ASYMMETRIC PATCH SIZE DISTRIBUTION LEADS TO DISRUPTIVE SELECTION ON DISPERSAL

Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbat...

Full description

Saved in:
Bibliographic Details
Published in:Evolution Vol. 65; no. 2; pp. 490 - 500
Main Authors: Massol, François, Duputié, Anne, David, Patrice, Jarne, Philippe
Format: Journal Article
Language:English
Published: Malden, USA Blackwell Publishing Inc 01-02-2011
Wiley Subscription Services, Inc
Oxford University Press
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable.
AbstractList Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable.
Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable. [PUBLICATION ABSTRACT]
Author Duputié, Anne
David, Patrice
Massol, François
Jarne, Philippe
Author_xml – sequence: 1
  givenname: François
  surname: Massol
  fullname: Massol, François
– sequence: 2
  givenname: Anne
  surname: Duputié
  fullname: Duputié, Anne
– sequence: 3
  givenname: Patrice
  surname: David
  fullname: David, Patrice
– sequence: 4
  givenname: Philippe
  surname: Jarne
  fullname: Jarne, Philippe
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20874811$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02356719$$DView record in HAL
BookMark eNpdkV9v0zAUxS00xLrBRwBFvCAeUq6d2HEeeAiZtwala9WkRfBi2a0jkqXNSNrRfXucZRQJy5Ktc373-s-5QGe7ZmcQcjCMsR2fqjGmlLuU-WxMwKqAse-Njy_Q6GScoREA9l2PEzhHF11XAUBIcfgKnRPggc8xHqFplH2fTkW-SGJnHuXxxMmSH8K5SjIrfVnmyezWSUV0lTn5rFcXy3merISTiVTET66dVp-LRRalr9HLQtWdefO8XqLltbBN3XR2k8RR6q4pZZ5LNGWEU0N1QDTBSitWME9DGGifsGDjFWuCTaB5yDTjlGOj7NUxkI0CVvDCu0Qfh74_VS3v23Kr2kfZqFJOolT2GhCPsgCHD9iyHwb2vm1-HUy3l9uyW5u6VjvTHDrJKQkh9Flgyff_kVVzaHf2IRYCaj8PuIXePUMHvTWb0-l_v9QCnwfgd1mbx5OPQfbRyUr2Cck-IdlHJ5-ik0cpVrN-Z-vfDvVVt2_af_2DkACw_gLu4Jfd3hxPvmrvpH1DQOW32xsZf52QbLViknl_AKLMnLE
CitedBy_id crossref_primary_10_1093_icb_ics055
crossref_primary_10_1890_12_1922_1
crossref_primary_10_1016_j_ecocom_2012_05_004
crossref_primary_10_1098_rstb_2023_0142
crossref_primary_10_1086_706258
crossref_primary_10_3389_fevo_2019_00155
crossref_primary_10_1073_pnas_1417664111
crossref_primary_10_1016_j_jtbi_2018_02_011
crossref_primary_10_1111_jeb_12771
crossref_primary_10_1098_rstb_2016_0037
crossref_primary_10_1111_evo_12664
crossref_primary_10_1016_j_jtbi_2015_02_013
crossref_primary_10_1111_j_1749_6632_2011_06419_x
crossref_primary_10_1016_j_jtbi_2015_12_006
crossref_primary_10_1073_pnas_1915881117
crossref_primary_10_1111_brv_12003
crossref_primary_10_1111_oik_09972
crossref_primary_10_1016_j_jtbi_2020_110449
crossref_primary_10_1111_ecog_02538
crossref_primary_10_1098_rspb_2019_2186
crossref_primary_10_1111_evo_13562
crossref_primary_10_1098_rstb_2023_0129
crossref_primary_10_1098_rspb_2014_2879
crossref_primary_10_1111_evo_12830
crossref_primary_10_1111_j_1558_5646_2011_01225_x
crossref_primary_10_1098_rspb_2014_1226
crossref_primary_10_1111_ibi_12463
crossref_primary_10_1002_ajb2_1739
crossref_primary_10_1098_rspb_2016_0548
crossref_primary_10_1111_j_1461_0248_2011_01671_x
crossref_primary_10_1111_oik_03801
crossref_primary_10_1111_ele_14263
crossref_primary_10_1111_ecog_05315
crossref_primary_10_1111_ele_14222
crossref_primary_10_1111_evo_13691
crossref_primary_10_1038_s41598_018_35255_0
crossref_primary_10_1098_rsfs_2013_0028
crossref_primary_10_1186_s12898_016_0058_z
crossref_primary_10_1111_oik_10490
crossref_primary_10_1371_journal_pone_0034733
crossref_primary_10_1186_s12862_020_01742_0
crossref_primary_10_1016_j_tpb_2013_10_005
crossref_primary_10_1016_j_jtbi_2016_11_007
crossref_primary_10_1111_evo_12492
crossref_primary_10_1111_oik_10325
crossref_primary_10_1111_j_1365_294X_2012_05478_x
crossref_primary_10_1111_brv_12356
crossref_primary_10_1111_evo_12699
crossref_primary_10_1111_evo_13866
ContentType Journal Article
Copyright Copyright © 2011 Society for the Study of Evolution
2010 The Author(s). © 2010 The Society for the Study of Evolution
2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
Copyright Society for the Study of Evolution Feb 2011
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2011 Society for the Study of Evolution
– notice: 2010 The Author(s). © 2010 The Society for the Study of Evolution
– notice: 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
– notice: Copyright Society for the Study of Evolution Feb 2011
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
DOI 10.1111/j.1558-5646.2010.01143.x
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList

Virology and AIDS Abstracts
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Environmental Sciences
EISSN 1558-5646
EndPage 500
ExternalDocumentID oai_HAL_hal_02356719v1
2261521531
20874811
EVO1143
27920068
ark_67375_WNG_CJH2SVV6_6
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
--Z
-JH
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
2AX
31~
33P
3O-
3SF
4.4
41~
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAISJ
AAKGQ
AAONW
AAPSS
AAPXW
AARHZ
AASGY
AAUAY
AAVAP
AAWDT
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABDPE
ABEJV
ABEML
ABJNI
ABLJU
ABMNT
ABPLY
ABPPZ
ABPTD
ABPVW
ABTLG
ABWJO
ABXSQ
ABXVV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACFRR
ACGFO
ACGFS
ACGOD
ACIPB
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACSCC
ACSTJ
ACUFI
ACUTJ
ACXBN
ACXQS
ACZBC
ADACV
ADBBV
ADEOM
ADHSS
ADIPN
ADIZJ
ADKYN
ADMGS
ADOZA
ADQBN
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIMD
AENEX
AEPYG
AEQDE
AEUPB
AEUQT
AFAZZ
AFBPY
AFFDN
AFFIJ
AFGKR
AFGWE
AFNWH
AFPWT
AFRAH
AFYAG
AFZJQ
AGMDO
AGUYK
AHXOZ
AI.
AIAGR
AILXY
AIURR
AIWBW
AJAOE
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANFBD
AQVQM
ASPBG
AS~
ATGXG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCRHZ
BDRZF
BHBCM
BKOMP
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
D0S
DC7
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FAC
FAL
FAS
FD6
FEDTE
FJD
FJW
G-S
G.N
GODZA
GTFYD
H.T
H.X
H13
HF~
HGD
HQ2
HTVGU
HVGLF
HZ~
IAG
IAO
IEA
IEP
IOF
IPSME
ITC
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
KOP
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NHB
NQS
O66
O9-
OBOKY
OIG
OJZSN
OK1
OVD
OWPYF
P-O
P2P
P2W
P2X
P4D
PQ0
PQQKQ
Q.N
Q11
Q5J
QB0
QN7
R.K
RBO
ROL
ROX
RWL
RX1
RXW
SA0
SJN
SUPJJ
TAE
TCN
TEORI
TN5
UB1
UBC
UHB
UQL
V8K
VH1
VJK
VQA
W8V
W99
WBKPD
WH7
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
XOL
XSW
YXE
YYP
YZZ
ZCA
ZCG
ZZTAW
~02
~IA
~KM
~WT
AAJUZ
ABCVL
ABHUG
ABWRO
ABXZS
ACXME
ADAWD
ADDAD
ADZLD
AEDJY
AESBF
AFDAS
AFVGU
AGJLS
BFHJK
CWIXF
DWIUU
G8K
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
1XC
VOOES
ID FETCH-LOGICAL-c5563-2b56285e5b72b21aba6f63b097b4267d3fc21e7b896b68581ea009102da06f8f3
IEDL.DBID 33P
ISSN 0014-3820
IngestDate Wed Nov 06 06:46:03 EST 2024
Fri Oct 25 03:02:23 EDT 2024
Thu Oct 10 15:50:32 EDT 2024
Tue Oct 15 23:37:25 EDT 2024
Sat Aug 24 00:58:31 EDT 2024
Fri Feb 02 07:05:12 EST 2024
Wed Oct 30 09:49:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords BIODIVERSITY
evolutionary branching
ENVIRONMENTS
PERSPECTIVE
Adaptive dynamics
METAPOPULATION MODELS
DEPENDENT DISPERSAL
STRATEGIES
DENSITY
RATES
EVOLUTION
dispersal evolution
kin selection
habitat heterogeneity
POPULATION-DYNAMICS
evolutionarily stable strategy
Language English
License 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5563-2b56285e5b72b21aba6f63b097b4267d3fc21e7b896b68581ea009102da06f8f3
Notes istex:BFD7E06D94ADF4EEEAD13021129CA0519D7564AB
ark:/67375/WNG-CJH2SVV6-6
ArticleID:EVO1143
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4588-990X
0000-0003-2213-7940
0000-0002-4098-955X
0000-0002-6291-1999
OpenAccessLink https://hal.science/hal-02356719
PMID 20874811
PQID 850509508
PQPubID 42232
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_02356719v1
proquest_miscellaneous_852909467
proquest_journals_850509508
pubmed_primary_20874811
wiley_primary_10_1111_j_1558_5646_2010_01143_x_EVO1143
jstor_primary_27920068
istex_primary_ark_67375_WNG_CJH2SVV6_6
PublicationCentury 2000
PublicationDate February 2011
PublicationDateYYYYMMDD 2011-02-01
PublicationDate_xml – month: 02
  year: 2011
  text: February 2011
PublicationDecade 2010
PublicationPlace Malden, USA
PublicationPlace_xml – name: Malden, USA
– name: United States
– name: St. Louis
PublicationTitle Evolution
PublicationTitleAlternate Evolution
PublicationYear 2011
Publisher Blackwell Publishing Inc
Wiley Subscription Services, Inc
Oxford University Press
Wiley
Publisher_xml – name: Blackwell Publishing Inc
– name: Wiley Subscription Services, Inc
– name: Oxford University Press
– name: Wiley
References Primack, R. B., and R. T. Corlett. 2005. Tropical rain forests: an ecological and biogeographical comparison. Blackwell Publishing, Oxford , UK .
Wood, R. 2001. Biodiversity and the history of reefs. Geol. J 36:251-263.
Parvinen, K. 2002. Evolutionary branching of dispersal strategies in structured metapopulations. J. Math. Biol. 45:106-124.
Ronce, O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38:231-253.
Nee, S., and R. M. May. 1992. Dynamics of metapopulations: habitat destruction and competitive coexistence. J. Anim. Ecol. 61:37-40.
Poethke, H. J., and T. Hovestadt. 2002. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. Biol. Sci. Lond. B 269:637-645.
Massol, F., V. Calcagno, and J. Massol. 2009. The metapopulation fitness criterion: proof and perspectives. Theor. Popul. Biol. 75:183-200.
Hamilton, W. D., and R. M. May. 1977. Dispersal in stable habitats. Nature 269:578-581.
Mathias, A., E. Kisdi, and I. Olivieri. 2001. Divergent evolution of dispersal in a heterogeneous landscape. Evolution 55:246-259.
Brock, J. C., M. Palaseanu-Lovejoy, C. W. Wright, and A. Nayegandhi. 2008. Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA. Coral Reefs 27:555-568.
Chesson, P. L. 1984. Persistence of a Markovian population in a patchy environment. Z Wahrscheinlichkeit. 66:97-107.
Doebeli, M., and G. D. Ruxton. 1997. Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution 51:1730-1741.
Leimar, O., and U. Norberg. 1997. Metapopulation extinction and genetic variation in dispersal-related traits. Oikos 80:448-458.
Champagnat, N., R. Ferriere, and S. Meleard. 2006. Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69:297-321.
Balkau, B. J., and M. W. Feldman. 1973. Selection for migration modification. Genetics 74:171-174.
Hanski, I., and M. E. Gilpin. 1997. Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego , CA .
Levin, S. A., H. C. Muller-Landau, R. Nathan, and J. Chave. 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Syst. 34:575-604.
Roff, D. A. 1975. Population stability and the evolution of dispersal in a heterogeneous environment. Oecologia 19:217-237.
Metz, J. A. J., and M. Gyllenberg. 2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies. Proc. R. Soc. Biol. Sci. Lond. B 268:499-508.
Hastings, A. 1983. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24:244-251.
Jarman, P. J. 1974. The social organisation of antelope in relation to their ecology. Behaviour 48:215-267.
Thompson, D. Q., and M. D. Lyons. 1964. Flock size in a spring concentration of Whistling Swans. Wilson Bull. 76:282-285.
Barton, K. A., B. L. Phillips, J. M. Morales, and J. M. J. Travis. 2009. The evolution of an 'intelligent' dispersal strategy: biased, correlated random walks in patchy landscapes. Oikos 118:309-319.
Kisdi, E. 2004. Conditional dispersal under kin competition: extension of the Hamilton-May model to brood size-dependent dispersal. Theor. Popul. Biol. 66:369-380.
Wirtz, P., and J. Lörscher. 1983. Group sizes of Antelopes in an East African national park. Behaviour 84:135-156.
Pélissier, R., and F. Goreaud. 2001. A practical approach to the study of spatial structure in simple cases of heterogeneous vegetation. J. Veg. Sci. 12:99-108.
Holt, R. D., and M. A. McPeek. 1996. Chaotic population dynamics favors the evolution of dispersal. Am. Nat. 148:709-718.
Travis, J. M. J., D. J. Murrell, and C. Dytham. 1999. The evolution of density-dependent dispersal. Proc. R. Soc. Biol. Sci. Lond. B 266:1837-1842.
van Valen, L. 1971. Group selection and the evolution of dispersal. Evolution 25:591-598.
Connor, E. F., A. C. Courtney, and J. M. Yoder. 2000. Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734-748.
Leimar, O. 2005. The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching. Am. Nat. 165:669-681.
McPeek, M. A., and R. D. Holt. 1992. The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140:1010-1027.
Urban, M. C., and D. K. Skelly. 2006. Evolving metacommunities: toward an evolutionary perspective on metacommunities. Ecology 87:1616-1626.
Bengtsson, B. O. 1978. Avoiding inbreeding: at what cost? J. Theor. Biol. 73:439-444.
Kisdi, E. 2002. Dispersal: risk spreading versus local adaptation. Am. Nat. 159:579-596.
Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton Univ. Press, Princeton , NJ .
Imbert, E., J. Escarré, and J. Lepart. 1997. Seed heterodimorphism in Crepis sancta (Asteraceae): performance of two morphs in different environments. Oikos 79:325-332.
Hazell, S. P., D. M. Gwynn, S. Ceccarelli, and M. D. E. Fellowes. 2005. Competition and dispersal in the pea aphid: clonal variation and correlations across traits. Ecol. Entomol. 30:293-298.
Comins, H. N., W. D. Hamilton, and R. M. May. 1980. Evolutionarily stable dispersal strategies. J. Theor. Biol. 82:205-230.
Hofbauer, J., and K. Sigmund. 1990. Adaptive dynamics and evolutionary stability. Appl. Math. Lett. 3:75-79.
Patterson, B. D., and W. Atmar. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. 28:65-82.
Charlesworth, B. 1994. Evolution in age-structured populations, 2nd ed. Cambridge Univ. Press, Cambridge .
Clobert, J., J.-F. Le Galliard, J. Cote, S. Meylan, and M. Massot. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12:197-209.
Roff, D. A. 1986. The evolution of wing dimorphisms in insects. Evolution 40:1009-1020.
Cadet, C., R. Ferriere, J. A. J. Metz, and M. van Baalen. 2003. The evolution of dispersal under demographic stochasticity. Am. Nat. 162:427-441.
Enfjall, K., and O. Leimar. 2009. The evolution of dispersal-the importance of information about population density and habitat characteristics. Oikos 118:291-299.
Hanski, I., and I. Saccheri. 2006. Molecular-level variation affects population growth in a butterfly metapopulation. PLoS Biol. 4:719-726.
Haag, C. R., M. Saastamoinen, J. H. Marden, and I. Hanski. 2005. A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc. R. Soc. Biol. Lond. B 272:2449-2456.
Ajar, E. 2003. Analysis of disruptive selection in subdivided populations. BMC Evol. Biol. 3:22, doi:10.1186/1471-2148-3-22.
Ronce, O., F. Perret, and I. Olivieri. 2000. Evolutionarily stable dispersal rates do not always increase with local extinction rates. Am. Nat. 155:485-496.
Roze, D., and F. Rousset. 2005. Inbreeding depression and the evolution of dispersal rates: a multilocus model. Am. Nat. 166:708-721.
Geritz, S. A. H., E. Kisdi, G. Meszena, and J. A. J. Metz. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12:35-57.
Jansen, V. A. A., and R. Vitalis. 2007. The evolution of dispersal in a Levins' type metapopulation model. Evolution 61:2386-2397.
Forest, F., R. Grenyer, M. Rouget, T. J. Davies, R. M. Cowling, D. P. Faith, A. Balmford, J. C. Manning, S. Proches, M. Van Der Bank, et al. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757-760.
Clobert, J., E. Danchin, A. A. Dhondt, and J. D. Nichols. 2001. Dispersal. Oxford Univ. Press, New York .
Semlitsch, R. D., and J. R. Bodie. 1998. Are small, isolated wetlands expendable? Conserv. Biol. 12:1129-1133.
Holt, R. D. 1985. Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 28:181-208.
1997; 80
2004; 66
1985; 28
1978; 73
1984; 66
1975; 19
2002; 159
2009; 118
1996; 148
2001; 268
2007; 38
2009; 12
1974; 48
1997; 51
1986; 40
2001
2002; 45
2008; 27
2006; 69
2003; 162
1964; 76
2003; 3
2005; 30
2002; 269
1980; 82
2007; 61
2001; 55
2001; 12
1998; 12
1983; 24
2007; 445
2005; 272
1973; 74
1992; 140
1971; 25
1997
1994
1977; 269
2005
2006; 4
2000; 155
1999; 266
2003; 34
1990; 3
2009; 75
2005; 165
2005; 166
2006; 87
1997; 79
1986; 28
2000; 81
1983; 84
2001; 36
1992; 61
References_xml – volume: 73
  start-page: 439
  year: 1978
  end-page: 444
  article-title: Avoiding inbreeding: at what cost?
  publication-title: J. Theor. Biol.
– volume: 118
  start-page: 291
  year: 2009
  end-page: 299
  article-title: The evolution of dispersal—the importance of information about population density and habitat characteristics
  publication-title: Oikos
– volume: 28
  start-page: 181
  year: 1985
  end-page: 208
  article-title: Population dynamics in two‐patch environments: some anomalous consequences of an optimal habitat distribution
  publication-title: Theor. Popul. Biol.
– volume: 140
  start-page: 1010
  year: 1992
  end-page: 1027
  article-title: The evolution of dispersal in spatially and temporally varying environments
  publication-title: Am. Nat.
– year: 2005
– volume: 69
  start-page: 297
  year: 2006
  end-page: 321
  article-title: Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models
  publication-title: Theor. Popul. Biol.
– year: 2001
– volume: 3
  start-page: 22
  year: 2003
  article-title: Analysis of disruptive selection in subdivided populations
  publication-title: BMC Evol. Biol.
– volume: 81
  start-page: 734
  year: 2000
  end-page: 748
  article-title: Individuals‐area relationships: the relationship between animal population density and area
  publication-title: Ecology
– volume: 3
  start-page: 75
  year: 1990
  end-page: 79
  article-title: Adaptive dynamics and evolutionary stability
  publication-title: Appl. Math. Lett.
– year: 1994
– volume: 155
  start-page: 485
  year: 2000
  end-page: 496
  article-title: Evolutionarily stable dispersal rates do not always increase with local extinction rates
  publication-title: Am. Nat.
– volume: 82
  start-page: 205
  year: 1980
  end-page: 230
  article-title: Evolutionarily stable dispersal strategies
  publication-title: J. Theor. Biol.
– volume: 28
  start-page: 65
  year: 1986
  end-page: 82
  article-title: Nested subsets and the structure of insular mammalian faunas and archipelagos
  publication-title: Biol. J. Linn. Soc.
– volume: 87
  start-page: 1616
  year: 2006
  end-page: 1626
  article-title: Evolving metacommunities: toward an evolutionary perspective on metacommunities
  publication-title: Ecology
– volume: 12
  start-page: 35
  year: 1998
  end-page: 57
  article-title: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree
  publication-title: Evol. Ecol.
– year: 1997
– volume: 162
  start-page: 427
  year: 2003
  end-page: 441
  article-title: The evolution of dispersal under demographic stochasticity
  publication-title: Am. Nat.
– volume: 272
  start-page: 2449
  year: 2005
  end-page: 2456
  article-title: A candidate locus for variation in dispersal rate in a butterfly metapopulation
  publication-title: Proc. R. Soc. Biol. Lond. B
– volume: 27
  start-page: 555
  year: 2008
  end-page: 568
  article-title: Patch‐reef morphology as a proxy for Holocene sea‐level variability, Northern Florida Keys, USA
  publication-title: Coral Reefs
– volume: 4
  start-page: 719
  year: 2006
  end-page: 726
  article-title: Molecular‐level variation affects population growth in a butterfly metapopulation
  publication-title: PLoS Biol.
– volume: 30
  start-page: 293
  year: 2005
  end-page: 298
  article-title: Competition and dispersal in the pea aphid: clonal variation and correlations across traits
  publication-title: Ecol. Entomol.
– start-page: 155
  year: 2001
  end-page: 167
– volume: 269
  start-page: 637
  year: 2002
  end-page: 645
  article-title: Evolution of density‐ and patch‐size‐dependent dispersal rates
  publication-title: Proc. R. Soc. Biol. Sci. Lond. B
– volume: 268
  start-page: 499
  year: 2001
  end-page: 508
  article-title: How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies
  publication-title: Proc. R. Soc. Biol. Sci. Lond. B
– volume: 19
  start-page: 217
  year: 1975
  end-page: 237
  article-title: Population stability and the evolution of dispersal in a heterogeneous environment
  publication-title: Oecologia
– volume: 51
  start-page: 1730
  year: 1997
  end-page: 1741
  article-title: Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space
  publication-title: Evolution
– volume: 12
  start-page: 1129
  year: 1998
  end-page: 1133
  article-title: Are small, isolated wetlands expendable?
  publication-title: Conserv. Biol.
– volume: 84
  start-page: 135
  year: 1983
  end-page: 156
  article-title: Group sizes of Antelopes in an East African national park
  publication-title: Behaviour
– volume: 165
  start-page: 669
  year: 2005
  end-page: 681
  article-title: The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching
  publication-title: Am. Nat.
– volume: 45
  start-page: 106
  year: 2002
  end-page: 124
  article-title: Evolutionary branching of dispersal strategies in structured metapopulations
  publication-title: J. Math. Biol.
– volume: 40
  start-page: 1009
  year: 1986
  end-page: 1020
  article-title: The evolution of wing dimorphisms in insects
  publication-title: Evolution
– volume: 269
  start-page: 578
  year: 1977
  end-page: 581
  article-title: Dispersal in stable habitats
  publication-title: Nature
– volume: 55
  start-page: 246
  year: 2001
  end-page: 259
  article-title: Divergent evolution of dispersal in a heterogeneous landscape
  publication-title: Evolution
– volume: 266
  start-page: 1837
  year: 1999
  end-page: 1842
  article-title: The evolution of density‐dependent dispersal
  publication-title: Proc. R. Soc. Biol. Sci. Lond. B
– volume: 118
  start-page: 309
  year: 2009
  end-page: 319
  article-title: The evolution of an ‘intelligent’ dispersal strategy: biased, correlated random walks in patchy landscapes
  publication-title: Oikos
– volume: 48
  start-page: 215
  year: 1974
  end-page: 267
  article-title: The social organisation of antelope in relation to their ecology
  publication-title: Behaviour
– volume: 25
  start-page: 591
  year: 1971
  end-page: 598
  article-title: Group selection and the evolution of dispersal
  publication-title: Evolution
– volume: 159
  start-page: 579
  year: 2002
  end-page: 596
  article-title: Dispersal: risk spreading versus local adaptation
  publication-title: Am. Nat.
– volume: 76
  start-page: 282
  year: 1964
  end-page: 285
  article-title: Flock size in a spring concentration of Whistling Swans
  publication-title: Wilson Bull.
– volume: 80
  start-page: 448
  year: 1997
  end-page: 458
  article-title: Metapopulation extinction and genetic variation in dispersal‐related traits
  publication-title: Oikos
– volume: 75
  start-page: 183
  year: 2009
  end-page: 200
  article-title: The metapopulation fitness criterion: proof and perspectives
  publication-title: Theor. Popul. Biol.
– volume: 61
  start-page: 37
  year: 1992
  end-page: 40
  article-title: Dynamics of metapopulations: habitat destruction and competitive coexistence
  publication-title: J. Anim. Ecol.
– volume: 66
  start-page: 97
  year: 1984
  end-page: 107
  article-title: Persistence of a Markovian population in a patchy environment
  publication-title: Z Wahrscheinlichkeit.
– volume: 38
  start-page: 231
  year: 2007
  end-page: 253
  article-title: How does it feel to be like a rolling stone? Ten questions about dispersal evolution
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 74
  start-page: 171
  year: 1973
  end-page: 174
  article-title: Selection for migration modification
  publication-title: Genetics
– volume: 24
  start-page: 244
  year: 1983
  end-page: 251
  article-title: Can spatial variation alone lead to selection for dispersal?
  publication-title: Theor. Popul. Biol.
– volume: 12
  start-page: 99
  year: 2001
  end-page: 108
  article-title: A practical approach to the study of spatial structure in simple cases of heterogeneous vegetation
  publication-title: J. Veg. Sci.
– volume: 445
  start-page: 757
  year: 2007
  end-page: 760
  article-title: Preserving the evolutionary potential of floras in biodiversity hotspots
  publication-title: Nature
– volume: 34
  start-page: 575
  year: 2003
  end-page: 604
  article-title: The ecology and evolution of seed dispersal: a theoretical perspective
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 36
  start-page: 251
  year: 2001
  end-page: 263
  article-title: Biodiversity and the history of reefs
  publication-title: Geol. J
– volume: 79
  start-page: 325
  year: 1997
  end-page: 332
  article-title: Seed heterodimorphism in (Asteraceae): performance of two morphs in different environments
  publication-title: Oikos
– volume: 66
  start-page: 369
  year: 2004
  end-page: 380
  article-title: Conditional dispersal under kin competition: extension of the Hamilton‐May model to brood size‐dependent dispersal
  publication-title: Theor. Popul. Biol.
– volume: 61
  start-page: 2386
  year: 2007
  end-page: 2397
  article-title: The evolution of dispersal in a Levins’ type metapopulation model
  publication-title: Evolution
– volume: 12
  start-page: 197
  year: 2009
  end-page: 209
  article-title: Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations
  publication-title: Ecol. Lett.
– volume: 166
  start-page: 708
  year: 2005
  end-page: 721
  article-title: Inbreeding depression and the evolution of dispersal rates: a multilocus model
  publication-title: Am. Nat.
– volume: 148
  start-page: 709
  year: 1996
  end-page: 718
  article-title: Chaotic population dynamics favors the evolution of dispersal
  publication-title: Am. Nat.
SSID ssj0009519
Score 2.2820253
Snippet Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single...
SourceID hal
proquest
pubmed
wiley
jstor
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 490
SubjectTerms Adaptive dynamics
Animals
Biodiversity
Biodiversity and Ecology
Biological Evolution
Biological variation
Biota
Carrying capacity
Computer Simulation
Conservation of Natural Resources
dispersal evolution
Disruptive selection
Ecological competition
Ecological genetics
Ecosystem
Environmental Sciences
Evolution
evolutionarily stable strategy
Evolutionary biology
evolutionary branching
habitat heterogeneity
kin selection
Metapopulation ecology
Modeling
Models, Genetic
Population size
Selection, Genetic
Species
Stabilizing selection
SummonAdditionalLinks – databaseName: JSTOR Ecology & Botany Collection
  dbid: JEB
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6iQ0i8cB-EAbIQ8BYRO4kvj1nr0U7tNjVtgb1Ydi5C2tShjaLx7_Fx2rJJICHlIbItyzrnWP5sf-czwDtpbVopTPvlVsVZW4lYpVUS5wl1jimhqhyTk4elOPoiBxplct5vcmGQVhl4geEW3wMkd958RJE7zGXoQU9mGMyHev-Gsi7tMC7N4tSvZ7fpOnku45xnfE3i8ug_RZWj3jekPd5FS15vmIh_w5i3IWtYcw4e_udoH8GDNagkRRcFj-FOs3wC97pnJn89hUlRfp1M9Gw66pOTYtYfknJ0qslgVPqi_TkeUpGxLgYlmR1j6XR-MhstNCn1WAeOCfEf0kz0tCzGz2B-oH0n8foZhbhC9a-YuRzzJJvcCeYYtc7ylqcuUcL55VnUaVsx2ggnFXeoRk8bmyCKYLVNeCvbdBd2lhfL5gUQ2dactRxxlt9XptJSp_AVq4ZZWismI3jrDWu-d0IZBqWrh8XYYBnq6nBB1U8awYdg920ze3mG9DKRm89Hn0z_cMjKxYIbHsFuMO624cayEextPGXWU-7KyBylbDzejIBsa_1cwQsQu2wuVtiEKb-d5SKC551__3SdSJFJ6gfHg8O3FTc2ST6WDMaSwVgyIZbMtdGLY_x7-a_B7sH97hwaKTCvYOfH5ap5Db2revUmBPJvJYbetA
  priority: 102
  providerName: JSTOR
Title ASYMMETRIC PATCH SIZE DISTRIBUTION LEADS TO DISRUPTIVE SELECTION ON DISPERSAL
URI https://api.istex.fr/ark:/67375/WNG-CJH2SVV6-6/fulltext.pdf
https://www.jstor.org/stable/27920068
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1558-5646.2010.01143.x
https://www.ncbi.nlm.nih.gov/pubmed/20874811
https://www.proquest.com/docview/850509508
https://search.proquest.com/docview/852909467
https://hal.science/hal-02356719
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZby2Ava3dp53YLYoy9eVhyrMujk6hLQtKGOPEuL0LyhcEgHc0yun8_HTlxG-jTGBhjJFnYOjrWJ_k7nxB6L4yJCwlhv8zIsFsXPJRxEYVJRKylkssigeDkYcYvv4iBApmc8S4WptGHaBfcwDP89xoc3Nj1vpMniQgT1mVbhpaD9vFHwJNu0uCjOeLZPf1d0iBh0g1jN-rtk3oerMiNNt-BHHkI7X274ys-hET3ga0fmS6O_uc7HaNnW3yK06ZDPUePqtUL9KTZsfLPSzRNs6_TqVrMR308Sxf9Ic5G3xQejDKX1FvCeheeqHSQ4cUVpM6Xs8UoVzhTE-XpKtgdwFhR8yydvELLC-UqCbc7MoQFCImF1CYQclklllNLibGG1Sy2keTWjfS8jOuCkopbIZkFYXtSmQgACS1NxGpRxyfoYHW9ql4jLOqS0ZoBZHNT1FgYYiVsiFVRQ0pJRYDeudbXPxvNDQ0q2MN0oiENJHoYJ_I3CdAHb5y2mLn5AUw1nujPl590fzykWZ4zzQJ04q3XFgTdRAiPCdD5zpx6671rLRJQxXHQNUC4zXVuB_9SzKq63kARKt3MmPEAnTad4K7qSPCuIO7hmLd1m3FvvuWsrMHKGqysvZX1rVb5FVyd_euN5-hps-QNbJs36ODXzaZ6ix6vy03He0MHHaY9Nc47PsQHzqrX8SzYv3Ni_1A
link.rule.ids 230,315,782,786,808,814,843,887,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4IX7mNhXCyEeAuKncSXx9B6JCztqiYtlxfLzkVIkzq0UTT-PT5JG1ZpTwgpD5HtWEmOT_z55DufEXorjAkrCWm_zEg_aivuy7AK_Dgg1lLJZRVDcnJa8OkXMVYgk3OyzYXp9SGGgBt4Rve9BgeHgPSul8ex8GMWsQ1Fy2H78L0DlPsRc-MS8jnC2TUFXtJjYRL5oZv3dmk9N_bk5pvvQI_chzd-tWUs3oRFd6FtNzcdP_ivT_UQ3d9AVJz0Y-oRutWsHqM7_aaVv5-gSVJ8nUxUOc9GeJaUoxQX2TeFx1nhij4sIOSFc5WMC1yeQul8MSuzpcKFylXHWMHuANKKmhdJ_hQtjpXrxN9syuBXoCXmUxtD1mUTW04tJcYa1rLQBpJbN9nzOmwrShpuhWQWtO1JYwLAJLQ2AWtFGx6gvdX5qjlEWLQ1oy0D1OZWqaEwxErYE6uhhtSSCg-9ca9f_-hlNzQIYadJrqEMVHoYJ_IX8dC7zjpDM3NxBmQ1HuvP04969CmlxXLJNPPQQWe-oSFIJ0KGjIeOtvbUGwe-1CIGYRyHXj2Eh1rnefA7xaya8zU0odItjhn30LN-FPztOhA8EsTdHOuMPVRcW3I5K2uwsgYr687K-kqr5SmcPf_XC1-ju2k5yXWeTU-O0L0-Ag7kmxdo7-fFunmJbl_W61eda_wB10_-8Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4gX7oMwLhZCvAXFduLLY2hdmtF2VdOWwYtl56JJk7ppo2j8e3ySNqzSnhBSHiLbsRJ_OTmfnXM-I_RBWssKBWm_3KowrgsRKlZEYRIR56gSqkggOXmYi8mJ7GuQyTna5sK0-hDdghtYRvO9BgO_KOtdI08SGSY85psILU_t2SfPJ_djz8pBR5-x6Q0BXtJSYRKHzLu93aieW3vy7uYUoiP3YcCvtwGLt1HRXWbbuKbBo__5UI_Rww1BxWn7Rj1Bd6rVU3Sv3bLy9zM0TvPv47Gez7Ienqbz3hDn2Q-N-1nuiz4vYMELj3Taz_H8GEpni-k8W2qc65Fu4lWwPyBkRc_ydPQcLQbadxJutmQIC1ASC6lLIOeySpygjhLrLK85c5ESzrt6UbK6oKQSTiruQNmeVDYCRkJLG_Fa1uwA7a3OV9VLhGVdclpz4Gx-jsqkJU7BjlgVtaRUVAbovR99c9GKbhiQwR6mIwNloNHDBVG_SIA-NuB0zezlGYSqicR8m3wxvaMhzZdLbniADhr0uoYgnAj5MQE63MJpNuZ7ZWQCsjieuwYId7Xe7uBnil1V52toQpWfGnMRoBftS_C360iKWBJ_c7zBuqu4MeHyKBtA2QDKpkHZXBu9PIazV_964Tt0f9ofmFE2-XqIHrTL3xB58xrt_bxcV2_Q3aty_bYxjD-LBf2X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASYMMETRIC+PATCH+SIZE+DISTRIBUTION+LEADS+TO+DISRUPTIVE+SELECTION+ON+DISPERSAL&rft.jtitle=Evolution&rft.au=Massol%2C+Fran%C3%A7ois&rft.au=Duputi%C3%A9%2C+Anne&rft.au=David%2C+Patrice&rft.au=Jarne%2C+Philippe&rft.date=2011-02-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=65&rft.issue=2&rft.spage=490&rft.epage=500&rft_id=info:doi/10.1111%2Fj.1558-5646.2010.01143.x&rft.externalDBID=10.1111%252Fj.1558-5646.2010.01143.x&rft.externalDocID=EVO1143
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon