Fluid shear stress threshold regulates angiogenic sprouting

The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that tr...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 111; no. 22; pp. 7968 - 7973
Main Authors: Galie, Peter A., Nguyen, Duc-Huy T., Choi, Colin K., Cohen, Daniel M., Janmey, Paul A., Chen, Christopher S.
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 03-06-2014
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm ² triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell–cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell–cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density.
AbstractList The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm ² triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell–cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell–cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density.
A great deal of research has investigated the biochemical factors that regulate angiogenic sprouting, but less is known about the role of fluid shear stress. Some studies have suggested distinct regulation by luminal flow within the vessel vs. transmural flow through its walls. In this paper, we demonstrate the existence of a shear stress threshold that when surpassed, induces angiogenic sprouting regardless of whether the shear is applied by primarily luminal or transmural flow. In addition to identifying matrix metalloproteinase 1 as the relevant downstream effector, we use finite-element modeling to predict spatial distributions of shear stress within 3D geometries that experimentally caused localized patterns of sprouting. Together, these studies demonstrate a means by which fluid flow can guide vasculature architecture. The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm 2 triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell–cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell–cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density.
The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm2 triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell–cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell–cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprounting and offer a potential homeostatic mechanism for regulating vascular density.
The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm(2) triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell-cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell-cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density.
The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using microfluidic control of local fluid mechanics, we show the existence of a previously unappreciated flow-induced shear stress threshold that triggers angiogenic sprouting. Both intraluminal shear stress over the endothelium and transmural flow through the endothelium above 10 dyn/cm^sup 2^ triggered endothelial cells to sprout and invade into the underlying matrix, and this threshold is not impacted by the maturation of cell-cell junctions or pressure gradient across the monolayer. Antagonizing VE-cadherin widened cell-cell junctions and reduced the applied shear stress for a given transmural flow rate, but did not affect the shear threshold for sprouting. Furthermore, both transmural and luminal flow induced expression of matrix metalloproteinase 1, and this up-regulation was required for the flow-induced sprouting. Once sprouting was initiated, continuous flow was needed to both sustain sprouting and prevent retraction. To explore the potential ramifications of a shear threshold on the spatial patterning of new sprouts, we used finite-element modeling to predict fluid shear in a variety of geometric settings and then experimentally demonstrated that transmural flow guided preferential sprouting toward paths of draining interstitial fluid flow as might occur to connect capillary beds to venules or lymphatics. In addition, we show that luminal shear increases in local narrowings of vessels to trigger sprouting, perhaps ultimately to normalize shear stress across the vasculature. Together, these studies highlight the role of shear stress in controlling angiogenic sprouting and offer a potential homeostatic mechanism for regulating vascular density.
Author Cohen, Daniel M.
Nguyen, Duc-Huy T.
Chen, Christopher S.
Galie, Peter A.
Janmey, Paul A.
Choi, Colin K.
Author_xml – sequence: 1
  givenname: Peter A.
  surname: Galie
  fullname: Galie, Peter A.
– sequence: 2
  givenname: Duc-Huy T.
  surname: Nguyen
  fullname: Nguyen, Duc-Huy T.
– sequence: 3
  givenname: Colin K.
  surname: Choi
  fullname: Choi, Colin K.
– sequence: 4
  givenname: Daniel M.
  surname: Cohen
  fullname: Cohen, Daniel M.
– sequence: 5
  givenname: Paul A.
  surname: Janmey
  fullname: Janmey, Paul A.
– sequence: 6
  givenname: Christopher S.
  surname: Chen
  fullname: Chen, Christopher S.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24843171$$D View this record in MEDLINE/PubMed
BookMark eNpdkUFvEzEQhS3UiqaFMydgpV64bDvjtddeISGhqqWVKnGAni1nM7txtLGDvYvEv8chIYGe5jDfvJk375yd-OCJsTcIVwiqut54m66wQtCCI-ILNkNosKxFAydsBsBVmTvijJ2ntAKARmp4yc640KJChTP28W6Y3KJIS7KxSGOklIpxmcsyDIsiUj8NdqRUWN-70JN3bZE2MUyj8_0rdtrZIdHrfb1gT3e332_uy8evXx5uPj-WrZRqLOd5k8ibJdct2bkWlmu0BCi7jrdYKaUWbUegEWhuZc2V6KAhq2StRTZWXbBPO93NNF_ToiU_RjuYTXRrG3-ZYJ35v-Pd0vThpxEgQdaYBT7sBWL4MVEazdqllobBegpTMiirOu9CrTN6-QxdhSn6bO8P1WguJWTqeke1MaQUqTscg2C2wZhtMOYYTJ5496-HA_83iQy83wPbyYMcouHcqKbenvZ2R6zSGOJRIT9QaqWOCp0NxvbRJfP0jQPWACiErrD6Dav_p_s
CitedBy_id crossref_primary_10_1088_1758_5090_ac48e5
crossref_primary_10_1186_s12974_022_02642_4
crossref_primary_10_1063_5_0165119
crossref_primary_10_3390_bioengineering10020124
crossref_primary_10_3390_s22239414
crossref_primary_10_1016_j_ultrasmedbio_2018_05_011
crossref_primary_10_1007_s12195_016_0429_8
crossref_primary_10_1016_j_stemcr_2023_06_001
crossref_primary_10_1111_aor_14232
crossref_primary_10_1038_s44286_023_00008_y
crossref_primary_10_1007_s00441_020_03276_9
crossref_primary_10_1016_j_stemcr_2019_01_009
crossref_primary_10_1016_j_biomaterials_2016_11_012
crossref_primary_10_1016_j_jss_2015_11_049
crossref_primary_10_3389_fbioe_2020_589960
crossref_primary_10_1111_micc_12576
crossref_primary_10_3390_jfb13030092
crossref_primary_10_1007_s12018_015_9194_9
crossref_primary_10_1002_adfm_202111273
crossref_primary_10_1038_nrm_2017_36
crossref_primary_10_1002_adfm_202206767
crossref_primary_10_1038_s41596_019_0144_8
crossref_primary_10_1007_s10404_015_1689_7
crossref_primary_10_1002_adhm_201701204
crossref_primary_10_1021_acsami_2c15180
crossref_primary_10_3892_ijmm_2018_3841
crossref_primary_10_1002_adhm_201600505
crossref_primary_10_1007_s10456_017_9559_4
crossref_primary_10_1063_5_0171350
crossref_primary_10_3389_fcvm_2020_610344
crossref_primary_10_1126_sciadv_adg9781
crossref_primary_10_1089_ten_tea_2019_0175
crossref_primary_10_1007_s00366_023_01889_6
crossref_primary_10_3390_mi10070451
crossref_primary_10_1038_s41598_021_97008_w
crossref_primary_10_1155_2023_8134027
crossref_primary_10_1097_MOH_0000000000000240
crossref_primary_10_3390_bioengineering4010008
crossref_primary_10_3892_ijmm_2017_3108
crossref_primary_10_1016_j_colsurfb_2022_112419
crossref_primary_10_1039_D2LC00352J
crossref_primary_10_3390_biomedicines9091137
crossref_primary_10_1039_D2LC00919F
crossref_primary_10_1016_j_ces_2020_115591
crossref_primary_10_1016_j_imlet_2019_03_011
crossref_primary_10_1016_j_stemcr_2021_03_015
crossref_primary_10_1039_C7LC00774D
crossref_primary_10_1089_ten_tea_2021_0231
crossref_primary_10_1002_adtp_202300410
crossref_primary_10_3390_bioengineering9110668
crossref_primary_10_1038_s41596_021_00533_1
crossref_primary_10_1186_s12938_020_0752_0
crossref_primary_10_1021_acsomega_3c10271
crossref_primary_10_1111_micc_12595
crossref_primary_10_1152_japplphysiol_00741_2017
crossref_primary_10_1016_j_isci_2023_106661
crossref_primary_10_1016_j_ultrasmedbio_2016_08_010
crossref_primary_10_3390_mi11010018
crossref_primary_10_1007_s10404_022_02563_x
crossref_primary_10_1002_adma_202209149
crossref_primary_10_1016_j_addr_2022_114233
crossref_primary_10_1002_adhm_201500677
crossref_primary_10_1007_s10439_018_02164_2
crossref_primary_10_1039_C8LC00485D
crossref_primary_10_1080_17435390_2019_1571646
crossref_primary_10_2174_1573403X15666190730095153
crossref_primary_10_1038_s41598_018_23653_3
crossref_primary_10_1016_j_biotechadv_2016_07_002
crossref_primary_10_1111_micc_12361
crossref_primary_10_1002_term_2847
crossref_primary_10_1093_brain_awaa268
crossref_primary_10_1016_j_semcdb_2021_06_005
crossref_primary_10_1111_micc_12363
crossref_primary_10_1089_ten_teb_2017_0010
crossref_primary_10_1002_adma_202007977
crossref_primary_10_3389_fbioe_2022_1048731
crossref_primary_10_1016_j_bbiosy_2024_100097
crossref_primary_10_1152_ajprenal_00166_2023
crossref_primary_10_1146_annurev_bioeng_090120_094330
crossref_primary_10_1016_j_cpcardiol_2022_101399
crossref_primary_10_1097_HJH_0000000000000455
crossref_primary_10_2491_jjsth_30_512
crossref_primary_10_3390_pharmaceutics15082094
crossref_primary_10_1016_j_mvr_2022_104377
crossref_primary_10_1016_j_trac_2023_116919
crossref_primary_10_1016_j_mvr_2016_02_008
crossref_primary_10_1038_s41598_018_27943_8
crossref_primary_10_3390_bioengineering7010017
crossref_primary_10_1016_j_biomaterials_2022_121672
crossref_primary_10_3390_cells9091965
crossref_primary_10_1016_j_atherosclerosis_2024_118529
crossref_primary_10_1016_j_envpol_2020_115861
crossref_primary_10_1007_s00018_016_2325_8
crossref_primary_10_1371_journal_pone_0276744
crossref_primary_10_1063_5_0023342
crossref_primary_10_1177_0391398820936700
crossref_primary_10_1007_s10456_023_09868_7
crossref_primary_10_1088_1758_5090_ab5898
crossref_primary_10_18632_oncotarget_11748
crossref_primary_10_1007_s10456_018_9613_x
crossref_primary_10_3164_jcbn_22_50
crossref_primary_10_1063_1_5094735
crossref_primary_10_1016_j_biopha_2023_116117
crossref_primary_10_1002_adhm_201601118
crossref_primary_10_1016_j_biomaterials_2015_11_062
crossref_primary_10_1038_srep17840
crossref_primary_10_1016_j_biomaterials_2021_121286
crossref_primary_10_1007_s10237_022_01648_4
crossref_primary_10_1016_j_mvr_2020_104121
crossref_primary_10_1021_acsbiomaterials_8b01195
crossref_primary_10_1002_adfm_202203966
crossref_primary_10_1016_j_mvr_2022_104360
crossref_primary_10_1098_rsif_2022_0360
crossref_primary_10_1088_1361_6463_ab78d4
crossref_primary_10_1088_1758_5090_ad5ac0
crossref_primary_10_1002_advs_202400921
crossref_primary_10_1083_jcb_201701039
crossref_primary_10_1038_s41598_021_92515_2
crossref_primary_10_1002_adhm_201700489
crossref_primary_10_1002_term_2774
crossref_primary_10_1039_D0LC00493F
crossref_primary_10_1016_j_cclet_2021_10_026
crossref_primary_10_1039_D0LC00546K
crossref_primary_10_1007_s10557_020_06944_8
crossref_primary_10_1002_adfm_201801331
crossref_primary_10_1039_C6LC00910G
crossref_primary_10_1111_micc_12830
crossref_primary_10_1124_pr_116_012492
crossref_primary_10_1097_CORR_0000000000000993
crossref_primary_10_1371_journal_pone_0119227
crossref_primary_10_1039_D3LC00719G
crossref_primary_10_1098_rsif_2017_0137
crossref_primary_10_1146_annurev_fluid_072220_013845
crossref_primary_10_1016_j_biomaterials_2019_01_022
crossref_primary_10_1042_CS20180155
crossref_primary_10_1126_sciadv_adj8540
crossref_primary_10_1039_D1LC00014D
crossref_primary_10_1073_pnas_1714282115
crossref_primary_10_1016_j_mvr_2015_12_002
crossref_primary_10_1002_admt_202000683
crossref_primary_10_1242_dev_151266
crossref_primary_10_1016_j_cjprs_2021_12_005
crossref_primary_10_1093_function_zqad046
crossref_primary_10_1002_adfm_201910811
crossref_primary_10_1039_D2LC00605G
crossref_primary_10_1002_mc_23327
crossref_primary_10_1021_acsami_0c21868
crossref_primary_10_1088_1758_5090_ab33e8
crossref_primary_10_1089_ten_tea_2020_0213
crossref_primary_10_3390_ijms24097886
crossref_primary_10_1021_acsbiomaterials_7b00025
crossref_primary_10_3389_fcell_2022_933474
crossref_primary_10_1002_admt_202300617
crossref_primary_10_1007_s10456_018_9645_2
crossref_primary_10_1021_acsbiomaterials_2c00531
crossref_primary_10_1242_dev_128058
crossref_primary_10_1038_s41578_022_00447_8
crossref_primary_10_1152_ajpheart_00516_2016
crossref_primary_10_3389_fphys_2020_00684
crossref_primary_10_1016_j_mvr_2021_104211
crossref_primary_10_1038_s41598_019_38558_y
crossref_primary_10_3390_biom14020234
crossref_primary_10_1016_j_biomaterials_2015_11_019
crossref_primary_10_1038_s42003_020_0881_9
crossref_primary_10_1002_smll_202003797
crossref_primary_10_1016_j_exer_2015_03_021
crossref_primary_10_1016_j_jtv_2015_07_004
crossref_primary_10_1007_s40005_017_0313_0
crossref_primary_10_3390_mi9100493
crossref_primary_10_1016_S1872_2040_16_60920_9
crossref_primary_10_1002_adma_202303196
crossref_primary_10_1080_13543784_2021_1964471
crossref_primary_10_7570_jomes21096
crossref_primary_10_3389_fbioe_2019_00172
crossref_primary_10_1038_s41578_019_0099_y
crossref_primary_10_1016_j_stem_2018_02_009
crossref_primary_10_1002_bit_27626
crossref_primary_10_1038_s44318_024_00142_0
crossref_primary_10_1371_journal_pone_0191275
crossref_primary_10_1002_bit_26778
crossref_primary_10_3233_CH_180414
crossref_primary_10_1002_adbi_202101080
crossref_primary_10_1016_j_ultrasmedbio_2021_03_019
crossref_primary_10_1371_journal_pcbi_1005223
crossref_primary_10_1038_s41598_022_08186_0
crossref_primary_10_1134_S0869864318020063
crossref_primary_10_1002_adfm_202003777
crossref_primary_10_1088_2515_7639_acada1
crossref_primary_10_1002_jbio_201700226
crossref_primary_10_1016_j_bioactmat_2022_07_004
crossref_primary_10_1002_adhm_202001028
crossref_primary_10_1016_j_jconrel_2018_01_032
crossref_primary_10_1016_j_tcm_2021_01_004
crossref_primary_10_1002_advs_202300670
crossref_primary_10_1039_C4IB00164H
crossref_primary_10_1158_0008_5472_CAN_15_0325
crossref_primary_10_1002_jcp_31177
crossref_primary_10_1088_1361_6528_aac7a4
crossref_primary_10_1016_j_jacc_2015_01_042
crossref_primary_10_3390_cancers13205118
crossref_primary_10_1002_term_3309
crossref_primary_10_1016_j_cjca_2016_05_020
crossref_primary_10_1002_VIW_20200183
crossref_primary_10_1039_C6LC00193A
crossref_primary_10_1002_adfm_201803822
crossref_primary_10_1038_s41551_018_0251_9
crossref_primary_10_1111_micc_12754
crossref_primary_10_1016_j_biomaterials_2021_121298
crossref_primary_10_1038_srep22147
crossref_primary_10_1089_aivt_2016_0002
crossref_primary_10_1016_j_cdev_2021_203735
crossref_primary_10_1038_s42003_019_0400_z
crossref_primary_10_1016_j_jbiomech_2015_10_026
crossref_primary_10_3389_fphys_2020_00552
crossref_primary_10_1371_journal_pone_0293609
crossref_primary_10_3389_fbioe_2022_912073
crossref_primary_10_1016_j_yexcr_2017_03_016
crossref_primary_10_1002_anbr_202100056
crossref_primary_10_1242_jcs_261130
crossref_primary_10_1101_cshperspect_a031559
crossref_primary_10_1016_j_actbio_2019_12_033
crossref_primary_10_1063_5_0097967
crossref_primary_10_1002_adhm_201700506
crossref_primary_10_1007_s00335_022_09951_2
crossref_primary_10_1007_s00246_014_1061_9
crossref_primary_10_1177_2041731419879837
crossref_primary_10_1002_adhm_201500958
crossref_primary_10_1089_ten_teb_2023_0044
crossref_primary_10_1016_j_addr_2018_06_011
crossref_primary_10_1002_cnm_3654
crossref_primary_10_1038_s42003_021_02285_w
crossref_primary_10_1080_14686996_2024_2330339
crossref_primary_10_34133_2022_9869518
crossref_primary_10_1016_j_trac_2019_06_023
crossref_primary_10_1016_j_biomaterials_2020_120628
crossref_primary_10_1155_2015_454981
crossref_primary_10_1016_j_jmst_2022_09_066
crossref_primary_10_1038_s41467_022_30197_8
crossref_primary_10_1016_j_bbiosy_2021_100020
crossref_primary_10_2217_rme_14_83
crossref_primary_10_1088_1758_5090_ac2baa
crossref_primary_10_1002_bit_28111
crossref_primary_10_3233_CH_221428
crossref_primary_10_1242_dev_194209
crossref_primary_10_3390_mi10100700
crossref_primary_10_1111_micc_12547
crossref_primary_10_1016_j_semcdb_2017_06_002
crossref_primary_10_1186_s40580_021_00261_y
crossref_primary_10_1007_s10456_017_9586_1
crossref_primary_10_1016_j_snb_2020_127917
crossref_primary_10_1002_jcp_30840
crossref_primary_10_1016_j_bbamcr_2015_04_015
crossref_primary_10_1016_j_ceb_2016_04_011
crossref_primary_10_2131_jts_46_99
crossref_primary_10_1016_j_actbio_2018_12_042
crossref_primary_10_1007_s11695_020_04580_7
crossref_primary_10_1021_acs_langmuir_5b01752
crossref_primary_10_1089_ten_tea_2023_0201
crossref_primary_10_1212_WNL_0000000000006468
crossref_primary_10_1038_srep29510
crossref_primary_10_1002_jbm_a_37602
crossref_primary_10_1091_mbc_e16_06_0389
crossref_primary_10_1093_jbcr_irac166
crossref_primary_10_3389_fbioe_2022_915702
crossref_primary_10_3389_fbioe_2023_1126269
crossref_primary_10_1172_JCI87442
crossref_primary_10_1177_0271678X211020587
crossref_primary_10_1093_jb_mvad024
crossref_primary_10_1088_1758_5090_ac4fb5
crossref_primary_10_1115_1_4032188
crossref_primary_10_1016_j_biomaterials_2017_11_041
crossref_primary_10_1088_1758_5090_ad084a
crossref_primary_10_3233_CH_151976
crossref_primary_10_1039_C8LC00130H
crossref_primary_10_1161_ATVBAHA_119_312265
crossref_primary_10_1007_s10456_017_9553_x
Cites_doi 10.1115/1.2794192
10.1074/jbc.M205417200
10.1074/jbc.M111.290841
10.1016/j.cell.2011.08.039
10.1089/ten.tea.2007.0314
10.1016/j.yexcr.2011.10.008
10.1002/jcp.20658
10.1016/S0008-6363(00)00282-0
10.1007/s10439-011-0371-9
10.1007/s10456-012-9300-2
10.1073/pnas.1103581108
10.1152/ajpheart.00732.2009
10.1152/ajpheart.00369.2009
10.1038/nature03952
10.1242/dev.00733
10.1152/jappl.1999.87.1.261
10.1152/ajpheart.00281.2008
10.1093/cvr/cvq146
10.1073/pnas.1221526110
10.1152/ajpheart.00082.2002
10.1002/1097-4644(20000901)78:3<487::AID-JCB13>3.0.CO;2-Z
10.1152/ajplung.00317.2005
10.1007/s10439-005-8775-z
10.1016/S0092-8674(00)81010-7
10.1016/j.mvr.2006.02.005
10.1093/cvr/23.11.913
10.1006/exmp.2002.2457
10.1073/pnas.1105316108
10.1242/jcs.02605
10.1016/j.biomaterials.2010.04.041
10.1172/JCI117858
10.1152/ajpheart.01177.2006
10.1152/ajpheart.00956.2004
ContentType Journal Article
Copyright copyright © 1993–2008 National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jun 3, 2014
Copyright_xml – notice: copyright © 1993–2008 National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jun 3, 2014
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1310842111
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef


MEDLINE
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Flow-induced sprouting
EISSN 1091-6490
EndPage 7973
ExternalDocumentID 3337164461
10_1073_pnas_1310842111
24843171
111_22_7968
23775877
US201600144831
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
Feature
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: EB08396
– fundername: NIGMS NIH HHS
  grantid: R01 GM104287
– fundername: NHLBI NIH HHS
  grantid: T32 HL007954
– fundername: NIBIB NIH HHS
  grantid: UH3 EB017103
– fundername: NIBIB NIH HHS
  grantid: UH2 EB017103
– fundername: NIBIB NIH HHS
  grantid: EB017103
– fundername: NIBIB NIH HHS
  grantid: R01 EB008396
– fundername: NIBIB NIH HHS
  grantid: R01 EB000262
– fundername: NHLBI NIH HHS
  grantid: HL007954
– fundername: NIBIB NIH HHS
  grantid: EB00262
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
AQVQM
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
DZ
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c557t-b3174095528ceab84a281ae015ff2c13777dcfe0810eba56274f09ea756840843
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:08:41 EDT 2024
Thu Oct 24 23:18:37 EDT 2024
Thu Oct 10 17:00:33 EDT 2024
Thu Nov 21 23:54:37 EST 2024
Sat Sep 28 07:53:48 EDT 2024
Wed Nov 11 00:30:20 EST 2020
Fri Feb 02 07:04:41 EST 2024
Wed Dec 27 19:05:16 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Keywords migration
force
morphogenesis
angiogenesis
mechanotransduction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c557t-b3174095528ceab84a281ae015ff2c13777dcfe0810eba56274f09ea756840843
Notes http://dx.doi.org/10.1073/pnas.1310842111
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: P.A.G., D.M.C., and P.A.J. designed research; P.A.G. performed research; D.-H.T.N. and C.K.C. contributed new reagents/analytic tools; P.A.G. and C.S.C. analyzed data; and P.A.G. wrote the paper.
Edited by Sheldon Weinbaum, The City College of New York, New York, NY, and approved April 21, 2014 (received for review June 7, 2013)
OpenAccessLink https://www.pnas.org/content/pnas/111/22/7968.full.pdf
PMID 24843171
PQID 1536982550
PQPubID 42026
PageCount 6
ParticipantIDs pubmed_primary_24843171
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4050561
crossref_primary_10_1073_pnas_1310842111
jstor_primary_23775877
proquest_journals_1536982550
pnas_primary_111_22_7968
proquest_miscellaneous_1536684188
fao_agris_US201600144831
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2014-06-03
PublicationDateYYYYMMDD 2014-06-03
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-03
  day: 03
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2014
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 2221113 - Am J Physiol. 1990 Oct;259(4 Pt 2):H1063-70
21690404 - Proc Natl Acad Sci U S A. 2011 Jul 5;108(27):11115-20
7706486 - J Clin Invest. 1995 Apr;95(4):1798-807
12231217 - Exp Mol Pathol. 2002 Oct;73(2):142-53
20537705 - Biomaterials. 2010 Aug;31(24):6182-9
10409584 - J Appl Physiol (1985). 1999 Jul;87(1):261-8
16600313 - Microvasc Res. 2006 May;71(3):185-96
21876168 - Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15342-7
3103142 - Physiologie. 1986 Oct-Dec;23(4):227-36
19880665 - Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H127-35
8618390 - J Biomech Eng. 1995 Aug;117(3):358-63
18636940 - Tissue Eng Part A. 2009 Jan;15(1):175-85
15576436 - Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1915-24
19465549 - Am J Physiol Heart Circ Physiol. 2009 Oct;297(4):H1225-34
16575906 - J Cell Physiol. 2006 Jul;208(1):229-37
16188933 - J Cell Sci. 2005 Oct 15;118(Pt 20):4731-9
21925313 - Cell. 2011 Sep 16;146(6):873-87
16337626 - Exp Cell Res. 2006 Feb 1;312(3):289-98
20543206 - Cardiovasc Res. 2010 Jul 15;87(2):320-30
11166277 - Cardiovasc Res. 2001 Feb 16;49(3):634-46
12234794 - Am J Physiol Heart Circ Physiol. 2002 Oct;283(4):H1430-8
12093818 - J Biol Chem. 2002 Sep 20;277(38):34808-14
23569284 - Proc Natl Acad Sci U S A. 2013 Apr 23;110(17):6712-7
2611800 - Cardiovasc Res. 1989 Nov;23(11):913-20
16760315 - Am J Physiol Lung Cell Mol Physiol. 2006 Jul;291(1):L30-7
18805898 - Am J Physiol Heart Circ Physiol. 2008 Nov;295(5):H2087-97
12954720 - Development. 2003 Nov;130(21):5281-90
22941228 - Angiogenesis. 2013 Jan;16(1):71-83
21822739 - Ann Biomed Eng. 2011 Nov;39(11):2767-79
17308001 - Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H3190-7
10861846 - J Cell Biochem. 2000 Jun 6;78(3):487-99
10428027 - Cell. 1999 Jul 23;98(2):147-57
22020089 - Exp Cell Res. 2012 Jan 1;318(1):75-84
16389519 - Ann Biomed Eng. 2005 Dec;33(12):1719-23
16163360 - Nature. 2005 Sep 15;437(7057):426-31
22002053 - J Biol Chem. 2011 Dec 9;286(49):42017-26
Jinga VV (e_1_3_3_18_2) 1986; 23
Kuo L (e_1_3_3_3_2) 1990; 259
Semino CE (e_1_3_3_11_2) 2006; 312
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_26_2
  doi: 10.1115/1.2794192
– ident: e_1_3_3_35_2
  doi: 10.1074/jbc.M205417200
– ident: e_1_3_3_23_2
  doi: 10.1074/jbc.M111.290841
– ident: e_1_3_3_2_2
  doi: 10.1016/j.cell.2011.08.039
– ident: e_1_3_3_10_2
  doi: 10.1089/ten.tea.2007.0314
– volume: 312
  start-page: 289
  year: 2006
  ident: e_1_3_3_11_2
  article-title: Autocrine EGF receptor activation mediates endothelial cell migration and vascular morphogenesis induced by VEGF under interstitial flow
  publication-title: Exp Cell Res
  contributor:
    fullname: Semino CE
– ident: e_1_3_3_27_2
  doi: 10.1016/j.yexcr.2011.10.008
– volume: 23
  start-page: 227
  year: 1986
  ident: e_1_3_3_18_2
  article-title: Experimental model for the quantitative estimation of transendothelial transport in vitro; a two-compartment system
  publication-title: Physiologie
  contributor:
    fullname: Jinga VV
– ident: e_1_3_3_32_2
  doi: 10.1002/jcp.20658
– ident: e_1_3_3_5_2
  doi: 10.1016/S0008-6363(00)00282-0
– ident: e_1_3_3_15_2
  doi: 10.1007/s10439-011-0371-9
– ident: e_1_3_3_24_2
  doi: 10.1007/s10456-012-9300-2
– ident: e_1_3_3_29_2
  doi: 10.1073/pnas.1103581108
– ident: e_1_3_3_31_2
  doi: 10.1152/ajpheart.00732.2009
– ident: e_1_3_3_30_2
  doi: 10.1152/ajpheart.00369.2009
– ident: e_1_3_3_17_2
  doi: 10.1038/nature03952
– ident: e_1_3_3_36_2
  doi: 10.1242/dev.00733
– ident: e_1_3_3_13_2
  doi: 10.1152/jappl.1999.87.1.261
– ident: e_1_3_3_22_2
  doi: 10.1152/ajpheart.00281.2008
– ident: e_1_3_3_7_2
  doi: 10.1093/cvr/cvq146
– ident: e_1_3_3_21_2
  doi: 10.1073/pnas.1221526110
– ident: e_1_3_3_33_2
  doi: 10.1152/ajpheart.00082.2002
– ident: e_1_3_3_20_2
  doi: 10.1002/1097-4644(20000901)78:3<487::AID-JCB13>3.0.CO;2-Z
– ident: e_1_3_3_14_2
  doi: 10.1152/ajplung.00317.2005
– ident: e_1_3_3_12_2
  doi: 10.1007/s10439-005-8775-z
– ident: e_1_3_3_16_2
  doi: 10.1016/S0092-8674(00)81010-7
– ident: e_1_3_3_19_2
  doi: 10.1016/j.mvr.2006.02.005
– ident: e_1_3_3_4_2
  doi: 10.1093/cvr/23.11.913
– ident: e_1_3_3_34_2
  doi: 10.1006/exmp.2002.2457
– ident: e_1_3_3_9_2
  doi: 10.1073/pnas.1105316108
– ident: e_1_3_3_28_2
  doi: 10.1242/jcs.02605
– ident: e_1_3_3_8_2
  doi: 10.1016/j.biomaterials.2010.04.041
– ident: e_1_3_3_1_2
  doi: 10.1172/JCI117858
– volume: 259
  start-page: H1063
  year: 1990
  ident: e_1_3_3_3_2
  article-title: Endothelium-dependent, flow-induced dilation of isolated coronary arterioles
  publication-title: Am J Physiol
  contributor:
    fullname: Kuo L
– ident: e_1_3_3_6_2
  doi: 10.1152/ajpheart.01177.2006
– ident: e_1_3_3_25_2
  doi: 10.1152/ajpheart.00956.2004
SSID ssj0009580
Score 2.6260161
Snippet The density and architecture of capillary beds that form within a tissue depend on many factors, including local metabolic demand and blood flow. Here, using...
A great deal of research has investigated the biochemical factors that regulate angiogenic sprouting, but less is known about the role of fluid shear stress....
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 7968
SubjectTerms Adenoviridae - genetics
Angiogenesis
Biological Sciences
Capillaries - cytology
Capillaries - physiology
Cell Movement - physiology
Collagens
Density
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - physiology
Endothelial Cells - ultrastructure
Experiments
Finite Element Analysis
Flow velocity
Fluid mechanics
Fluid shear
Fluid shear stress
Gene Silencing
Human Umbilical Vein Endothelial Cells
Humans
Hydrophobic and Hydrophilic Interactions
Intercellular junctions
Matrix
Matrix Metalloproteinase 1 - genetics
Matrix Metalloproteinase 1 - physiology
Maturation
Mechanotransduction, Cellular - physiology
Microfluidics - instrumentation
Microfluidics - methods
Microscopy, Electron, Transmission
Models, Biological
Neovascularization, Physiologic - physiology
Physical Sciences
Shear stress
Sprouting
Sprouts
Stress, Mechanical
SummonAdditionalLinks – databaseName: JSTOR Life Sciences Collection
  dbid: JLS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFH5aOe3C6KBQYChImwSHjMR2akecJkbV0y4dErfISeyuEkoRaf5_PjtJSycm7Rr_iN97_vFZ7_l7RF9ZYXXJClxTDUtCIVUeait5aJ1TDCdcLvxD4dlc_npUP-8dTc63_i2MC6v0cYHeiw-AlD-ZG8YlYK2UAxqoSLVxe2-YdVX7zoRhuxVM9Pw9kt88V7r-HgPA4HscxztHz8DqVR-D6IhNUfU9kPl3rOSbw2f66T-HfUD7HboMfrTTYUgfTPWZht36rYOrjmT6-pBup0_Nsgxql9A6aB-MBGvYtXbuqOClzVCPJrpaLFeYZMsiqDHsxkVJH9HD9P733SzsEimERZLIdZgDJAjHNcdUYXSuhGYq1gZIwFrYCcOUZWEN0EFkcp24dDw2So2WiaOCUYKPaK9aVeaEAmtskWpmrFVcALukQESlyiPLyklcinRMV72Os-eWLyPzfm7JM6fjbGuOMZ3ABpleYDfLHubMcd25-53iKBp5bW666FWJNr6XTde4vjCWyXSixnTeWy_r1iH-lvBJiktwEo3pclOMFeTcIroyq6atAzljhS6OW2Nv_wsZoTwMSO5Mg00Fx869W1It_3iWbuFyBE7i03-JckYfIbLwYWf8nPbWL435QoO6bC78BH8FWQ7zpA
  priority: 102
  providerName: JSTOR
Title Fluid shear stress threshold regulates angiogenic sprouting
URI https://www.jstor.org/stable/23775877
http://www.pnas.org/content/111/22/7968.abstract
https://www.ncbi.nlm.nih.gov/pubmed/24843171
https://www.proquest.com/docview/1536982550
https://search.proquest.com/docview/1536684188
https://pubmed.ncbi.nlm.nih.gov/PMC4050561
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB51OfWCoLzS0lWQONBDdjeOHTviVFFWXFpVokjcIsexIRJkV2Tz_5lxHnQrTr3GGT9mxp4ZefwNwDkzTpfMYJhqmYi4VEWknUwiR5diaOEK7h8K39zKX_fqxzXB5IjhLYxP2jdFNaufnmd19ehzK9fPZj7kic1__7ziVH4tjecTmKBvOIToI9Ku6t6dMDx-OeMDno9M5utaN7MYHRr8jnucgIC5Igsab1mlidOrIT2RME-R6j3_8980yr_s0nIPdnuHMvzeTXwfPtj6E-z3W7YJL3pc6W8HcLl8aqsybKiGddi9EQk3KMqGbqDCl64oPZLo-qFaoV5VJmxwOi0lRh_C3fL6z9VN1NdOiIwQchMVuCpO8HJMGasLxTVTsbZo_J1D0SRSytI4iw7BwhZaUAUet8isloLQX5ApR7BTr2p7AqGzzmSaWedUguxKM3SCSlUsHCvTuORZABcD7_J1B5GR-6ttmeTEu_yN4wGcIG9z_YAHWH53ywjejkI6lWDTkWf42AXDOQolJdL4XsauMWJhLJdZqgI4HaSS91sPRxNJmmHcKxYBnI3NuGnoJkTXdtV2_-A6Y4VdHHdCfBu3V4kA5JZ4xx8IkHu7BfXUA3P3evn5vym_wEfkCfepaMkp7GxeWvsVJk3ZTn2y6tRXxJh6hX8Fp0D90g
link.rule.ids 230,315,729,782,786,808,811,887,27933,27934,53800,53802,58025,58037,58258,58270
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2x5QAXSoG2W1oIEkjlkDaxnbUjTqh0tYjSS1uJm-UkdrtSla2azf_n2Um2XQQS1_gjnhl_PGvGb4g-stKZipW4plqWxUKqIjZO8th5pxhOuEKEh8KzC3n-S3079TQ5n4a3MD6sMsQFBi8-AFJxa48Zl4C1Uo7oaaYSLrvIvUfcuqp7acKw4QomBgYfyY_vatMcpYAw-J6m6drhM3JmMUQhempTVP0bzPwzWvLR8TPd_M-Bv6QXPb6MvnYTYoue2PoVbfUruIkOe5rpz6_py_S2nVdR41NaR92TkWgJyzbeIRXddznq0cTU1_MFptm8jBoMu_Vx0m_oanp6eTKL-1QKcZllchkXgAnCs80xVVpTKGGYSo0FFnAOlsIwZVU6C3yQ2MJkPiGPS3JrZObJYJTg27RRL2q7S5GzrswNs84pLoBecmCiShWJY9UkrUQ-psNBx_quY8zQwdMtufY61g_mGNMubKDNNfYzfXXBPNudv-EpjqLtoM1VF4Mq0Sb0suoaFxjGtMwnakz7g_V0vxLxt4xPclyDs2RMH1bFWEPeMWJqu2i7OpAzVehipzP2w38hI5SHAcm1abCq4Pm510vq-U3g6RY-S-Ak3fuXKO_p2ezy55k--37-4y09h_giBKHxfdpY3rf2gEZN1b4Lk_03T1b29w
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB11Qap6KR8tZSmlQeoBDulubGftqCdUWFEVISSK1JvlJDZdCWVXZPP_--wkC1u1h17jj9gzY_tZM35D9IkVzpSswDXVsjQWUuWxcZLHzjvFcMLlIjwUvryV1z_V-YWnyTnt38L4sMoQFxi8-ABI-YMdLUo3YlwC2ko5oM0UtxrVJgd4xq-r2tcmDJuuYKJn8ZF8tKhM_TkBjMH3JEnWDqCBM_M-EtHTm6Lq36DmnxGTz46g6dZ_DH6bXnc4MzprDWOHXthql3a6lVxHJx3d9Okb-jJ9aGZlVPvU1lH7dCRaQsO1d0xFj22uejQx1f1sDnObFVGNoTc-Xvot3U0vfny9jLuUCnGRpnIZ54ALwrPOMVVYkythmEqMBSZwDhrDMGVZOAucMLa5SX1iHjfOrJGpJ4VRgu_RRjWv7D5FzroiM8w6p7gAismAjUqVjx0rJ0kpsiGd9HLWi5Y5QwePt-Tay1k_qWRI-9CDNvfY1_TdLfOsd_6mpziK9oJEV130okSb0Muqa1xkGNMym6ghHfYa1N2KxN9SPslgOOl4SMerYqwl7yAxlZ03bR3MM1Ho4l2r8Kf_Yo4QHgYk10xhVcHzdK-XVLNfga9b-GyBk-TgX1P5SC9vzqf66tv19_f0CrMXIRaNH9LG8rGxH2hQl81RsPffYTT5cA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid+shear+stress+threshold+regulates+angiogenic+sprouting&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Galie%2C+Peter+A.&rft.au=Nguyen%2C+Duc-Huy+T.&rft.au=Choi%2C+Colin+K.&rft.au=Cohen%2C+Daniel+M.&rft.date=2014-06-03&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=111&rft.issue=22&rft.spage=7968&rft.epage=7973&rft_id=info:doi/10.1073%2Fpnas.1310842111&rft.externalDocID=23775877
thumbnail_m http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F22.cover.gif
thumbnail_s http://sdu.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F111%2F22.cover.gif