Classifying Circumnutation in Pea Plants via Supervised Machine Learning
Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater performance and fitness than those that remain prostrate. Support search is characterized by oscillatory movements (i.e., circumnutation), in which...
Saved in:
Published in: | Plants (Basel) Vol. 12; no. 4; p. 965 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-02-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater performance and fitness than those that remain prostrate. Support search is characterized by oscillatory movements (i.e., circumnutation), in which plants rotate around a central axis during their growth. Numerous studies have elucidated the mechanistic details of circumnutation, but how this phenomenon is controlled during support searching remains unclear. To fill this gap, here we tested whether simulation-based machine learning methods can capture differences in movement patterns nested in actual kinematical data. We compared machine learning classifiers with the aim of generating models that learn to discriminate between circumnutation patterns related to the presence/absence of a support in the environment. Results indicate that there is a difference in the pattern of circumnutation, depending on the presence of a support, that can be learned and classified rather accurately. We also identify distinctive kinematic features at the level of the junction underneath the tendrils that seems to be a superior indicator for discerning the presence/absence of the support by the plant. Overall, machine learning approaches appear to be powerful tools for understanding the movement of plants. |
---|---|
AbstractList | Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater performance and fitness than those that remain prostrate. Support search is characterized by oscillatory movements (i.e., circumnutation), in which plants rotate around a central axis during their growth. Numerous studies have elucidated the mechanistic details of circumnutation, but how this phenomenon is controlled during support searching remains unclear. To fill this gap, here we tested whether simulation-based machine learning methods can capture differences in movement patterns nested in actual kinematical data. We compared machine learning classifiers with the aim of generating models that learn to discriminate between circumnutation patterns related to the presence/absence of a support in the environment. Results indicate that there is a difference in the pattern of circumnutation, depending on the presence of a support, that can be learned and classified rather accurately. We also identify distinctive kinematic features at the level of the junction underneath the tendrils that seems to be a superior indicator for discerning the presence/absence of the support by the plant. Overall, machine learning approaches appear to be powerful tools for understanding the movement of plants. |
Audience | Academic |
Author | Castiello, Umberto Wang, Qiuran Barbariol, Tommaso Susto, Gian Antonio Guerra, Silvia Bonato, Bianca |
AuthorAffiliation | 2 Department of Information Engineering, University of Padova, 35131 Padova, Italy 1 Department of General Psychology, University of Padova, 35132 Padova, Italy |
AuthorAffiliation_xml | – name: 1 Department of General Psychology, University of Padova, 35132 Padova, Italy – name: 2 Department of Information Engineering, University of Padova, 35131 Padova, Italy |
Author_xml | – sequence: 1 givenname: Qiuran orcidid: 0000-0002-1469-7983 surname: Wang fullname: Wang, Qiuran organization: Department of General Psychology, University of Padova, 35132 Padova, Italy – sequence: 2 givenname: Tommaso surname: Barbariol fullname: Barbariol, Tommaso organization: Department of Information Engineering, University of Padova, 35131 Padova, Italy – sequence: 3 givenname: Gian Antonio orcidid: 0000-0001-5739-9639 surname: Susto fullname: Susto, Gian Antonio organization: Department of Information Engineering, University of Padova, 35131 Padova, Italy – sequence: 4 givenname: Bianca surname: Bonato fullname: Bonato, Bianca organization: Department of General Psychology, University of Padova, 35132 Padova, Italy – sequence: 5 givenname: Silvia surname: Guerra fullname: Guerra, Silvia organization: Department of General Psychology, University of Padova, 35132 Padova, Italy – sequence: 6 givenname: Umberto orcidid: 0000-0003-0629-1286 surname: Castiello fullname: Castiello, Umberto organization: Department of General Psychology, University of Padova, 35132 Padova, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36840313$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1UREvplSOKxKUctvjbyQWpWgFdaREVhbM1cZzUq8Re7GRF_z3u7lI12JZs2c-8o3k9r9GJD94i9JbgK8Yq_HHbgx8ToZjjSooX6IxSyhZKcXXy7HyKLlLa4DzKvIh8hU6ZLDlmhJ2hm2UPKbn2wfmuWLpopsFPI4wu-ML54tZCcbvPUuwcFHfT1sadS7YpvoG5d94WawvR5-A36GULfbIXx_0c_fry-efyZrH-_nW1vF4vjBBqXJhGNAorqLlhUOG2Vtxwbsqm5kwB1GWtmOBUWFJJSkWuSwFtpKlKDJRLxc7R6qDbBNjobXQDxAcdwOn9RYidhjg601ttKCdl1QLGLeW2MsAkoUwCI9IyaUzW-nTQ2k71YBtj_Rihn4nOX7y7113Y6SrbTaXIApdHgRh-TzaNenDJ2D47ZsOUNFXl3nWMM_r-P3QTpuizVZlSleCiVGWmrg5UB7kA59uQ85o8Gzs4k3-_dfn-WnHGqCTk0Y4Ps4DMjPbP2MGUkl7d_ZizR3ETQ0rRtk-VEqwfG0rPGyoHvHvuzxP-r33YX3PGxtA |
CitedBy_id | crossref_primary_10_1080_15592324_2024_2355739 crossref_primary_10_1007_s40626_023_00304_1 |
Cites_doi | 10.1017/CBO9780511897658 10.1016/j.eja.2019.01.004 10.1126/science.1223304 10.1002/aps3.1029 10.1093/aobpla/plv013 10.1016/S1532-0464(03)00034-0 10.1016/j.cell.2020.11.040 10.1016/j.jneumeth.2013.11.016 10.1037/com0000239 10.1016/j.bbrc.2020.06.160 10.5962/bhl.title.37759 10.1080/00378941.1946.10834469 10.1186/s12862-017-1014-z 10.1186/s13059-019-1689-0 10.1038/s41598-020-76588-z 10.1007/s11738-017-2528-0 10.1371/journal.pone.0235750 10.3390/ani11071854 10.3389/fpls.2017.01190 10.3389/fpls.2018.01770 10.1037/com0000289 10.3897/BDJ.5.e21139 10.5962/bhl.title.56998 10.1109/ICIICII.2017.76 10.1016/j.tplants.2015.10.015 10.1023/A:1010933404324 10.1038/s41598-019-53118-0 10.3732/ajb.0900045 10.3390/biology11030405 10.3758/s13423-020-01753-4 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023 by the authors. 2023 |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023 by the authors. 2023 |
DBID | NPM AAYXX CITATION ISR 3V. 7SN 7SS 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PATMY PIMPY PQEST PQQKQ PQUKI PYCSY 7X8 5PM DOA |
DOI | 10.3390/plants12040965 |
DatabaseName | PubMed CrossRef Gale In Context: Science ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agriculture Science Database Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student Technology Research Database ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Environmental Sciences and Pollution Management ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database CrossRef PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 2223-7747 |
ExternalDocumentID | oai_doaj_org_article_c24189fa00f24e9ca361236a316e36cc A743326117 10_3390_plants12040965 36840313 |
Genre | Journal Article |
GeographicLocations | Italy |
GeographicLocations_xml | – name: Italy |
GrantInformation_xml | – fundername: SEED BADAˆ3 project, the Department of Information Engineering, University of Padova |
GroupedDBID | 5VS 7X2 7XC 8FE 8FH AADQD AAHBH ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS ATCPS BBNVY BCNDV BENPR BHPHI CCPQU ECGQY GROUPED_DOAJ HCIFZ HYE IAG IAO IGH ISR ITC KQ8 LK8 M0K M48 M7P MODMG M~E NPM OK1 OZF PATMY PGMZT PIMPY PROAC PYCSY RIG RPM 53G AAYXX CITATION 3V. 7SN 7SS 7T7 8FD 8FK ABUWG AZQEC C1K DWQXO FR3 GNUQQ P64 PQEST PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c557t-cd5d707ab4c3a90fb74c44c8db437aab8b735425e1962250967a2d6c980a24673 |
IEDL.DBID | RPM |
ISSN | 2223-7747 |
IngestDate | Tue Oct 22 15:13:22 EDT 2024 Tue Sep 17 21:32:15 EDT 2024 Sat Oct 05 06:27:41 EDT 2024 Fri Nov 08 22:55:04 EST 2024 Tue Nov 12 23:36:55 EST 2024 Sat Sep 28 21:38:08 EDT 2024 Thu Nov 21 22:11:41 EST 2024 Sat Sep 28 08:16:00 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | kinematics circumnutation classification machine learning plant movement |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-cd5d707ab4c3a90fb74c44c8db437aab8b735425e1962250967a2d6c980a24673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5739-9639 0000-0002-1469-7983 0000-0003-0629-1286 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9965265/ |
PMID | 36840313 |
PQID | 2779545878 |
PQPubID | 2032347 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c24189fa00f24e9ca361236a316e36cc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9965265 proquest_miscellaneous_2780080000 proquest_journals_2779545878 gale_infotracacademiconefile_A743326117 gale_incontextgauss_ISR_A743326117 crossref_primary_10_3390_plants12040965 pubmed_primary_36840313 |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Plants (Basel) |
PublicationTitleAlternate | Plants (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Tronchet (ref_24) 1946; 93 Mochida (ref_14) 2018; 9 Salvatore (ref_18) 2014; 222 Manevitz (ref_34) 2001; 2 Botella (ref_10) 2018; 6 Gerbode (ref_23) 2012; 337 Gianoli (ref_3) 2015; 7 Schuettpelz (ref_12) 2017; 5 Ubbens (ref_16) 2017; 8 ref_19 Liaw (ref_32) 2002; 2 Unger (ref_7) 2020; 183 Raja (ref_21) 2020; 10 Stolarz (ref_5) 2017; 39 Xu (ref_13) 2019; 20 Castiello (ref_28) 2020; 135 Isnard (ref_20) 2009; 96 Ceccarini (ref_27) 2020; 27 Guerra (ref_30) 2021; 135 Ceccarini (ref_26) 2020; 564 Yu (ref_11) 2019; 104 Singh (ref_15) 2016; 21 ref_25 Guerra (ref_29) 2019; 9 Pedregosa (ref_17) 2011; 12 ref_22 Breiman (ref_31) 2001; 45 ref_1 ref_2 Dreiseitl (ref_33) 2002; 35 ref_9 ref_8 ref_4 ref_6 |
References_xml | – ident: ref_4 doi: 10.1017/CBO9780511897658 – volume: 104 start-page: 78 year: 2019 ident: ref_11 article-title: Deep learning for image-based weed detection in turfgrass publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2019.01.004 contributor: fullname: Yu – volume: 337 start-page: 1087 year: 2012 ident: ref_23 article-title: How the cucumber tendril coils and overwinds publication-title: Science doi: 10.1126/science.1223304 contributor: fullname: Gerbode – volume: 6 start-page: e1029 year: 2018 ident: ref_10 article-title: Species distribution modeling based on the automated identification of citizen observations publication-title: Appl. Plant Sci. doi: 10.1002/aps3.1029 contributor: fullname: Botella – volume: 7 start-page: plv013 year: 2015 ident: ref_3 article-title: The behavioural ecology of climbing plants publication-title: AoB Plants doi: 10.1093/aobpla/plv013 contributor: fullname: Gianoli – volume: 35 start-page: 352 year: 2002 ident: ref_33 article-title: Logistic regression and artificial neural network classification models: A method-ology review publication-title: J. Biomed. Inform. doi: 10.1016/S1532-0464(03)00034-0 contributor: fullname: Dreiseitl – volume: 183 start-page: 1986 year: 2020 ident: ref_7 article-title: Directed evolution of a selective and sensitive serotonin sensor via machine learning publication-title: Cell doi: 10.1016/j.cell.2020.11.040 contributor: fullname: Unger – volume: 222 start-page: 230 year: 2014 ident: ref_18 article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2013.11.016 contributor: fullname: Salvatore – volume: 135 start-page: 127 year: 2020 ident: ref_28 article-title: (Re) claiming plants in comparative psychology publication-title: J. Comp. Psychol. doi: 10.1037/com0000239 contributor: fullname: Castiello – volume: 564 start-page: 86 year: 2020 ident: ref_26 article-title: On-line control of movement in plants publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2020.06.160 contributor: fullname: Ceccarini – ident: ref_1 doi: 10.5962/bhl.title.37759 – volume: 93 start-page: 13 year: 1946 ident: ref_24 article-title: Suite de nos observations sur le comportement des vrilles en présence de tuteurs publication-title: Bull. Société Bot. Fr. doi: 10.1080/00378941.1946.10834469 contributor: fullname: Tronchet – ident: ref_8 doi: 10.1186/s12862-017-1014-z – volume: 20 start-page: 76 year: 2019 ident: ref_13 article-title: Machine learning and complex biological data publication-title: Genome Biol. doi: 10.1186/s13059-019-1689-0 contributor: fullname: Xu – volume: 10 start-page: 19465 year: 2020 ident: ref_21 article-title: The dynamics of plant nutation publication-title: Sci. Rep. doi: 10.1038/s41598-020-76588-z contributor: fullname: Raja – volume: 39 start-page: 234 year: 2017 ident: ref_5 article-title: Spontaneous action potentials and circumnutation in Helianthus annuus publication-title: Acta Physiol. Plant. doi: 10.1007/s11738-017-2528-0 contributor: fullname: Stolarz – ident: ref_19 doi: 10.1371/journal.pone.0235750 – ident: ref_22 doi: 10.3390/ani11071854 – volume: 8 start-page: 1190 year: 2017 ident: ref_16 article-title: Deep plant phenomics: A deep learning platform for complex plant phenotyping tasks publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.01190 contributor: fullname: Ubbens – volume: 9 start-page: 1770 year: 2018 ident: ref_14 article-title: Statistical and machine learning approaches to predict gene regulatory networks from transcriptome datasets publication-title: Front. Plant Sci. doi: 10.3389/fpls.2018.01770 contributor: fullname: Mochida – ident: ref_25 – volume: 2 start-page: 139 year: 2001 ident: ref_34 article-title: One-class SVMs for document classification publication-title: J. Mach. Learn. Res. contributor: fullname: Manevitz – volume: 135 start-page: 495 year: 2021 ident: ref_30 article-title: The coding of object thickness in plants: When roots matter publication-title: J. Comp. Psychol. doi: 10.1037/com0000289 contributor: fullname: Guerra – volume: 5 start-page: e21139 year: 2017 ident: ref_12 article-title: Applications of deep convolutional neural networks to digitized natural history collections publication-title: Biodivers. Data J. doi: 10.3897/BDJ.5.e21139 contributor: fullname: Schuettpelz – volume: 12 start-page: 2825 year: 2011 ident: ref_17 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – ident: ref_2 doi: 10.5962/bhl.title.56998 – ident: ref_9 doi: 10.1109/ICIICII.2017.76 – volume: 21 start-page: 110 year: 2016 ident: ref_15 article-title: Machine learning for high-throughput stress phenotyping in plants publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2015.10.015 contributor: fullname: Singh – volume: 45 start-page: 5 year: 2001 ident: ref_31 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 9 start-page: 16570 year: 2019 ident: ref_29 article-title: Flexible control of movement in plants publication-title: Sci. Rep. doi: 10.1038/s41598-019-53118-0 contributor: fullname: Guerra – volume: 96 start-page: 1205 year: 2009 ident: ref_20 article-title: Moving with climbing plants from Charles Darwin’s time into the 21st century publication-title: Am. J. Bot. doi: 10.3732/ajb.0900045 contributor: fullname: Isnard – ident: ref_6 doi: 10.3390/biology11030405 – volume: 2 start-page: 18 year: 2002 ident: ref_32 article-title: Classification and regression by randomForest publication-title: R News contributor: fullname: Liaw – volume: 27 start-page: 966 year: 2020 ident: ref_27 article-title: Speed—accuracy trade-off in plants publication-title: Psychon. Bull. Rev. doi: 10.3758/s13423-020-01753-4 contributor: fullname: Ceccarini |
SSID | ssj0000800816 |
Score | 2.2962167 |
Snippet | Climbing plants require an external support to grow vertically and enhance light acquisition. Climbers that find a suitable support demonstrate greater... |
SourceID | doaj pubmedcentral proquest gale crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 965 |
SubjectTerms | Accuracy Botany circumnutation Classification Comparative analysis Environmental aspects Flowers & plants Gene expression Kinematics Learning algorithms Machine learning Morphology Peas Physiological aspects plant movement Simulation methods Supervised learning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELag4sAF8SalVAYhcYrq2N7YPral1XIAIRYkbpZfKUE0u2oaJP49M0662qgHLlzjOXhmPK_M-DMhb7GzA5FLl0yFppRViKUOPJZMJCZ44sFH_A-5XKlP3_X7M4TJ2T71hTNhIzzwKLijACFGm8Yx1nCZTHAiA4Y4UdVJ1CFk78vqnWLq55QH6aoeURoF1PVHm184V1JxOLQGI8lOFMpg_bdd8k5Mms9L7gSg84fkwZQ50uNxx4_IndQ9JvdO1pDd_XlClvl1yzbfWqKn7VUYLrthbLPTtqPg-ejnvDf6u3V0NWzQR_Qp0o95mjLRCWj14in5dn729XRZTq8klGGxUNdliIuomHJeBuEMa7ySQcqgo5dCOee1V2IBGklga2C8wL1yPNbBaOY4uEnxjOx16y69IFTzqtaNdlCTKGk8994FE2JjdOJe1lVB3t1IzW5GMAwLRQTK187lW5ATFOqWCkGs8wdQrZ1Ua_-l2oK8QZVYhKnocA7mwg19bz-svthjhbhrdVUp2NNE1KxBOcFN1wqAI0S2mlEe3KjWTobaW66Uwd6h0gV5vV0GE8O-ievSekAanQ8UYwV5Pp6ELWMCwXJEJQqiZmdkxvl8pWt_ZBhvqDTxbYL9_yGql-Q-h-xrHCc_IHvXV0N6Re72cTjMhvEXsVIRlA priority: 102 providerName: Directory of Open Access Journals |
Title | Classifying Circumnutation in Pea Plants via Supervised Machine Learning |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36840313 https://www.proquest.com/docview/2779545878 https://search.proquest.com/docview/2780080000 https://pubmed.ncbi.nlm.nih.gov/PMC9965265 https://doaj.org/article/c24189fa00f24e9ca361236a316e36cc |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfohNAuiG8CYzIIiVNWx05i57iVTeUwNFGQuFn-She0JlWzIPHf8-wkVSNuXGNbst_3y3v-GaGPvrIDnkvEhJsyThNjY2GojQlzhFFHjbb-P-Ryxb_-FJ8vPUxONt6FCU37Rldn9d3mrK5uQ2_ldmPmY5_Y_OZ6ATG6R3Wfz9AMYsODFP3XEAKJJO8BGhmk9PPtnW8pSSjIKyw8Ro-YRzhhCZv4ogDZ_69hPvBM067JAzd09QQ9HuJHfN7v8yl64Opn6OFFAzHen-doGd64rMLdJbyodqbb1F1fbMdVjcH-4ZuwTfy7UnjVbb2laJ3F16Gn0uEBbnX9Av24uvy-WMbDWwmxyTJ-HxubWU640qlhqiCl5qlJUyOsThlXSgvNWQZ8caBxoMJACK6ozU0hiKJgLNlLdFQ3tXuNsKBJLkqhIDPhaaGp1soUxpaFcFSneRKhTyPV5LaHxJCQSnhSyympI3Thibqf5aGsw4dmt5YDQ6WBGEIUpSKkpKkrjGIBEUaxJHcsNyZCHzxLpAerqH03zFp1bSu_rL7Jc-7R1_Ik4bCnYVLZAHOMGi4XwIk8vtVk5snIWjmoaysp54WvIHIRoff7YVA0Xz1RtWs6P0cE2SIkQq96SdgfbBSoCPGJjExOPh0B2Q5g3oMsv_nvlW_RMYXAq-8kP0FH97vOvUOz1nan4QfDaVCPv9pCE3k |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-xgdhe-BwQGBAQEk9ZHTuNncetbOrEOk10SLxZtuOUTGtaNQsS_z1nJ60a8bbX-CzlfN-58y8AX1xnByOXiAg3RZTEJo-EoXlEmCWMWmp07r5Djqf88pf4dupgcobruzB-aN_o8qi6nR9V5W8_W7mcm8F6TmxwNRlhju5Q3Qc78BDtlZCtIv2mS4JEnLYQjQyL-sHy1g2VxBQ1Frfuw2PmME5YzHrRyIP2_--at2JTf25yKxCdPb0nC8_gSZd5hsft8nN4YKsX8Ohkgdnh35cw9n_HLP2tp3BUrkwzr5q2TR-WVYieM7zy7IV_ShVOm6XzMbXNw4mfxrRhB9Q6O4CfZ6fXo3HU_WUhMsMhv4tMPsw54UonhqmMFJonJkmMyHXCuFJaaM6GKFGLtorGjwfIFc1TkwmiKLpZ9gp2q0Vl30AoaJyKQiisaXiSaaq1MpnJi0xYqpM0DuDr-rTlsgXTkFiEOBHJvogCOHHC2FA5EGz_YLGaye4cpcHsQ2SFIqSgic2MYh5LRrE4tSw1JoDPTpTSwVxUbo5mppq6lufTH_KYO9y2NI45vlNHVCxQqEZ11xKQI4eM1aM8XKuE7Ay9lpTzzPUeuQjg02YZTdT1XVRlF42jEV4nCQngdatBG8bWihgA7-lWj_P-CqqUhwHvVOjtvXd-hL3x9eRCXpxffn8H-xTTt3Ye_RB271aNfQ87dd588Mb1DyjGKBY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xgaa98P0RGBAQEk9ZHTuNncetW9UJNlUMJN4sf6UErWnVLkj895ydtGrEG7wmZynn-86dfwb44Ds7GLlEQrgpkyw1NhGG2oQwRxh11Gjr_0NOrvnVd3F27mFytld9haF9o6vj-mZ-XFc_wmzlcm4GmzmxwfRyhDm6R3UfLG052IO7aLOE7hTqP7tESKR5C9PIsLAfLG_8YElKUWtx-SEcMI9zwlLWi0gBuP9v97wTn_qzkzvBaPzgP9h4CPe7DDQ-aUkewR1XP4Z7pwvMEn8_gUm4JbMKp5_iUbUyzbxu2nZ9XNUxetB4GliMf1Uqvm6W3tesnY0vw1SmizvA1tlT-DY-_zqaJN1tC4kZDvltYuzQcsKVzgxTBSk1z0yWGWF1xrhSWmjOhihZhzaLTgA3kStqc1MIoii6W_YM9utF7V5ALGiai1IorG14VmiqtTKFsWUhHNVZnkbwcbPjctmCakgsRryYZF9MEZx6gWypPBh2eLBYzWS3l9JgFiKKUhFS0swVRrGAKaNYmjuWGxPBey9O6eEuaj9PM1PNei0vrr_IE-7x2_I05fhNHVG5QMEa1R1PQI48QlaP8mijFrIz-LWknBe-B8lFBO-2r9FUff9F1W7ReBoR9JKQCJ63WrRlbKOMEfCefvU4779BtQpw4J0avfznlW_hYHo2lp8vrj69gkOKWVw7ln4E-7erxr2GvbVt3gT7-gN0YiqW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classifying+Circumnutation+in+Pea+Plants+via+Supervised+Machine+Learning&rft.jtitle=Plants+%28Basel%29&rft.au=Wang%2C+Qiuran&rft.au=Barbariol%2C+Tommaso&rft.au=Susto%2C+Gian+Antonio&rft.au=Bonato%2C+Bianca&rft.date=2023-02-01&rft.issn=2223-7747&rft.eissn=2223-7747&rft.volume=12&rft.issue=4&rft_id=info:doi/10.3390%2Fplants12040965&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2223-7747&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2223-7747&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2223-7747&client=summon |