Glial Cells and Chronic Pain
Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacol...
Saved in:
Published in: | The Neuroscientist Vol. 16; no. 5; pp. 519 - 531 |
---|---|
Main Authors: | , , , |
Format: | Book Review Journal Article |
Language: | English |
Published: |
Los Angeles, CA
SAGE Publications
01-10-2010
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the past few years, the control of pain exerted by glial cells has emerged as a promising target against pathological pain. Indeed, changes in glial phenotypes have been reported throughout the entire nociceptive pathway, from peripheral nerves to higher integrative brain regions, and pharmacological inhibition of such glial reactions reduces the manifestation of pain in animal models. This complex interplay between glia and neurons relies on various mechanisms depending both on glial cell types considered (astrocytes, microglia, satellite cells, or Schwann cells), the anatomical location of the regulatory process (peripheral nerve, spinal cord, or brain), and the nature of the chronic pain paradigm. Intracellularly, recent advances have pointed to the activation of specific cascades, such as mitogen-associated protein kinases (MAPKs) in the underlying processes behind glial activation. In addition, given the large number of functions accomplished by glial cells, various mechanisms might sensitize nociceptive neurons including a release of pronociceptive cytokines and neurotrophins or changes in neurotransmitter-scavenging capacity. The authors review the conceptual advances made in the recent years about the implication of central and peripheral glia in animal models of chronic pain and discuss the possibility to translate it into human therapies in the future. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 ObjectType-Feature-1 RRJ.: Tel: +1 617-732-8852, Fax: +41 21 692 5275 RJI1@partners.org ID: Tel: +41 21 692 5276, Fax: +41 21 692 5275 Isabelle.Decosterd@unil.ch RDG: Tel: +41 21 692 5254, Fax: +41 21 692 5275 Romain-Daniel.Gosselin@chuv.ch MRS: Tel: +41 21 692 5276, Fax: +41 21 692 5275 Marc.Suter@chuv.ch |
ISSN: | 1073-8584 1089-4098 |
DOI: | 10.1177/1073858409360822 |