Cholesterol asymmetry in synaptic plasma membranes
J. Neurochem. (2011) 116, 684-689. ABSTRACT: Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Li...
Saved in:
Published in: | Journal of neurochemistry Vol. 116; no. 5; pp. 684 - 689 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Publishing Ltd
01-03-2011
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | J. Neurochem. (2011) 116, 684-689. ABSTRACT: Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. |
---|---|
AbstractList | Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function.Original Abstract: J. Neurochem. (2011) 116, 684-689. J. Neurochem. (2011) 116, 684-689. ABSTRACT: Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. J. Neurochem. (2011) 116, 684–689. Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low‐density lipoprotein receptor, sterol carrier protein‐2, fatty acid binding proteins, polyunsaturated fatty acids, P‐glycoprotein and caveolin‐1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo : 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. J. Neurochem. (2011) 116 , 684–689. Abstract Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo : (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low‐density lipoprotein receptor, sterol carrier protein‐2, fatty acid binding proteins, polyunsaturated fatty acids, P‐glycoprotein and caveolin‐1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. J. Neurochem. (2011) 116, 684-689. Abstract Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. [PUBLICATION ABSTRACT] |
Author | Eckert, Gunter P Müller, Walter E Gibson Wood, W Igbavboa, Urule |
Author_xml | – sequence: 1 fullname: Gibson Wood, W – sequence: 2 fullname: Igbavboa, Urule – sequence: 3 fullname: Müller, Walter E – sequence: 4 fullname: Eckert, Gunter P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21214553$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU9v1DAQxS1URLeFrwARF05Zxv_tA0hoBRRUwQF6trzOpM0qiRd7F5pvj9MtK-ACliVbnt978sw7IydjHJGQisKSlvVys6RC01pQaZcMyitooHp5-4AsjoUTsgBgrOYg2Ck5y3kDQJVQ9BE5ZZRRISVfELa6iT3mHabYVz5Pw4C7NFXdWOVp9NtdF6pt7_PgqwGHdfIj5sfkYev7jE_uz3Ny9e7t19VFffn5_YfVm8s6SKl0bblvNXit1gDrxkhvJA9N0yIwHjSiFY1SXgjkGCigMKYV1FjRMiusZYGfk9cH3-1-PWATcNwl37tt6gafJhd95_6sjN2Nu47fHQdprGTF4MW9QYrf9qVJN3Q5YN-XLuI-O6Ot0Ipy-W9SlrFKrWbP53-Rm7hPY5lDgUBwbZQokDlAIcWcE7bHT1Nwc4Bu4-ac3JyTmwN0dwG62yJ9-nvTR-GvxArw6gD86Hqc_tvYffy0mm9F_-ygb310_jp12V19KSQHagXlZf8EqNyz5A |
CitedBy_id | crossref_primary_10_1038_s41598_017_16780_w crossref_primary_10_1242_jcs_115253 crossref_primary_10_1089_rej_2012_1383 crossref_primary_10_1074_jbc_M114_570390 crossref_primary_10_3390_ijms22189688 crossref_primary_10_1016_j_nbd_2019_03_009 crossref_primary_10_3390_biomimetics6010003 crossref_primary_10_1371_journal_pone_0144814 crossref_primary_10_1016_j_arcmed_2018_08_008 crossref_primary_10_1016_j_bpj_2016_08_001 crossref_primary_10_1021_la500468r crossref_primary_10_1021_nl203983e crossref_primary_10_3390_biom10060881 crossref_primary_10_1016_j_bbamem_2018_04_004 crossref_primary_10_1021_acs_langmuir_3c01650 crossref_primary_10_1186_1742_4933_9_12 crossref_primary_10_3389_fphys_2022_953257 crossref_primary_10_1002_mds_28396 crossref_primary_10_1039_D0SM01709D crossref_primary_10_1016_j_bbamem_2012_07_010 crossref_primary_10_3389_fcell_2020_615996 crossref_primary_10_1016_j_plipres_2021_101115 crossref_primary_10_1097_j_pain_0000000000002682 crossref_primary_10_1016_j_bbamem_2016_03_018 crossref_primary_10_1016_j_chemphyslip_2016_04_001 crossref_primary_10_1007_s12035_013_8614_4 crossref_primary_10_1021_acs_langmuir_5b02748 crossref_primary_10_1002_pro_2385 crossref_primary_10_1140_epje_i2013_13073_4 crossref_primary_10_1007_s00401_011_0892_1 crossref_primary_10_1016_j_chemphyslip_2015_07_012 crossref_primary_10_1111_j_1471_4159_2012_07918_x crossref_primary_10_1111_jnc_12637 crossref_primary_10_1113_JP270590 crossref_primary_10_3390_membranes11050319 crossref_primary_10_1016_j_bpj_2013_06_046 crossref_primary_10_1016_j_bbamem_2011_10_026 crossref_primary_10_3390_membranes5020180 crossref_primary_10_3390_pharmaceutics15010294 crossref_primary_10_1134_S263516762370012X crossref_primary_10_1186_s13578_023_01127_y crossref_primary_10_1016_j_chemphyslip_2011_09_005 crossref_primary_10_1038_s41598_019_41903_w crossref_primary_10_1111_tra_12586 crossref_primary_10_1371_journal_pone_0074547 crossref_primary_10_1093_jmcb_mjz042 crossref_primary_10_1111_febs_15551 crossref_primary_10_3389_fmicb_2014_00220 |
Cites_doi | 10.1046/j.0022-3042.2001.00688.x 10.1016/B978-012656976-6/50097-4 10.1007/978-90-481-8622-8_19 10.1007/978-90-481-8622-8_10 10.1046/j.1471-4159.1997.69041661.x 10.1046/j.1471-4159.1996.66041717.x 10.1007/978-1-4899-1698-3_2 10.1007/s11745-008-3194-1 10.1111/j.1471-4159.1989.tb07278.x 10.1194/jlr.M900251 10.1016/S1016-8478(23)13180-3 10.1016/S0022-2275(20)38337-1 10.1016/j.neuroscience.2009.04.049 10.1016/0014-5793(88)80824-X 10.1016/0005-2736(93)90297-D 10.1083/jcb.131.6.1421 10.1042/bj2500653 10.1083/jcb.127.5.1185 10.1021/bi00384a026 10.1074/jbc.M003401200 10.1006/scbi.1997.0068 10.1083/jcb.152.5.1057 10.1111/j.1530-0277.1993.tb00773.x 10.1016/S0197-4580(02)00018-0 10.1073/pnas.92.22.10339 10.1007/s11745-007-3111-z 10.1111/j.1471-4159.2009.06451.x 10.1046/j.1471-4159.1994.62010329.x 10.1016/S0006-2952(02)01654-4 10.1016/j.febslet.2010.03.020 10.1016/j.jns.2004.11.037 10.1091/mbc.E08-07-0785 10.1016/0167-4889(91)90131-G 10.1016/0197-0186(93)90142-R 10.1016/0005-2736(88)90460-9 10.1016/0005-2736(91)90185-B 10.1126/science.294.5545.1354 10.1016/0003-9861(92)90090-J 10.1016/0005-2736(90)90103-U 10.1073/pnas.162366399 10.1385/NMM:8:3:319 10.1097/00001756-200203250-00004 10.1016/S0014-5793(00)01087-5 10.1074/jbc.M103878200 10.1096/fasebj.3.7.2469614 |
ContentType | Journal Article |
Copyright | 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry. |
Copyright_xml | – notice: 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry – notice: 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry. |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
DOI | 10.1111/j.1471-4159.2010.07017.x |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Toxicology Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Neurosciences Abstracts CrossRef Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1471-4159 |
EndPage | 689 |
ExternalDocumentID | 2261573501 10_1111_j_1471_4159_2010_07017_x 21214553 JNC7017 US201301941341 |
Genre | reviewArticle Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural Feature |
GrantInformation_xml | – fundername: NIA NIH HHS grantid: AG-18357 – fundername: NIA NIH HHS grantid: R01 AG023524-05 – fundername: NIA NIH HHS grantid: P01 AG018357 – fundername: NIA NIH HHS grantid: R01 AG023524 – fundername: NIA NIH HHS grantid: AG-23524 – fundername: NIA NIH HHS grantid: P01 AG018357-090006 – fundername: NIAAA NIH HHS grantid: R01 AA007292-06 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAVGM AAXRX AAYJJ AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABIVO ABLJU ABPTK ABPVW ABQWH ABWRO ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADBTR ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AI. AIACR AIAGR AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FBQ FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZA5 ZGI ZXP ZZTAW ~IA ~KM ~WT AHBTC AITYG HGLYW OIG CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 7U7 7U9 8FD C1K FR3 H94 P64 7X8 5PM |
ID | FETCH-LOGICAL-c5567-93af70a76b00bd85a853cddfe023c7ee94d66a44e3ec10e488f41894f294992c3 |
IEDL.DBID | 33P |
ISSN | 0022-3042 |
IngestDate | Tue Sep 17 20:37:17 EDT 2024 Fri Aug 16 09:38:25 EDT 2024 Fri Aug 16 04:03:26 EDT 2024 Thu Oct 10 22:08:54 EDT 2024 Fri Aug 23 02:03:26 EDT 2024 Sat Sep 28 07:57:37 EDT 2024 Sat Aug 24 00:50:34 EDT 2024 Wed Dec 27 19:06:07 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5567-93af70a76b00bd85a853cddfe023c7ee94d66a44e3ec10e488f41894f294992c3 |
Notes | http://dx.doi.org/10.1111/j.1471-4159.2010.07017.x ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/j.1471-4159.2010.07017.x |
PMID | 21214553 |
PQID | 850437864 |
PQPubID | 31528 |
PageCount | 6 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3058952 proquest_miscellaneous_879476135 proquest_miscellaneous_851475762 proquest_journals_850437864 crossref_primary_10_1111_j_1471_4159_2010_07017_x pubmed_primary_21214553 wiley_primary_10_1111_j_1471_4159_2010_07017_x_JNC7017 fao_agris_US201301941341 |
PublicationCentury | 2000 |
PublicationDate | March 2011 |
PublicationDateYYYYMMDD | 2011-03-01 |
PublicationDate_xml | – month: 03 year: 2011 text: March 2011 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: New York |
PublicationTitle | Journal of neurochemistry |
PublicationTitleAlternate | J Neurochem |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 1989; 3 1993; 23 1995; 92 2009; 20 1990; 1025 2002; 13 1997; 69 2002; 99 2002; 277 2010; 584 2006; 8 2000; 275 2002; 80 1995; 131 1988; 946 1988; 229 1994; 62 1997; 8 1991; 1066 2005; 19 2005; 229–230 2001; 294 1994; 127 1989b; 52 1993; 17 2001; 152 1982; 1 2001 2000; 466 1992; 298 2002; 23 2010; 112 2008; 43 2009; 162 1989a; 30 1988; 250 1985; 11 1991; 1093 1993; 1145 2003; 65 2010; 51 1987; 26 1996; 66 16775383 - Neuromolecular Med. 2006;8(3):319-28 19019985 - Mol Biol Cell. 2009 Jan;20(2):581-8 20302864 - FEBS Lett. 2010 Jul 2;584(13):2724-30 15760644 - J Neurol Sci. 2005 Mar 15;229-230:225-32 10833523 - J Biol Chem. 2000 Aug 18;275(33):25595-9 3390137 - Biochem J. 1988 Mar 15;250(3):653-8 20213557 - Subcell Biochem. 2010;51:509-49 11930145 - Neuroreport. 2002 Mar 25;13(4):383-6 9326295 - J Neurochem. 1997 Oct;69(4):1661-7 2723646 - J Neurochem. 1989 Jun;52(6):1925-30 8522601 - J Cell Biol. 1995 Dec;131(6 Pt 1):1421-33 11701931 - Science. 2001 Nov 9;294(5545):1354-7 3038166 - Biochemistry. 1987 May 19;26(10):2828-35 2049410 - Biochim Biophys Acta. 1991 Jun 7;1093(1):7-12 7962084 - J Cell Biol. 1994 Dec;127(5):1185-97 2364080 - Biochim Biophys Acta. 1990 Jun 27;1025(2):243-6 18536950 - Lipids. 2008 Dec;43(12):1185-208 8627330 - J Neurochem. 1996 Apr;66(4):1717-25 9441946 - Semin Cancer Biol. 1997 Jun;8(3):161-70 8263532 - J Neurochem. 1994 Jan;62(1):329-37 20213548 - Subcell Biochem. 2010;51:279-318 20388923 - J Lipid Res. 2010 May;51(5):914-22 2831087 - FEBS Lett. 1988 Feb 29;229(1):188-92 12145328 - Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10347-52 2469614 - FASEB J. 1989 May;3(7):1833-42 10682831 - FEBS Lett. 2000 Jan 28;466(2-3):219-24 12392774 - Neurobiol Aging. 2002 Sep-Oct;23(5):685-94 1854783 - Biochim Biophys Acta. 1991 Jul 22;1066(2):183-92 8488977 - Alcohol Clin Exp Res. 1993 Apr;17(2):345-50 15995352 - Mol Cells. 2005 Jun 30;19(3):356-64 17882463 - Lipids. 2008 Jan;43(1):1-17 11238460 - J Cell Biol. 2001 Mar 5;152(5):1057-70 11773045 - J Biol Chem. 2002 Mar 8;277(10):7929-35 8431458 - Biochim Biophys Acta. 1993 Feb 9;1145(2):257-65 1326253 - Arch Biochem Biophys. 1992 Oct;298(1):35-42 3207734 - Biochim Biophys Acta. 1988 Dec 8;946(1):85-94 11902115 - J Neurochem. 2002 Jan;80(2):255-61 7479780 - Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10339-43 2760551 - J Lipid Res. 1989 May;30(5):775-9 19860860 - J Neurochem. 2010 Jan;112(1):13-23 12628479 - Biochem Pharmacol. 2003 Mar 1;65(5):843-56 19401218 - Neuroscience. 2009 Aug 18;162(2):328-38 3904086 - Subcell Biochem. 1985;11:51-101 8396483 - Neurochem Int. 1993 Jul;23(1):45-52 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 Bae M. K. (e_1_2_8_2_1) 2005; 19 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Roelofsen B. (e_1_2_8_25_1) 1982; 1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 466 start-page: 219 year: 2000 end-page: 224 article-title: P‐glycoprotein is localized in caveolae in resistant cells and in brain capillaries publication-title: FEBS Lett. – start-page: 81 year: 2001 end-page: 94 – volume: 127 start-page: 1185 year: 1994 end-page: 1197 article-title: Caveolin moves from caveolae to the Golgi apparatus in response to cholesterol oxidation publication-title: J. Cell Biol. – volume: 1025 start-page: 243 year: 1990 end-page: 246 article-title: Asymmetric distribution of a fluorescent sterol in synaptic plasma membranes: effects of chronic ethanol consumption publication-title: Biochim. Biophys. Acta – volume: 66 start-page: 1717 year: 1996 end-page: 1725 article-title: Increasing age alters transbilayer fluidity and cholesterol asymmetry in synaptic plasma membranes of mice publication-title: J. Neurochem. – volume: 13 start-page: 383 year: 2002 end-page: 386 article-title: Cholesterol is increased in the exofacial leaflet of synaptic plasma membranes of human apolipoprotein E4 knock‐in mice publication-title: Neuroreport – volume: 229–230 start-page: 225 year: 2005 end-page: 232 article-title: Murine synaptosomal lipid raft protein and lipid composition are altered by expression of human apoE3 and 4 and by increasing age publication-title: J. Neurol. Sci. – volume: 1 start-page: 87 issue: 1 year: 1982 end-page: 197 article-title: Phospholipases as tools to study the localization of phospholipids in biological membranes. A critical review publication-title: J. Toxicol. – volume: 946 start-page: 85 year: 1988 end-page: 94 article-title: Transbilayer effects of ethanol on fluidity of brain membrane leaflets publication-title: Biochim. Biophys. Acta – volume: 19 start-page: 356 year: 2005 end-page: 364 article-title: The effect of ethanol on the physical properties of neuronal membranes publication-title: Mol. Cells – volume: 23 start-page: 45 year: 1993 end-page: 52 article-title: Kinetics and size of cholesterol lateral domains in synaptosomal membranes: modification by sphingomyelinase and effects on membrane enzyme activity publication-title: Neurochem. Int. – volume: 275 start-page: 25595 year: 2000 end-page: 25599 article-title: Palmitoylation of caveolin‐1 is required for cholesterol binding, chaperone complex formation, and rapid transport of cholesterol to caveolae publication-title: J. Biol. Chem. – volume: 51 start-page: 509 year: 2010 end-page: 549 article-title: Cholesterol and ion channels publication-title: Subcell. Biochem. – volume: 152 start-page: 1057 year: 2001 end-page: 1070 article-title: A caveolin dominant negative mutant associates with lipid bodies and induces intracellular cholesterol imbalance publication-title: J. Cell Biol. – volume: 162 start-page: 328 year: 2009 end-page: 338 article-title: Amyloid β‐protein stimulates trafficking of cholesterol and caveolin‐1 from the plasma membrane to the Golgi complex in mouse primary astrocytes publication-title: Neuroscience – volume: 43 start-page: 1185 year: 2008 end-page: 1208 article-title: Fluorescence techniques using dehydroergosterol to study cholesterol trafficking publication-title: Lipids – volume: 1066 start-page: 183 year: 1991 end-page: 192 article-title: Transmembrane distribution of sterol in the human erythrocyte publication-title: Biochim. Biophys. Acta – volume: 23 start-page: 685 year: 2002 end-page: 694 article-title: Brain membrane cholesterol domains, aging, and amyloid beta‐peptides publication-title: Neurobiol. Aging – volume: 92 start-page: 10339 year: 1995 end-page: 10343 article-title: VIP21/caveolin is a cholesterol‐binding protein publication-title: Proc. Natl Acad. Sci. USA – volume: 43 start-page: 1 year: 2008 end-page: 17 article-title: Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription publication-title: Lipids – volume: 80 start-page: 255 year: 2002 end-page: 261 article-title: A new role for apolipoprotein E: modulating transport of polyunsaturated phospholipid molecular species in synaptic plasma membranes publication-title: J. Neurochem. – volume: 17 start-page: 345 year: 1993 end-page: 350 article-title: Cholesterol exchange and lateral cholesterol pools in synaptosomal membranes of pair‐fed control and chronic ethanol‐treated mice publication-title: Alcohol. Clin. Exp. Res. – volume: 8 start-page: 161 year: 1997 end-page: 170 article-title: The physiological function of drug‐transporting P‐glycoproteins publication-title: Semin. Cancer Biol. – volume: 1145 start-page: 257 year: 1993 end-page: 265 article-title: Expression of liver fatty acid binding protein alters plasma membrane lipid composition and structure in transfected L‐cell fibroblasts publication-title: Biochim. Biophys. Acta – volume: 30 start-page: 775 year: 1989a end-page: 779 article-title: High performance thin‐layer chromatography and densitometry of synaptic plasma membrane lipids publication-title: J. Lipid Res. – volume: 99 start-page: 10347 year: 2002 end-page: 10352 article-title: The multidrug transporter, P‐glycoprotein, actively mediates cholesterol redistribution in the cell membrane publication-title: PNAS – volume: 69 start-page: 1661 year: 1997 end-page: 1667 article-title: Transbilayer distribution of cholesterol is modified in brain synaptic plasma membranes of knockout mice deficient in the low density lipoprotein receptor, apolipoprotein E, or both proteins publication-title: J. Neurochem. – volume: 11 start-page: 51 year: 1985 end-page: 100 article-title: Fluorescence probes unravel asymmetric structure of membranes publication-title: Subcell. Biochem. – volume: 20 start-page: 581 year: 2009 end-page: 588 article-title: Sterols are mainly in the cytoplasmic leaflet of the plasma membrane and the endocytic recycling compartment in CHO cells publication-title: Mol. Biol. Cell – volume: 112 start-page: 13 year: 2010 end-page: 23 article-title: Nature and consequences of mammalian brain and CSF efflux transporters: four decades of progress publication-title: J. Neurochem. – volume: 52 start-page: 1925 year: 1989b end-page: 1930 article-title: Acute and chronic effects of ethanol on transbilayer membrane domains publication-title: J. Neurochem. – volume: 584 start-page: 2724 year: 2010 end-page: 2730 article-title: Phospholipid scramblase: an update publication-title: FEBS Lett. – volume: 8 start-page: 319 year: 2006 end-page: 328 article-title: Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin‐treated mice publication-title: NeuroMol. Med. – volume: 51 start-page: 914 year: 2010 end-page: 922 article-title: Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity publication-title: J. Lipid Res. – volume: 1093 start-page: 7 year: 1991 end-page: 12 article-title: Increased steroid hormone secretion in mouse Leydig tumor cells after induction of cholesterol translocation by sphingomyelin degradation publication-title: Biochim. Biophys. Acta – volume: 250 start-page: 653 year: 1988 end-page: 658 article-title: Depletion of plasma‐membrane sphingomyelin rapidly alters the distribution of cholesterol between plasma membranes and intracellular cholesterol pools in cultured fibroblasts publication-title: Biochem. J. – volume: 51 start-page: 279 year: 2010 end-page: 318 article-title: Caveolin, sterol carrier protein‐2, membrane cholesterol‐rich microdomains and intracellular cholesterol trafficking publication-title: Subcell. Biochem. – volume: 65 start-page: 843 year: 2003 end-page: 856 article-title: Statin effects on cholesterol micro‐domains in brain plasma membranes publication-title: Biochem. Pharmacol. – volume: 229 start-page: 188 year: 1988 end-page: 192 article-title: Polyunsaturated fatty acids alter sterol transbilayer domains in LM fibroblast plasma membranes publication-title: FEBS Lett. – volume: 277 start-page: 7929 year: 2002 end-page: 7935 article-title: Apolipoprotein A‐I induces translocation of cholesterol, phospholipid, and caveolin‐1 to cytosol in rat astrocytes publication-title: J. Biol. Chem. – volume: 26 start-page: 2828 year: 1987 end-page: 2835 article-title: Charged anesthetics selectively alter plasma membrane order publication-title: Biochemistry – volume: 3 start-page: 1833 year: 1989 end-page: 1842 article-title: Lipid regulation of cell membrane structure and function publication-title: FASEB J. – volume: 62 start-page: 329 year: 1994 end-page: 337 article-title: Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons publication-title: J. Neurochem. – volume: 131 start-page: 1421 year: 1995 end-page: 1433 article-title: Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule‐dependent and microtubule‐independent steps publication-title: J. Cell Biol. – volume: 298 start-page: 35 year: 1992 end-page: 42 article-title: Na pump and plasma membrane structure in L‐cell fibroblasts expressing rat liver fatty acid binding protein publication-title: Arch. Biochem. Biophys. – volume: 294 start-page: 1354 year: 2001 end-page: 1357 article-title: CNS synaptogenesis promoted by glia‐derived cholesterol publication-title: Science – ident: e_1_2_8_11_1 doi: 10.1046/j.0022-3042.2001.00688.x – ident: e_1_2_8_30_1 doi: 10.1016/B978-012656976-6/50097-4 – ident: e_1_2_8_17_1 doi: 10.1007/978-90-481-8622-8_19 – ident: e_1_2_8_32_1 doi: 10.1007/978-90-481-8622-8_10 – ident: e_1_2_8_10_1 doi: 10.1046/j.1471-4159.1997.69041661.x – ident: e_1_2_8_9_1 doi: 10.1046/j.1471-4159.1996.66041717.x – ident: e_1_2_8_27_1 doi: 10.1007/978-1-4899-1698-3_2 – ident: e_1_2_8_19_1 doi: 10.1007/s11745-008-3194-1 – ident: e_1_2_8_42_1 doi: 10.1111/j.1471-4159.1989.tb07278.x – ident: e_1_2_8_33_1 doi: 10.1194/jlr.M900251 – volume: 1 start-page: 87 issue: 1 year: 1982 ident: e_1_2_8_25_1 article-title: Phospholipases as tools to study the localization of phospholipids in biological membranes. A critical review publication-title: J. Toxicol. contributor: fullname: Roelofsen B. – volume: 19 start-page: 356 year: 2005 ident: e_1_2_8_2_1 article-title: The effect of ethanol on the physical properties of neuronal membranes publication-title: Mol. Cells doi: 10.1016/S1016-8478(23)13180-3 contributor: fullname: Bae M. K. – ident: e_1_2_8_41_1 doi: 10.1016/S0022-2275(20)38337-1 – ident: e_1_2_8_13_1 doi: 10.1016/j.neuroscience.2009.04.049 – ident: e_1_2_8_37_1 doi: 10.1016/0014-5793(88)80824-X – ident: e_1_2_8_46_1 doi: 10.1016/0005-2736(93)90297-D – ident: e_1_2_8_5_1 doi: 10.1083/jcb.131.6.1421 – ident: e_1_2_8_34_1 doi: 10.1042/bj2500653 – ident: e_1_2_8_35_1 doi: 10.1083/jcb.127.5.1185 – ident: e_1_2_8_38_1 doi: 10.1021/bi00384a026 – ident: e_1_2_8_39_1 doi: 10.1074/jbc.M003401200 – ident: e_1_2_8_26_1 doi: 10.1006/scbi.1997.0068 – ident: e_1_2_8_22_1 doi: 10.1083/jcb.152.5.1057 – ident: e_1_2_8_44_1 doi: 10.1111/j.1530-0277.1993.tb00773.x – ident: e_1_2_8_45_1 doi: 10.1016/S0197-4580(02)00018-0 – ident: e_1_2_8_21_1 doi: 10.1073/pnas.92.22.10339 – ident: e_1_2_8_31_1 doi: 10.1007/s11745-007-3111-z – ident: e_1_2_8_36_1 doi: 10.1111/j.1471-4159.2009.06451.x – ident: e_1_2_8_40_1 doi: 10.1046/j.1471-4159.1994.62010329.x – ident: e_1_2_8_16_1 doi: 10.1016/S0006-2952(02)01654-4 – ident: e_1_2_8_3_1 doi: 10.1016/j.febslet.2010.03.020 – ident: e_1_2_8_12_1 doi: 10.1016/j.jns.2004.11.037 – ident: e_1_2_8_20_1 doi: 10.1091/mbc.E08-07-0785 – ident: e_1_2_8_23_1 doi: 10.1016/0167-4889(91)90131-G – ident: e_1_2_8_24_1 doi: 10.1016/0197-0186(93)90142-R – ident: e_1_2_8_28_1 doi: 10.1016/0005-2736(88)90460-9 – ident: e_1_2_8_29_1 doi: 10.1016/0005-2736(91)90185-B – ident: e_1_2_8_18_1 doi: 10.1126/science.294.5545.1354 – ident: e_1_2_8_14_1 doi: 10.1016/0003-9861(92)90090-J – ident: e_1_2_8_43_1 doi: 10.1016/0005-2736(90)90103-U – ident: e_1_2_8_7_1 doi: 10.1073/pnas.162366399 – ident: e_1_2_8_4_1 doi: 10.1385/NMM:8:3:319 – ident: e_1_2_8_8_1 doi: 10.1097/00001756-200203250-00004 – ident: e_1_2_8_6_1 doi: 10.1016/S0014-5793(00)01087-5 – ident: e_1_2_8_15_1 doi: 10.1074/jbc.M103878200 – ident: e_1_2_8_47_1 doi: 10.1096/fasebj.3.7.2469614 |
SSID | ssj0016461 |
Score | 2.3155773 |
Snippet | J. Neurochem. (2011) 116, 684-689. ABSTRACT: Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly... J. Neurochem. (2011) 116, 684–689. Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed... Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different... J. Neurochem. (2011) 116 , 684–689. Abstract Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly... J. Neurochem. (2011) 116, 684-689. Abstract Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly... |
SourceID | pubmedcentral proquest crossref pubmed wiley fao |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 684 |
SubjectTerms | Aging Animals Apolipoprotein E Asymmetry Caveolae caveolin caveolin-1 Cell Membrane - chemistry Cell Membrane - metabolism Cholesterol Cholesterol - analysis Cholesterol - metabolism Ethanol Fatty acid-binding protein Fluidity Humans lipid domains Lipid rafts Lipids lipoprotein receptors Membrane Lipids - analysis Membrane Lipids - metabolism Membrane structure Membranes Models, Biological Neurochemistry P-Glycoprotein Plasma membranes Polyunsaturated fatty acids statins Sterols Structure-function relationships Synaptic Membranes - metabolism Synaptic Membranes - ultrastructure |
Title | Cholesterol asymmetry in synaptic plasma membranes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1471-4159.2010.07017.x https://www.ncbi.nlm.nih.gov/pubmed/21214553 https://www.proquest.com/docview/850437864 https://search.proquest.com/docview/851475762 https://search.proquest.com/docview/879476135 https://pubmed.ncbi.nlm.nih.gov/PMC3058952 |
Volume | 116 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RXuDCowUaCsgHxC1oEzt-HKttKyhShVQqcbMcP6ASyVaEldh_z4yzG3WhQghxiaLYiZ3xzHjGHn8D8Cq0yRmhUyl1SiVqSVm2RvPSa2F0Ml5WMiexvVDnn_TxCcHknG3Owoz4ENOCG0lG1tck4K4dfhFyhf4PzsfrCC2F3PWG7El0GvJpDv5h2lCQQlYTcDgy6nZQz60f2pqpdpJb3GaE_h5LedPGzZPU6YP_-XsP4f7aVGVHI289gjux34P9ox7d9G7FXrMcPJpX5ffg7nyTOG4f6jnl3CUAhsVX5oZV10V8zq56Nqx6hyrKs2u02TvHuthhF1HZPobL05OP87flOjVD6ZsGVavhLqmZUxKltg26cTjr-xBSRBPAqxiNCFI6ISKPvppF1BJJVNqIVBMYTu35E9jtF308wGFIJtRctNoLIXiQrla1kLLVs1A5rmYFVJthsNcjAoe96bmoyhKRLBHJZiLZHwUc4HhZ9xkVpb28qGl7tjKCwOsKONwMol2L62A14bgpLUUBbCpFqtHmCVJhsaQq2BQ6Z_UfqqBuU2geNQU8HZli6jAaCIQIzwtQW-wyVSCU7-2S_upLRvvmlPixwWZlZpe_poE9O5_T3bN_ffEQ7o0L6BRw9xx2v39bxhewM4TlyyxbeD1-9_4nTaketg |
link.rule.ids | 230,315,782,786,887,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RcigXHi3QUB4-IG5Bm9jx41gtrQotK6S2EjfLcexSiWSrbldi_z0zzm7UhQohxC2KndgZz4xnxpNvAN42dXRG6JhLHWOOWlLmtdE891oYHY2XhUxFbE_V5Kv-cEAwOcerf2F6fIgh4EaSkfQ1CTgFpH-RcoUOEG7IyxQthez1Hg3K-0IKQ3UcOP8yHClIIYsBOhxZdT2t5843re1VG9FN7zJDf8-mvG3lpm3q8NF__cDH8HBprbL9nr2ewL3QbcPOfoeeertg71jKH02B-W3YGq9qx-1AOaayu4TBMP3O3GzRtgHvs8uOzRadQy3l2RWa7a1jbWhxjqhvn8L54cHZ-ChfVmfIfVWhdjXcRTVySqLg1o2uHG78vmliQCvAqxCMaKR0QgQefDEKqCiiKLQRsSQ8nNLzZ7DZTbuwi-sQTVNyUWsvhOCNdKUqhZS1HjWF42qUQbFaB3vVg3DY286LKiwRyRKRbCKS_ZHBLi6YdReoK-35aUkntIURhF-Xwd5qFe1SYmdWE5Sb0lJkwIZWpBqdnyAVpnPqgkOhf1b-oQuqN4UWUpXB854rhgmjjUCg8DwDtcYvQwcC-l5v6S6_JcBvTrUfKxxWJn75axrYT5MxXb341wffwNbR2ecTe_JxcrwHD_p4OuXfvYTNm-t5eAUbs2b-OgnaT5xBId4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB7RIgEXHi3QUB4-IG5Bm9jx41htu4KCVpVKJW6W40epRLIrlpXYf89Msht1oUIIcYtiJ3HGM-PP9vgbgNehTs4InXKpU8rRS8q8NprnXgujk_GykF0S23M1_ayPT4gm53RzFqbnhxgW3MgyOn9NBj4P6RcjVzj_wfF4HaGlULveIp68LQiV03EOfjbsKEghi4E5HDV1O6rnxjdtDVU7yc1uQqG_B1NeB7ndKDV58D__7yHcX2NVdtQr1yO4Fds92D9qcZ7erNgb1kWPdsvye3B3vMkctw_lmJLuEgPD7Ctzi1XTRLzPrlq2WLUOfZRncwTtjWNNbLCJ6G0fw8Xk5NP4Xb7OzZD7qkLfarhLauSURLOtg64cDvs-hBQRA3gVoxFBSidE5NEXo4huIolCG5FKYsMpPX8Cu-2sjQfYDcmEkotaeyEED9KVqhRS1noUCsfVKINi0w123lNw2OtTF1VYEpIlIdlOSPZHBgfYX9Zdoqe0F-cl7c8WRhB7XQaHm060a3tdWE1EbkpLkQEbSlFqtHuCUpgtqQp-Cmdn5R-qoHNTiI-qDJ72SjE0GBECUcLzDNSWugwViOZ7u6S9-tLRfXPK_FjhZ2WnLn8tA3s6HdPVs3998BXcOTue2I_vpx8O4V6_mE7Bd89h9_u3ZXwBO4uwfNmZ2U_-qCCN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cholesterol+asymmetry+in+synaptic+plasma+membranes&rft.jtitle=Journal+of+neurochemistry&rft.au=Gibson+Wood%2C+W.&rft.au=Igbavboa%2C+Urule&rft.au=M%C3%BCller%2C+Walter+E.&rft.au=Eckert%2C+Gunter+P.&rft.date=2011-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=116&rft.issue=5&rft.spage=684&rft.epage=689&rft_id=info:doi/10.1111%2Fj.1471-4159.2010.07017.x&rft.externalDBID=10.1111%252Fj.1471-4159.2010.07017.x&rft.externalDocID=JNC7017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |