Fluid shear stress threshold regulates angiogenic sprouting
The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that tr...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 22; pp. 7968 - 7973 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
03-06-2014
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm ² triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell–cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell–cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density. |
---|---|
AbstractList | The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm ² triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell–cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell–cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density. A great deal of research has investigated the biochemical factors that regulate angiogenic sprouting, but less is known about the role of fluid shear stress. Some studies have suggested distinct regulation by luminal flow within the vessel vs. transmural flow through its walls. In this paper, we demonstrate the existence of a shear stress threshold that when surpassed, induces angiogenic sprouting regardless of whether the shear is applied by primarily luminal or transmural flow. In addition to identifying matrix metalloproteinase 1 as the relevant downstream effector, we use finite-element modeling to predict spatial distributions of shear stress within 3D geometries that experimentally caused localized patterns of sprouting. Together, these studies demonstrate a means by which fluid flow can guide vasculature architecture. The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm 2 triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell–cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell–cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density. The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm2 triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell–cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell–cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprounting and offer a potential homeostatic mechanism for regulating vascular density. The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm(2) triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell-cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell-cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density. The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm^sup 2^ triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell-cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell-cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density. |
Author | Cohen, Daniel M. Nguyen, Duc-Huy T. Chen, Christopher S. Galie, Peter A. Janmey, Paul A. Choi, Colin K. |
Author_xml | – sequence: 1 givenname: Peter A. surname: Galie fullname: Galie, Peter A. – sequence: 2 givenname: Duc-Huy T. surname: Nguyen fullname: Nguyen, Duc-Huy T. – sequence: 3 givenname: Colin K. surname: Choi fullname: Choi, Colin K. – sequence: 4 givenname: Daniel M. surname: Cohen fullname: Cohen, Daniel M. – sequence: 5 givenname: Paul A. surname: Janmey fullname: Janmey, Paul A. – sequence: 6 givenname: Christopher S. surname: Chen fullname: Chen, Christopher S. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24843171$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUFvEzEQhS3UiqaFMydgpV64bDvjtddeISGhqqWVKnGAni1nM7txtLGDvYvEv8chIYGe5jDfvJk375yd-OCJsTcIVwiqut54m66wQtCCI-ILNkNosKxFAydsBsBVmTvijJ2ntAKARmp4yc640KJChTP28W6Y3KJIS7KxSGOklIpxmcsyDIsiUj8NdqRUWN-70JN3bZE2MUyj8_0rdtrZIdHrfb1gT3e332_uy8evXx5uPj-WrZRqLOd5k8ibJdct2bkWlmu0BCi7jrdYKaUWbUegEWhuZc2V6KAhq2StRTZWXbBPO93NNF_ToiU_RjuYTXRrG3-ZYJ35v-Pd0vThpxEgQdaYBT7sBWL4MVEazdqllobBegpTMiirOu9CrTN6-QxdhSn6bO8P1WguJWTqeke1MaQUqTscg2C2wZhtMOYYTJ5496-HA_83iQy83wPbyYMcouHcqKbenvZ2R6zSGOJRIT9QaqWOCp0NxvbRJfP0jQPWACiErrD6Dav_p_s |
CitedBy_id | crossref_primary_10_1088_1758_5090_ac48e5 crossref_primary_10_1186_s12974_022_02642_4 crossref_primary_10_1063_5_0165119 crossref_primary_10_3390_bioengineering10020124 crossref_primary_10_3390_s22239414 crossref_primary_10_1016_j_ultrasmedbio_2018_05_011 crossref_primary_10_1007_s12195_016_0429_8 crossref_primary_10_1016_j_stemcr_2023_06_001 crossref_primary_10_1111_aor_14232 crossref_primary_10_1038_s44286_023_00008_y crossref_primary_10_1007_s00441_020_03276_9 crossref_primary_10_1016_j_stemcr_2019_01_009 crossref_primary_10_1016_j_biomaterials_2016_11_012 crossref_primary_10_1016_j_jss_2015_11_049 crossref_primary_10_3389_fbioe_2020_589960 crossref_primary_10_1111_micc_12576 crossref_primary_10_3390_jfb13030092 crossref_primary_10_1007_s12018_015_9194_9 crossref_primary_10_1002_adfm_202111273 crossref_primary_10_1038_nrm_2017_36 crossref_primary_10_1002_adfm_202206767 crossref_primary_10_1038_s41596_019_0144_8 crossref_primary_10_1007_s10404_015_1689_7 crossref_primary_10_1002_adhm_201701204 crossref_primary_10_1021_acsami_2c15180 crossref_primary_10_3892_ijmm_2018_3841 crossref_primary_10_1002_adhm_201600505 crossref_primary_10_1007_s10456_017_9559_4 crossref_primary_10_1063_5_0171350 crossref_primary_10_3389_fcvm_2020_610344 crossref_primary_10_1126_sciadv_adg9781 crossref_primary_10_1089_ten_tea_2019_0175 crossref_primary_10_1007_s00366_023_01889_6 crossref_primary_10_3390_mi10070451 crossref_primary_10_1038_s41598_021_97008_w crossref_primary_10_1155_2023_8134027 crossref_primary_10_1097_MOH_0000000000000240 crossref_primary_10_3390_bioengineering4010008 crossref_primary_10_3892_ijmm_2017_3108 crossref_primary_10_1016_j_colsurfb_2022_112419 crossref_primary_10_1039_D2LC00352J crossref_primary_10_3390_biomedicines9091137 crossref_primary_10_1039_D2LC00919F crossref_primary_10_1016_j_ces_2020_115591 crossref_primary_10_1016_j_imlet_2019_03_011 crossref_primary_10_1016_j_stemcr_2021_03_015 crossref_primary_10_1039_C7LC00774D crossref_primary_10_1089_ten_tea_2021_0231 crossref_primary_10_1002_adtp_202300410 crossref_primary_10_3390_bioengineering9110668 crossref_primary_10_1038_s41596_021_00533_1 crossref_primary_10_1186_s12938_020_0752_0 crossref_primary_10_1021_acsomega_3c10271 crossref_primary_10_1111_micc_12595 crossref_primary_10_1152_japplphysiol_00741_2017 crossref_primary_10_1016_j_isci_2023_106661 crossref_primary_10_1016_j_ultrasmedbio_2016_08_010 crossref_primary_10_3390_mi11010018 crossref_primary_10_1007_s10404_022_02563_x crossref_primary_10_1002_adma_202209149 crossref_primary_10_1016_j_addr_2022_114233 crossref_primary_10_1002_adhm_201500677 crossref_primary_10_1007_s10439_018_02164_2 crossref_primary_10_1039_C8LC00485D crossref_primary_10_1080_17435390_2019_1571646 crossref_primary_10_2174_1573403X15666190730095153 crossref_primary_10_1038_s41598_018_23653_3 crossref_primary_10_1016_j_biotechadv_2016_07_002 crossref_primary_10_1111_micc_12361 crossref_primary_10_1002_term_2847 crossref_primary_10_1093_brain_awaa268 crossref_primary_10_1016_j_semcdb_2021_06_005 crossref_primary_10_1111_micc_12363 crossref_primary_10_1089_ten_teb_2017_0010 crossref_primary_10_1002_adma_202007977 crossref_primary_10_3389_fbioe_2022_1048731 crossref_primary_10_1016_j_bbiosy_2024_100097 crossref_primary_10_1152_ajprenal_00166_2023 crossref_primary_10_1146_annurev_bioeng_090120_094330 crossref_primary_10_1016_j_cpcardiol_2022_101399 crossref_primary_10_1097_HJH_0000000000000455 crossref_primary_10_2491_jjsth_30_512 crossref_primary_10_3390_pharmaceutics15082094 crossref_primary_10_1016_j_mvr_2022_104377 crossref_primary_10_1016_j_trac_2023_116919 crossref_primary_10_1016_j_mvr_2016_02_008 crossref_primary_10_1038_s41598_018_27943_8 crossref_primary_10_3390_bioengineering7010017 crossref_primary_10_1016_j_biomaterials_2022_121672 crossref_primary_10_3390_cells9091965 crossref_primary_10_1016_j_atherosclerosis_2024_118529 crossref_primary_10_1016_j_envpol_2020_115861 crossref_primary_10_1007_s00018_016_2325_8 crossref_primary_10_1371_journal_pone_0276744 crossref_primary_10_1063_5_0023342 crossref_primary_10_1177_0391398820936700 crossref_primary_10_1007_s10456_023_09868_7 crossref_primary_10_1088_1758_5090_ab5898 crossref_primary_10_18632_oncotarget_11748 crossref_primary_10_1007_s10456_018_9613_x crossref_primary_10_3164_jcbn_22_50 crossref_primary_10_1063_1_5094735 crossref_primary_10_1016_j_biopha_2023_116117 crossref_primary_10_1002_adhm_201601118 crossref_primary_10_1016_j_biomaterials_2015_11_062 crossref_primary_10_1038_srep17840 crossref_primary_10_1016_j_biomaterials_2021_121286 crossref_primary_10_1007_s10237_022_01648_4 crossref_primary_10_1016_j_mvr_2020_104121 crossref_primary_10_1021_acsbiomaterials_8b01195 crossref_primary_10_1002_adfm_202203966 crossref_primary_10_1016_j_mvr_2022_104360 crossref_primary_10_1098_rsif_2022_0360 crossref_primary_10_1088_1361_6463_ab78d4 crossref_primary_10_1088_1758_5090_ad5ac0 crossref_primary_10_1002_advs_202400921 crossref_primary_10_1083_jcb_201701039 crossref_primary_10_1038_s41598_021_92515_2 crossref_primary_10_1002_adhm_201700489 crossref_primary_10_1002_term_2774 crossref_primary_10_1039_D0LC00493F crossref_primary_10_1016_j_cclet_2021_10_026 crossref_primary_10_1039_D0LC00546K crossref_primary_10_1007_s10557_020_06944_8 crossref_primary_10_1002_adfm_201801331 crossref_primary_10_1039_C6LC00910G crossref_primary_10_1111_micc_12830 crossref_primary_10_1124_pr_116_012492 crossref_primary_10_1097_CORR_0000000000000993 crossref_primary_10_1371_journal_pone_0119227 crossref_primary_10_1039_D3LC00719G crossref_primary_10_1098_rsif_2017_0137 crossref_primary_10_1146_annurev_fluid_072220_013845 crossref_primary_10_1016_j_biomaterials_2019_01_022 crossref_primary_10_1042_CS20180155 crossref_primary_10_1126_sciadv_adj8540 crossref_primary_10_1039_D1LC00014D crossref_primary_10_1073_pnas_1714282115 crossref_primary_10_1016_j_mvr_2015_12_002 crossref_primary_10_1002_admt_202000683 crossref_primary_10_1242_dev_151266 crossref_primary_10_1016_j_cjprs_2021_12_005 crossref_primary_10_1093_function_zqad046 crossref_primary_10_1002_adfm_201910811 crossref_primary_10_1039_D2LC00605G crossref_primary_10_1002_mc_23327 crossref_primary_10_1021_acsami_0c21868 crossref_primary_10_1088_1758_5090_ab33e8 crossref_primary_10_1089_ten_tea_2020_0213 crossref_primary_10_3390_ijms24097886 crossref_primary_10_1021_acsbiomaterials_7b00025 crossref_primary_10_3389_fcell_2022_933474 crossref_primary_10_1002_admt_202300617 crossref_primary_10_1007_s10456_018_9645_2 crossref_primary_10_1021_acsbiomaterials_2c00531 crossref_primary_10_1242_dev_128058 crossref_primary_10_1038_s41578_022_00447_8 crossref_primary_10_1152_ajpheart_00516_2016 crossref_primary_10_3389_fphys_2020_00684 crossref_primary_10_1016_j_mvr_2021_104211 crossref_primary_10_1038_s41598_019_38558_y crossref_primary_10_3390_biom14020234 crossref_primary_10_1016_j_biomaterials_2015_11_019 crossref_primary_10_1038_s42003_020_0881_9 crossref_primary_10_1002_smll_202003797 crossref_primary_10_1016_j_exer_2015_03_021 crossref_primary_10_1016_j_jtv_2015_07_004 crossref_primary_10_1007_s40005_017_0313_0 crossref_primary_10_3390_mi9100493 crossref_primary_10_1016_S1872_2040_16_60920_9 crossref_primary_10_1002_adma_202303196 crossref_primary_10_1080_13543784_2021_1964471 crossref_primary_10_7570_jomes21096 crossref_primary_10_3389_fbioe_2019_00172 crossref_primary_10_1038_s41578_019_0099_y crossref_primary_10_1016_j_stem_2018_02_009 crossref_primary_10_1002_bit_27626 crossref_primary_10_1038_s44318_024_00142_0 crossref_primary_10_1371_journal_pone_0191275 crossref_primary_10_1002_bit_26778 crossref_primary_10_3233_CH_180414 crossref_primary_10_1002_adbi_202101080 crossref_primary_10_1016_j_ultrasmedbio_2021_03_019 crossref_primary_10_1371_journal_pcbi_1005223 crossref_primary_10_1038_s41598_022_08186_0 crossref_primary_10_1134_S0869864318020063 crossref_primary_10_1002_adfm_202003777 crossref_primary_10_1088_2515_7639_acada1 crossref_primary_10_1002_jbio_201700226 crossref_primary_10_1016_j_bioactmat_2022_07_004 crossref_primary_10_1002_adhm_202001028 crossref_primary_10_1016_j_jconrel_2018_01_032 crossref_primary_10_1016_j_tcm_2021_01_004 crossref_primary_10_1002_advs_202300670 crossref_primary_10_1039_C4IB00164H crossref_primary_10_1158_0008_5472_CAN_15_0325 crossref_primary_10_1002_jcp_31177 crossref_primary_10_1088_1361_6528_aac7a4 crossref_primary_10_1016_j_jacc_2015_01_042 crossref_primary_10_3390_cancers13205118 crossref_primary_10_1002_term_3309 crossref_primary_10_1016_j_cjca_2016_05_020 crossref_primary_10_1002_VIW_20200183 crossref_primary_10_1039_C6LC00193A crossref_primary_10_1002_adfm_201803822 crossref_primary_10_1038_s41551_018_0251_9 crossref_primary_10_1111_micc_12754 crossref_primary_10_1016_j_biomaterials_2021_121298 crossref_primary_10_1038_srep22147 crossref_primary_10_1089_aivt_2016_0002 crossref_primary_10_1016_j_cdev_2021_203735 crossref_primary_10_1038_s42003_019_0400_z crossref_primary_10_1016_j_jbiomech_2015_10_026 crossref_primary_10_3389_fphys_2020_00552 crossref_primary_10_1371_journal_pone_0293609 crossref_primary_10_3389_fbioe_2022_912073 crossref_primary_10_1016_j_yexcr_2017_03_016 crossref_primary_10_1002_anbr_202100056 crossref_primary_10_1242_jcs_261130 crossref_primary_10_1101_cshperspect_a031559 crossref_primary_10_1016_j_actbio_2019_12_033 crossref_primary_10_1063_5_0097967 crossref_primary_10_1002_adhm_201700506 crossref_primary_10_1007_s00335_022_09951_2 crossref_primary_10_1007_s00246_014_1061_9 crossref_primary_10_1177_2041731419879837 crossref_primary_10_1002_adhm_201500958 crossref_primary_10_1089_ten_teb_2023_0044 crossref_primary_10_1016_j_addr_2018_06_011 crossref_primary_10_1002_cnm_3654 crossref_primary_10_1038_s42003_021_02285_w crossref_primary_10_1080_14686996_2024_2330339 crossref_primary_10_34133_2022_9869518 crossref_primary_10_1016_j_trac_2019_06_023 crossref_primary_10_1016_j_biomaterials_2020_120628 crossref_primary_10_1155_2015_454981 crossref_primary_10_1016_j_jmst_2022_09_066 crossref_primary_10_1038_s41467_022_30197_8 crossref_primary_10_1016_j_bbiosy_2021_100020 crossref_primary_10_2217_rme_14_83 crossref_primary_10_1088_1758_5090_ac2baa crossref_primary_10_1002_bit_28111 crossref_primary_10_3233_CH_221428 crossref_primary_10_1242_dev_194209 crossref_primary_10_3390_mi10100700 crossref_primary_10_1111_micc_12547 crossref_primary_10_1016_j_semcdb_2017_06_002 crossref_primary_10_1186_s40580_021_00261_y crossref_primary_10_1007_s10456_017_9586_1 crossref_primary_10_1016_j_snb_2020_127917 crossref_primary_10_1002_jcp_30840 crossref_primary_10_1016_j_bbamcr_2015_04_015 crossref_primary_10_1016_j_ceb_2016_04_011 crossref_primary_10_2131_jts_46_99 crossref_primary_10_1016_j_actbio_2018_12_042 crossref_primary_10_1007_s11695_020_04580_7 crossref_primary_10_1021_acs_langmuir_5b01752 crossref_primary_10_1089_ten_tea_2023_0201 crossref_primary_10_1212_WNL_0000000000006468 crossref_primary_10_1038_srep29510 crossref_primary_10_1002_jbm_a_37602 crossref_primary_10_1091_mbc_e16_06_0389 crossref_primary_10_1093_jbcr_irac166 crossref_primary_10_3389_fbioe_2022_915702 crossref_primary_10_3389_fbioe_2023_1126269 crossref_primary_10_1172_JCI87442 crossref_primary_10_1177_0271678X211020587 crossref_primary_10_1093_jb_mvad024 crossref_primary_10_1088_1758_5090_ac4fb5 crossref_primary_10_1115_1_4032188 crossref_primary_10_1016_j_biomaterials_2017_11_041 crossref_primary_10_1088_1758_5090_ad084a crossref_primary_10_3233_CH_151976 crossref_primary_10_1039_C8LC00130H crossref_primary_10_1161_ATVBAHA_119_312265 crossref_primary_10_1007_s10456_017_9553_x |
Cites_doi | 10.1115/1.2794192 10.1074/jbc.M205417200 10.1074/jbc.M111.290841 10.1016/j.cell.2011.08.039 10.1089/ten.tea.2007.0314 10.1016/j.yexcr.2011.10.008 10.1002/jcp.20658 10.1016/S0008-6363(00)00282-0 10.1007/s10439-011-0371-9 10.1007/s10456-012-9300-2 10.1073/pnas.1103581108 10.1152/ajpheart.00732.2009 10.1152/ajpheart.00369.2009 10.1038/nature03952 10.1242/dev.00733 10.1152/jappl.1999.87.1.261 10.1152/ajpheart.00281.2008 10.1093/cvr/cvq146 10.1073/pnas.1221526110 10.1152/ajpheart.00082.2002 10.1002/1097-4644(20000901)78:3<487::AID-JCB13>3.0.CO;2-Z 10.1152/ajplung.00317.2005 10.1007/s10439-005-8775-z 10.1016/S0092-8674(00)81010-7 10.1016/j.mvr.2006.02.005 10.1093/cvr/23.11.913 10.1006/exmp.2002.2457 10.1073/pnas.1105316108 10.1242/jcs.02605 10.1016/j.biomaterials.2010.04.041 10.1172/JCI117858 10.1152/ajpheart.01177.2006 10.1152/ajpheart.00956.2004 |
ContentType | Journal Article |
Copyright | copyright © 1993–2008 National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jun 3, 2014 |
Copyright_xml | – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jun 3, 2014 |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1310842111 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Flow-induced sprouting |
EISSN | 1091-6490 |
EndPage | 7973 |
ExternalDocumentID | 3337164461 10_1073_pnas_1310842111 24843171 111_22_7968 23775877 US201600144831 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: EB08396 – fundername: NIGMS NIH HHS grantid: R01 GM104287 – fundername: NHLBI NIH HHS grantid: T32 HL007954 – fundername: NIBIB NIH HHS grantid: UH3 EB017103 – fundername: NIBIB NIH HHS grantid: UH2 EB017103 – fundername: NIBIB NIH HHS grantid: EB017103 – fundername: NIBIB NIH HHS grantid: R01 EB008396 – fundername: NIBIB NIH HHS grantid: R01 EB000262 – fundername: NHLBI NIH HHS grantid: HL007954 – fundername: NIBIB NIH HHS grantid: EB00262 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ AQVQM - 02 0R 1AW 55 AAPBV ABFLS ADACO DZ H13 KM PQEST X XHC ADACV CGR CUY CVF ECM EIF IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c557t-b3174095528ceab84a281ae015ff2c13777dcfe0810eba56274f09ea756840843 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 21:08:41 EDT 2024 Thu Oct 24 23:18:37 EDT 2024 Thu Oct 10 17:00:33 EDT 2024 Thu Nov 21 23:54:37 EST 2024 Sat Sep 28 07:53:48 EDT 2024 Wed Nov 11 00:30:20 EST 2020 Fri Feb 02 07:04:41 EST 2024 Wed Dec 27 19:05:16 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Keywords | migration force morphogenesis angiogenesis mechanotransduction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c557t-b3174095528ceab84a281ae015ff2c13777dcfe0810eba56274f09ea756840843 |
Notes | http://dx.doi.org/10.1073/pnas.1310842111 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Author contributions: P.A.G., D.M.C., and P.A.J. designed research; P.A.G. performed research; D.-H.T.N. and C.K.C. contributed new reagents/analytic tools; P.A.G. and C.S.C. analyzed data; and P.A.G. wrote the paper. Edited by Sheldon Weinbaum, The City College of New York, New York, NY, and approved April 21, 2014 (received for review June 7, 2013) |
OpenAccessLink | https://www.pnas.org/content/pnas/111/22/7968.full.pdf |
PMID | 24843171 |
PQID | 1536982550 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_24843171 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4050561 crossref_primary_10_1073_pnas_1310842111 jstor_primary_23775877 proquest_journals_1536982550 pnas_primary_111_22_7968 proquest_miscellaneous_1536684188 fao_agris_US201600144831 |
ProviderPackageCode | RNA PNE |
PublicationCentury | 2000 |
PublicationDate | 2014-06-03 |
PublicationDateYYYYMMDD | 2014-06-03 |
PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2014 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | 2221113 - Am J Physiol. 1990 Oct;259(4 Pt 2):H1063-70 21690404 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11115-20 7706486 - J Clin Invest. 1995 Apr;95(4):1798-807 12231217 - Exp Mol Pathol. 2002 Oct;73(2):142-53 20537705 - Biomaterials. 2010 Aug;31(24):6182-9 10409584 - J Appl Physiol (1985). 1999 Jul;87(1):261-8 16600313 - Microvasc Res. 2006 May;71(3):185-96 21876168 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15342-7 3103142 - Physiologie. 1986 Oct-Dec;23(4):227-36 19880665 - Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H127-35 8618390 - J Biomech Eng. 1995 Aug;117(3):358-63 18636940 - Tissue Eng Part A. 2009 Jan;15(1):175-85 15576436 - Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1915-24 19465549 - Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1225-34 16575906 - J Cell Physiol. 2006 Jul;208(1):229-37 16188933 - J Cell Sci. 2005 Oct 15;118(Pt 20):4731-9 21925313 - Cell. 2011 Sep 16;146(6):873-87 16337626 - Exp Cell Res. 2006 Feb 1;312(3):289-98 20543206 - Cardiovasc Res. 2010 Jul 15;87(2):320-30 11166277 - Cardiovasc Res. 2001 Feb 16;49(3):634-46 12234794 - Am J Physiol Heart Circ Physiol. 2002 Oct;283(4):H1430-8 12093818 - J Biol Chem. 2002 Sep 20;277(38):34808-14 23569284 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6712-7 2611800 - Cardiovasc Res. 1989 Nov;23(11):913-20 16760315 - Am J Physiol Lung Cell Mol Physiol. 2006 Jul;291(1):L30-7 18805898 - Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2087-97 12954720 - Development. 2003 Nov;130(21):5281-90 22941228 - Angiogenesis. 2013 Jan;16(1):71-83 21822739 - Ann Biomed Eng. 2011 Nov;39(11):2767-79 17308001 - Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H3190-7 10861846 - J Cell Biochem. 2000 Jun 6;78(3):487-99 10428027 - Cell. 1999 Jul 23;98(2):147-57 22020089 - Exp Cell Res. 2012 Jan 1;318(1):75-84 16389519 - Ann Biomed Eng. 2005 Dec;33(12):1719-23 16163360 - Nature. 2005 Sep 15;437(7057):426-31 22002053 - J Biol Chem. 2011 Dec 9;286(49):42017-26 Jinga VV (e_1_3_3_18_2) 1986; 23 Kuo L (e_1_3_3_3_2) 1990; 259 Semino CE (e_1_3_3_11_2) 2006; 312 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_21_2 |
References_xml | – ident: e_1_3_3_26_2 doi: 10.1115/1.2794192 – ident: e_1_3_3_35_2 doi: 10.1074/jbc.M205417200 – ident: e_1_3_3_23_2 doi: 10.1074/jbc.M111.290841 – ident: e_1_3_3_2_2 doi: 10.1016/j.cell.2011.08.039 – ident: e_1_3_3_10_2 doi: 10.1089/ten.tea.2007.0314 – volume: 312 start-page: 289 year: 2006 ident: e_1_3_3_11_2 article-title: Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow publication-title: Exp Cell Res contributor: fullname: Semino CE – ident: e_1_3_3_27_2 doi: 10.1016/j.yexcr.2011.10.008 – volume: 23 start-page: 227 year: 1986 ident: e_1_3_3_18_2 article-title: Experimental model for the quantitative estimation of transendothelial transport in vitro; a two-compartment system publication-title: Physiologie contributor: fullname: Jinga VV – ident: e_1_3_3_32_2 doi: 10.1002/jcp.20658 – ident: e_1_3_3_5_2 doi: 10.1016/S0008-6363(00)00282-0 – ident: e_1_3_3_15_2 doi: 10.1007/s10439-011-0371-9 – ident: e_1_3_3_24_2 doi: 10.1007/s10456-012-9300-2 – ident: e_1_3_3_29_2 doi: 10.1073/pnas.1103581108 – ident: e_1_3_3_31_2 doi: 10.1152/ajpheart.00732.2009 – ident: e_1_3_3_30_2 doi: 10.1152/ajpheart.00369.2009 – ident: e_1_3_3_17_2 doi: 10.1038/nature03952 – ident: e_1_3_3_36_2 doi: 10.1242/dev.00733 – ident: e_1_3_3_13_2 doi: 10.1152/jappl.1999.87.1.261 – ident: e_1_3_3_22_2 doi: 10.1152/ajpheart.00281.2008 – ident: e_1_3_3_7_2 doi: 10.1093/cvr/cvq146 – ident: e_1_3_3_21_2 doi: 10.1073/pnas.1221526110 – ident: e_1_3_3_33_2 doi: 10.1152/ajpheart.00082.2002 – ident: e_1_3_3_20_2 doi: 10.1002/1097-4644(20000901)78:3<487::AID-JCB13>3.0.CO;2-Z – ident: e_1_3_3_14_2 doi: 10.1152/ajplung.00317.2005 – ident: e_1_3_3_12_2 doi: 10.1007/s10439-005-8775-z – ident: e_1_3_3_16_2 doi: 10.1016/S0092-8674(00)81010-7 – ident: e_1_3_3_19_2 doi: 10.1016/j.mvr.2006.02.005 – ident: e_1_3_3_4_2 doi: 10.1093/cvr/23.11.913 – ident: e_1_3_3_34_2 doi: 10.1006/exmp.2002.2457 – ident: e_1_3_3_9_2 doi: 10.1073/pnas.1105316108 – ident: e_1_3_3_28_2 doi: 10.1242/jcs.02605 – ident: e_1_3_3_8_2 doi: 10.1016/j.biomaterials.2010.04.041 – ident: e_1_3_3_1_2 doi: 10.1172/JCI117858 – volume: 259 start-page: H1063 year: 1990 ident: e_1_3_3_3_2 article-title: Endothelium-dependent, flow-induced dilation of isolated coronary arterioles publication-title: Am J Physiol contributor: fullname: Kuo L – ident: e_1_3_3_6_2 doi: 10.1152/ajpheart.01177.2006 – ident: e_1_3_3_25_2 doi: 10.1152/ajpheart.00956.2004 |
SSID | ssj0009580 |
Score | 2.6260161 |
Snippet | The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using... A great deal of research has investigated the biochemical factors that regulate angiogenic sprouting, but less is known about the role of fluid shear stress.... |
SourceID | pubmedcentral proquest crossref pubmed pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 7968 |
SubjectTerms | Adenoviridae - genetics Angiogenesis Biological Sciences Capillaries - cytology Capillaries - physiology Cell Movement - physiology Collagens Density Endothelial cells Endothelial Cells - cytology Endothelial Cells - physiology Endothelial Cells - ultrastructure Experiments Finite Element Analysis Flow velocity Fluid mechanics Fluid shear Fluid shear stress Gene Silencing Human Umbilical Vein Endothelial Cells Humans Hydrophobic and Hydrophilic Interactions Intercellular junctions Matrix Matrix Metalloproteinase 1 - genetics Matrix Metalloproteinase 1 - physiology Maturation Mechanotransduction, Cellular - physiology Microfluidics - instrumentation Microfluidics - methods Microscopy, Electron, Transmission Models, Biological Neovascularization, Physiologic - physiology Physical Sciences Shear stress Sprouting Sprouts Stress, Mechanical |
SummonAdditionalLinks | – databaseName: JSTOR Life Sciences Collection dbid: JLS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5aOe3C6KBQYChImwSHjMR2akecJkbV0y4dErfISeyuEkoRaf5_PjtJSycm7Rr_iN97_vFZ7_l7RF9ZYXXJClxTDUtCIVUeait5aJ1TDCdcLvxD4dlc_npUP-8dTc63_i2MC6v0cYHeiw-AlD-ZG8YlYK2UAxqoSLVxe2-YdVX7zoRhuxVM9Pw9kt88V7r-HgPA4HscxztHz8DqVR-D6IhNUfU9kPl3rOSbw2f66T-HfUD7HboMfrTTYUgfTPWZht36rYOrjmT6-pBup0_Nsgxql9A6aB-MBGvYtXbuqOClzVCPJrpaLFeYZMsiqDHsxkVJH9HD9P733SzsEimERZLIdZgDJAjHNcdUYXSuhGYq1gZIwFrYCcOUZWEN0EFkcp24dDw2So2WiaOCUYKPaK9aVeaEAmtskWpmrFVcALukQESlyiPLyklcinRMV72Os-eWLyPzfm7JM6fjbGuOMZ3ABpleYDfLHubMcd25-53iKBp5bW666FWJNr6XTde4vjCWyXSixnTeWy_r1iH-lvBJiktwEo3pclOMFeTcIroyq6atAzljhS6OW2Nv_wsZoTwMSO5Mg00Fx869W1It_3iWbuFyBE7i03-JckYfIbLwYWf8nPbWL435QoO6bC78BH8FWQ7zpA priority: 102 providerName: JSTOR |
Title | Fluid shear stress threshold regulates angiogenic sprouting |
URI | https://www.jstor.org/stable/23775877 http://www.pnas.org/content/111/22/7968.abstract https://www.ncbi.nlm.nih.gov/pubmed/24843171 https://www.proquest.com/docview/1536982550 https://search.proquest.com/docview/1536684188 https://pubmed.ncbi.nlm.nih.gov/PMC4050561 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB51OfWCoLzS0lWQONBDdjeOHTviVFFWXFpVokjcIsexIRJkV2Tz_5lxHnQrTr3GGT9mxp4ZefwNwDkzTpfMYJhqmYi4VEWknUwiR5diaOEK7h8K39zKX_fqxzXB5IjhLYxP2jdFNaufnmd19ehzK9fPZj7kic1__7ziVH4tjecTmKBvOIToI9Ku6t6dMDx-OeMDno9M5utaN7MYHRr8jnucgIC5Igsab1mlidOrIT2RME-R6j3_8980yr_s0nIPdnuHMvzeTXwfPtj6E-z3W7YJL3pc6W8HcLl8aqsybKiGddi9EQk3KMqGbqDCl64oPZLo-qFaoV5VJmxwOi0lRh_C3fL6z9VN1NdOiIwQchMVuCpO8HJMGasLxTVTsbZo_J1D0SRSytI4iw7BwhZaUAUet8isloLQX5ApR7BTr2p7AqGzzmSaWedUguxKM3SCSlUsHCvTuORZABcD7_J1B5GR-6ttmeTEu_yN4wGcIG9z_YAHWH53ywjejkI6lWDTkWf42AXDOQolJdL4XsauMWJhLJdZqgI4HaSS91sPRxNJmmHcKxYBnI3NuGnoJkTXdtV2_-A6Y4VdHHdCfBu3V4kA5JZ4xx8IkHu7BfXUA3P3evn5vym_wEfkCfepaMkp7GxeWvsVJk3ZTn2y6tRXxJh6hX8Fp0D90g |
link.rule.ids | 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2x5QAXSoG2W1oIEkjlkDaxnbUjTqh0tYjSS1uJm-UkdrtSla2azf_n2Um2XQQS1_gjnhl_PGvGb4g-stKZipW4plqWxUKqIjZO8th5pxhOuEKEh8KzC3n-S3079TQ5n4a3MD6sMsQFBi8-AFJxa48Zl4C1Uo7oaaYSLrvIvUfcuqp7acKw4QomBgYfyY_vatMcpYAw-J6m6drhM3JmMUQhempTVP0bzPwzWvLR8TPd_M-Bv6QXPb6MvnYTYoue2PoVbfUruIkOe5rpz6_py_S2nVdR41NaR92TkWgJyzbeIRXddznq0cTU1_MFptm8jBoMu_Vx0m_oanp6eTKL-1QKcZllchkXgAnCs80xVVpTKGGYSo0FFnAOlsIwZVU6C3yQ2MJkPiGPS3JrZObJYJTg27RRL2q7S5GzrswNs84pLoBecmCiShWJY9UkrUQ-psNBx_quY8zQwdMtufY61g_mGNMubKDNNfYzfXXBPNudv-EpjqLtoM1VF4Mq0Sb0suoaFxjGtMwnakz7g_V0vxLxt4xPclyDs2RMH1bFWEPeMWJqu2i7OpAzVehipzP2w38hI5SHAcm1abCq4Pm510vq-U3g6RY-S-Ak3fuXKO_p2ezy55k--37-4y09h_giBKHxfdpY3rf2gEZN1b4Lk_03T1b29w |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB11Qap6KR8tZSmlQeoBDulubGftqCdUWFEVISSK1JvlJDZdCWVXZPP_--wkC1u1h17jj9gzY_tZM35D9IkVzpSswDXVsjQWUuWxcZLHzjvFcMLlIjwUvryV1z_V-YWnyTnt38L4sMoQFxi8-ABI-YMdLUo3YlwC2ko5oM0UtxrVJgd4xq-r2tcmDJuuYKJn8ZF8tKhM_TkBjMH3JEnWDqCBM_M-EtHTm6Lq36DmnxGTz46g6dZ_DH6bXnc4MzprDWOHXthql3a6lVxHJx3d9Okb-jJ9aGZlVPvU1lH7dCRaQsO1d0xFj22uejQx1f1sDnObFVGNoTc-Xvot3U0vfny9jLuUCnGRpnIZ54ALwrPOMVVYkythmEqMBSZwDhrDMGVZOAucMLa5SX1iHjfOrJGpJ4VRgu_RRjWv7D5FzroiM8w6p7gAismAjUqVjx0rJ0kpsiGd9HLWi5Y5QwePt-Tay1k_qWRI-9CDNvfY1_TdLfOsd_6mpziK9oJEV130okSb0Muqa1xkGNMym6ghHfYa1N2KxN9SPslgOOl4SMerYqwl7yAxlZ03bR3MM1Ho4l2r8Kf_Yo4QHgYk10xhVcHzdK-XVLNfga9b-GyBk-TgX1P5SC9vzqf66tv19_f0CrMXIRaNH9LG8rGxH2hQl81RsPffYTT5cA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+shear+stress+threshold+regulates+angiogenic+sprouting&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Galie%2C+Peter+A.&rft.au=Nguyen%2C+Duc-Huy+T.&rft.au=Choi%2C+Colin+K.&rft.au=Cohen%2C+Daniel+M.&rft.date=2014-06-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=22&rft.spage=7968&rft.epage=7973&rft_id=info:doi/10.1073%2Fpnas.1310842111&rft.externalDocID=23775877 |
thumbnail_m | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F22.cover.gif |
thumbnail_s | http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F22.cover.gif |