www.proquest.com/docview/2779545878
https://search.proquest.com/docview/2780080000
https://pubmed.ncbi.nlm.nih.gov/PMC9965265
https://doaj.org/article/c24189fa00f24e9ca361236a316e36cc
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfohNAuiG8CYzIIiVNWx05i57iVTeUwNFGQuFn-She0JlWzIPHf8-wkVSNuXGNbst_3y3v-GaGPvrIDnkvEhJsyThNjY2GojQlzhFFHjbb-P-Ryxb_-FJ8vPUxONt6FCU37Rldn9d3mrK5uQ2_ldmPmY5_Y_OZ6ATG6R3Wfz9AMYsODFP3XEAKJJO8BGhmk9PPtnW8pSSjIKyw8Ro-YRzhhCZv4ogDZ_69hPvBM067JAzd09QQ9HuJHfN7v8yl64Opn6OFFAzHen-doGd64rMLdJbyodqbb1F1fbMdVjcH-4ZuwTfy7UnjVbb2laJ3F16Gn0uEBbnX9Av24uvy-WMbDWwmxyTJ-HxubWU640qlhqiCl5qlJUyOsThlXSgvNWQZ8caBxoMJACK6ozU0hiKJgLNlLdFQ3tXuNsKBJLkqhIDPhaaGp1soUxpaFcFSneRKhTyPV5LaHxJCQSnhSyympI3Thibqf5aGsw4dmt5YDQ6WBGEIUpSKkpKkrjGIBEUaxJHcsNyZCHzxLpAerqH03zFp1bSu_rL7Jc-7R1_Ik4bCnYVLZAHOMGi4XwIk8vtVk5snIWjmoaysp54WvIHIRoff7YVA0Xz1RtWs6P0cE2SIkQq96SdgfbBSoCPGJjExOPh0B2Q5g3oMsv_nvlW_RMYXAq-8kP0FH97vOvUOz1nan4QfDaVCPv9pCE3k
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xgdhe-BwQGBAQEk9ZHTuNncetbOrEOk10SLxZtuOUTGtaNQsS_z1nJ60a8bbX-CzlfN-58y8AX1xnByOXiAg3RZTEJo-EoXlEmCWMWmp07r5Djqf88pf4dupgcobruzB-aN_o8qi6nR9V5W8_W7mcm8F6TmxwNRlhju5Q3Qc78BDtlZCtIv2mS4JEnLYQjQyL-sHy1g2VxBQ1Frfuw2PmME5YzHrRyIP2_--at2JTf25yKxCdPb0nC8_gSZd5hsft8nN4YKsX8Ohkgdnh35cw9n_HLP2tp3BUrkwzr5q2TR-WVYieM7zy7IV_ShVOm6XzMbXNw4mfxrRhB9Q6O4CfZ6fXo3HU_WUhMsMhv4tMPsw54UonhqmMFJonJkmMyHXCuFJaaM6GKFGLtorGjwfIFc1TkwmiKLpZ9gp2q0Vl30AoaJyKQiisaXiSaaq1MpnJi0xYqpM0DuDr-rTlsgXTkFiEOBHJvogCOHHC2FA5EGz_YLGaye4cpcHsQ2SFIqSgic2MYh5LRrE4tSw1JoDPTpTSwVxUbo5mppq6lufTH_KYO9y2NI45vlNHVCxQqEZ11xKQI4eM1aM8XKuE7Ay9lpTzzPUeuQjg02YZTdT1XVRlF42jEV4nCQngdatBG8bWihgA7-lWj_P-CqqUhwHvVOjtvXd-hL3x9eRCXpxffn8H-xTTt3Ye_RB271aNfQ87dd588Mb1DyjGKBY
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xgaa98P0RGBAQEk9ZHTuNncetW9UJNlUMJN4sf6UErWnVLkj895ydtGrEG7wmZynn-86dfwb44Ds7GLlEQrgpkyw1NhGG2oQwRxh11Gjr_0NOrvnVd3F27mFytld9haF9o6vj-mZ-XFc_wmzlcm4GmzmxwfRyhDm6R3UfLG052IO7aLOE7hTqP7tESKR5C9PIsLAfLG_8YElKUWtx-SEcMI9zwlLWi0gBuP9v97wTn_qzkzvBaPzgP9h4CPe7DDQ-aUkewR1XP4Z7pwvMEn8_gUm4JbMKp5_iUbUyzbxu2nZ9XNUxetB4GliMf1Uqvm6W3tesnY0vw1SmizvA1tlT-DY-_zqaJN1tC4kZDvltYuzQcsKVzgxTBSk1z0yWGWF1xrhSWmjOhihZhzaLTgA3kStqc1MIoii6W_YM9utF7V5ALGiai1IorG14VmiqtTKFsWUhHNVZnkbwcbPjctmCakgsRryYZF9MEZx6gWypPBh2eLBYzWS3l9JgFiKKUhFS0swVRrGAKaNYmjuWGxPBey9O6eEuaj9PM1PNei0vrr_IE-7x2_I05fhNHVG5QMEa1R1PQI48QlaP8mijFrIz-LWknBe-B8lFBO-2r9FUff9F1W7ReBoR9JKQCJ63WrRlbKOMEfCefvU4779BtQpw4J0avfznlW_hYHo2lp8vrj69gkOKWVw7ln4E-7erxr2GvbVt3gT7-gN0YiqW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+Circumnutation+in+Pea+Plants+via+Supervised+Machine+Learning&rft.jtitle=Plants+%28Basel%29&rft.au=Wang%2C+Qiuran&rft.au=Barbariol%2C+Tommaso&rft.au=Susto%2C+Gian+Antonio&rft.au=Bonato%2C+Bianca&rft.date=2023-02-01&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fplants12040965&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon