ASYMMETRIC PATCH SIZE DISTRIBUTION LEADS TO DISRUPTIVE SELECTION ON DISPERSAL
Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbat...
Saved in:
Published in: | Evolution Vol. 65; no. 2; pp. 490 - 500 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Malden, USA
Blackwell Publishing Inc
01-02-2011
Wiley Subscription Services, Inc Oxford University Press Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable. |
---|---|
AbstractList | Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable. Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single dispersal rate at evolutionary equilibrium, and when diversification of dispersal rates has been predicted, it occurs as a response to perturbation or environmental fluctuation regimes. Yet abundant variation in dispersal ability is observed in natural populations and communities, even in relatively stable environments. We show that this diversification can operate in a simple island model without temporal variability: disruptive selection on dispersal occurs when the environment consists of many small and few large patches, a common feature in natural spatial systems. This heterogeneity in patch size results in a high variability in the number of related patch mates by individual, which, in turn, triggers disruptive selection through a high per capita variance of inclusive fitness. Our study provides a likely, parsimonious and testable explanation for the diversity of dispersal rates encountered in nature. It also suggests that biological conservation policies aiming at preserving ecological communities should strive to keep the distribution of patch size sufficiently asymmetric and variable. [PUBLICATION ABSTRACT] |
Author | Duputié, Anne David, Patrice Massol, François Jarne, Philippe |
Author_xml | – sequence: 1 givenname: François surname: Massol fullname: Massol, François – sequence: 2 givenname: Anne surname: Duputié fullname: Duputié, Anne – sequence: 3 givenname: Patrice surname: David fullname: David, Patrice – sequence: 4 givenname: Philippe surname: Jarne fullname: Jarne, Philippe |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/20874811$$D View this record in MEDLINE/PubMed https://hal.science/hal-02356719$$DView record in HAL |
BookMark | eNpdkV9v0zAUxS00xLrBRwBFvCAeUq6d2HEeeAiZtwala9WkRfBi2a0jkqXNSNrRfXucZRQJy5Ktc373-s-5QGe7ZmcQcjCMsR2fqjGmlLuU-WxMwKqAse-Njy_Q6GScoREA9l2PEzhHF11XAUBIcfgKnRPggc8xHqFplH2fTkW-SGJnHuXxxMmSH8K5SjIrfVnmyezWSUV0lTn5rFcXy3merISTiVTET66dVp-LRRalr9HLQtWdefO8XqLltbBN3XR2k8RR6q4pZZ5LNGWEU0N1QDTBSitWME9DGGifsGDjFWuCTaB5yDTjlGOj7NUxkI0CVvDCu0Qfh74_VS3v23Kr2kfZqFJOolT2GhCPsgCHD9iyHwb2vm1-HUy3l9uyW5u6VjvTHDrJKQkh9Flgyff_kVVzaHf2IRYCaj8PuIXePUMHvTWb0-l_v9QCnwfgd1mbx5OPQfbRyUr2Cck-IdlHJ5-ik0cpVrN-Z-vfDvVVt2_af_2DkACw_gLu4Jfd3hxPvmrvpH1DQOW32xsZf52QbLViknl_AKLMnLE |
CitedBy_id | crossref_primary_10_1093_icb_ics055 crossref_primary_10_1890_12_1922_1 crossref_primary_10_1016_j_ecocom_2012_05_004 crossref_primary_10_1098_rstb_2023_0142 crossref_primary_10_1086_706258 crossref_primary_10_3389_fevo_2019_00155 crossref_primary_10_1073_pnas_1417664111 crossref_primary_10_1016_j_jtbi_2018_02_011 crossref_primary_10_1111_jeb_12771 crossref_primary_10_1098_rstb_2016_0037 crossref_primary_10_1111_evo_12664 crossref_primary_10_1016_j_jtbi_2015_02_013 crossref_primary_10_1111_j_1749_6632_2011_06419_x crossref_primary_10_1016_j_jtbi_2015_12_006 crossref_primary_10_1073_pnas_1915881117 crossref_primary_10_1111_brv_12003 crossref_primary_10_1111_oik_09972 crossref_primary_10_1016_j_jtbi_2020_110449 crossref_primary_10_1111_ecog_02538 crossref_primary_10_1098_rspb_2019_2186 crossref_primary_10_1111_evo_13562 crossref_primary_10_1098_rstb_2023_0129 crossref_primary_10_1098_rspb_2014_2879 crossref_primary_10_1111_evo_12830 crossref_primary_10_1111_j_1558_5646_2011_01225_x crossref_primary_10_1098_rspb_2014_1226 crossref_primary_10_1111_ibi_12463 crossref_primary_10_1002_ajb2_1739 crossref_primary_10_1098_rspb_2016_0548 crossref_primary_10_1111_j_1461_0248_2011_01671_x crossref_primary_10_1111_oik_03801 crossref_primary_10_1111_ele_14263 crossref_primary_10_1111_ecog_05315 crossref_primary_10_1111_ele_14222 crossref_primary_10_1111_evo_13691 crossref_primary_10_1038_s41598_018_35255_0 crossref_primary_10_1098_rsfs_2013_0028 crossref_primary_10_1186_s12898_016_0058_z crossref_primary_10_1111_oik_10490 crossref_primary_10_1371_journal_pone_0034733 crossref_primary_10_1186_s12862_020_01742_0 crossref_primary_10_1016_j_tpb_2013_10_005 crossref_primary_10_1016_j_jtbi_2016_11_007 crossref_primary_10_1111_evo_12492 crossref_primary_10_1111_oik_10325 crossref_primary_10_1111_j_1365_294X_2012_05478_x crossref_primary_10_1111_brv_12356 crossref_primary_10_1111_evo_12699 crossref_primary_10_1111_evo_13866 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Society for the Study of Evolution 2010 The Author(s). © 2010 The Society for the Study of Evolution 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution. Copyright Society for the Study of Evolution Feb 2011 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2011 Society for the Study of Evolution – notice: 2010 The Author(s). © 2010 The Society for the Study of Evolution – notice: 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution. – notice: Copyright Society for the Study of Evolution Feb 2011 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES |
DOI | 10.1111/j.1558-5646.2010.01143.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | Virology and AIDS Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Environmental Sciences |
EISSN | 1558-5646 |
EndPage | 500 |
ExternalDocumentID | oai_HAL_hal_02356719v1 2261521531 20874811 EVO1143 27920068 ark_67375_WNG_CJH2SVV6_6 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- --Z -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OC 29G 2AX 31~ 33P 3O- 3SF 4.4 41~ 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAISJ AAKGQ AAONW AAPSS AAPXW AARHZ AASGY AAUAY AAVAP AAWDT AAXRX AAZKR ABBHK ABCQN ABCUV ABDPE ABEJV ABEML ABJNI ABLJU ABMNT ABPLY ABPPZ ABPTD ABPVW ABTLG ABWJO ABXSQ ABXVV ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACFRR ACGFO ACGFS ACGOD ACIPB ACIWK ACKIV ACNCT ACPOU ACPRK ACSCC ACSTJ ACUFI ACUTJ ACXBN ACXQS ACZBC ADACV ADBBV ADEOM ADHSS ADIPN ADIZJ ADKYN ADMGS ADOZA ADQBN ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIMD AENEX AEPYG AEQDE AEUPB AEUQT AFAZZ AFBPY AFFDN AFFIJ AFGKR AFGWE AFNWH AFPWT AFRAH AFYAG AFZJQ AGMDO AGUYK AHXOZ AI. AIAGR AILXY AIURR AIWBW AJAOE AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANFBD AQVQM ASPBG AS~ ATGXG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BCRHZ BDRZF BHBCM BKOMP BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG CBGCD COF CS3 CUYZI D-E D-F D0L D0S DC7 DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FAC FAL FAS FD6 FEDTE FJD FJW G-S G.N GODZA GTFYD H.T H.X H13 HF~ HGD HQ2 HTVGU HVGLF HZ~ IAG IAO IEA IEP IOF IPSME ITC IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 KOP LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NHB NQS O66 O9- OBOKY OIG OJZSN OK1 OVD OWPYF P-O P2P P2W P2X P4D PQ0 PQQKQ Q.N Q11 Q5J QB0 QN7 R.K RBO ROL ROX RWL RX1 RXW SA0 SJN SUPJJ TAE TCN TEORI TN5 UB1 UBC UHB UQL V8K VH1 VJK VQA W8V W99 WBKPD WH7 WHG WIH WIK WNSPC WOHZO WQJ WRC WYISQ XG1 XOL XSW YXE YYP YZZ ZCA ZCG ZZTAW ~02 ~IA ~KM ~WT AAJUZ ABCVL ABHUG ABWRO ABXZS ACXME ADAWD ADDAD ADZLD AEDJY AESBF AFDAS AFVGU AGJLS BFHJK CWIXF DWIUU G8K CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c5563-2b56285e5b72b21aba6f63b097b4267d3fc21e7b896b68581ea009102da06f8f3 |
IEDL.DBID | 33P |
ISSN | 0014-3820 |
IngestDate | Wed Nov 06 06:46:03 EST 2024 Fri Oct 25 03:02:23 EDT 2024 Thu Oct 10 15:50:32 EDT 2024 Tue Oct 15 23:37:25 EDT 2024 Sat Aug 24 00:58:31 EDT 2024 Fri Feb 02 07:05:12 EST 2024 Wed Oct 30 09:49:37 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | BIODIVERSITY evolutionary branching ENVIRONMENTS PERSPECTIVE Adaptive dynamics METAPOPULATION MODELS DEPENDENT DISPERSAL STRATEGIES DENSITY RATES EVOLUTION dispersal evolution kin selection habitat heterogeneity POPULATION-DYNAMICS evolutionarily stable strategy |
Language | English |
License | 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5563-2b56285e5b72b21aba6f63b097b4267d3fc21e7b896b68581ea009102da06f8f3 |
Notes | istex:BFD7E06D94ADF4EEEAD13021129CA0519D7564AB ark:/67375/WNG-CJH2SVV6-6 ArticleID:EVO1143 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4588-990X 0000-0003-2213-7940 0000-0002-4098-955X 0000-0002-6291-1999 |
OpenAccessLink | https://hal.science/hal-02356719 |
PMID | 20874811 |
PQID | 850509508 |
PQPubID | 42232 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_02356719v1 proquest_miscellaneous_852909467 proquest_journals_850509508 pubmed_primary_20874811 wiley_primary_10_1111_j_1558_5646_2010_01143_x_EVO1143 jstor_primary_27920068 istex_primary_ark_67375_WNG_CJH2SVV6_6 |
PublicationCentury | 2000 |
PublicationDate | February 2011 |
PublicationDateYYYYMMDD | 2011-02-01 |
PublicationDate_xml | – month: 02 year: 2011 text: February 2011 |
PublicationDecade | 2010 |
PublicationPlace | Malden, USA |
PublicationPlace_xml | – name: Malden, USA – name: United States – name: St. Louis |
PublicationTitle | Evolution |
PublicationTitleAlternate | Evolution |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Inc Wiley Subscription Services, Inc Oxford University Press Wiley |
Publisher_xml | – name: Blackwell Publishing Inc – name: Wiley Subscription Services, Inc – name: Oxford University Press – name: Wiley |
References | Primack, R. B., and R. T. Corlett. 2005. Tropical rain forests: an ecological and biogeographical comparison. Blackwell Publishing, Oxford , UK . Wood, R. 2001. Biodiversity and the history of reefs. Geol. J 36:251-263. Parvinen, K. 2002. Evolutionary branching of dispersal strategies in structured metapopulations. J. Math. Biol. 45:106-124. Ronce, O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu. Rev. Ecol. Evol. Syst. 38:231-253. Nee, S., and R. M. May. 1992. Dynamics of metapopulations: habitat destruction and competitive coexistence. J. Anim. Ecol. 61:37-40. Poethke, H. J., and T. Hovestadt. 2002. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. Biol. Sci. Lond. B 269:637-645. Massol, F., V. Calcagno, and J. Massol. 2009. The metapopulation fitness criterion: proof and perspectives. Theor. Popul. Biol. 75:183-200. Hamilton, W. D., and R. M. May. 1977. Dispersal in stable habitats. Nature 269:578-581. Mathias, A., E. Kisdi, and I. Olivieri. 2001. Divergent evolution of dispersal in a heterogeneous landscape. Evolution 55:246-259. Brock, J. C., M. Palaseanu-Lovejoy, C. W. Wright, and A. Nayegandhi. 2008. Patch-reef morphology as a proxy for Holocene sea-level variability, Northern Florida Keys, USA. Coral Reefs 27:555-568. Chesson, P. L. 1984. Persistence of a Markovian population in a patchy environment. Z Wahrscheinlichkeit. 66:97-107. Doebeli, M., and G. D. Ruxton. 1997. Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space. Evolution 51:1730-1741. Leimar, O., and U. Norberg. 1997. Metapopulation extinction and genetic variation in dispersal-related traits. Oikos 80:448-458. Champagnat, N., R. Ferriere, and S. Meleard. 2006. Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. Theor. Popul. Biol. 69:297-321. Balkau, B. J., and M. W. Feldman. 1973. Selection for migration modification. Genetics 74:171-174. Hanski, I., and M. E. Gilpin. 1997. Metapopulation biology: ecology, genetics, and evolution. Academic Press, San Diego , CA . Levin, S. A., H. C. Muller-Landau, R. Nathan, and J. Chave. 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annu. Rev. Ecol. Syst. 34:575-604. Roff, D. A. 1975. Population stability and the evolution of dispersal in a heterogeneous environment. Oecologia 19:217-237. Metz, J. A. J., and M. Gyllenberg. 2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies. Proc. R. Soc. Biol. Sci. Lond. B 268:499-508. Hastings, A. 1983. Can spatial variation alone lead to selection for dispersal? Theor. Popul. Biol. 24:244-251. Jarman, P. J. 1974. The social organisation of antelope in relation to their ecology. Behaviour 48:215-267. Thompson, D. Q., and M. D. Lyons. 1964. Flock size in a spring concentration of Whistling Swans. Wilson Bull. 76:282-285. Barton, K. A., B. L. Phillips, J. M. Morales, and J. M. J. Travis. 2009. The evolution of an 'intelligent' dispersal strategy: biased, correlated random walks in patchy landscapes. Oikos 118:309-319. Kisdi, E. 2004. Conditional dispersal under kin competition: extension of the Hamilton-May model to brood size-dependent dispersal. Theor. Popul. Biol. 66:369-380. Wirtz, P., and J. Lörscher. 1983. Group sizes of Antelopes in an East African national park. Behaviour 84:135-156. Pélissier, R., and F. Goreaud. 2001. A practical approach to the study of spatial structure in simple cases of heterogeneous vegetation. J. Veg. Sci. 12:99-108. Holt, R. D., and M. A. McPeek. 1996. Chaotic population dynamics favors the evolution of dispersal. Am. Nat. 148:709-718. Travis, J. M. J., D. J. Murrell, and C. Dytham. 1999. The evolution of density-dependent dispersal. Proc. R. Soc. Biol. Sci. Lond. B 266:1837-1842. van Valen, L. 1971. Group selection and the evolution of dispersal. Evolution 25:591-598. Connor, E. F., A. C. Courtney, and J. M. Yoder. 2000. Individuals-area relationships: the relationship between animal population density and area. Ecology 81:734-748. Leimar, O. 2005. The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching. Am. Nat. 165:669-681. McPeek, M. A., and R. D. Holt. 1992. The evolution of dispersal in spatially and temporally varying environments. Am. Nat. 140:1010-1027. Urban, M. C., and D. K. Skelly. 2006. Evolving metacommunities: toward an evolutionary perspective on metacommunities. Ecology 87:1616-1626. Bengtsson, B. O. 1978. Avoiding inbreeding: at what cost? J. Theor. Biol. 73:439-444. Kisdi, E. 2002. Dispersal: risk spreading versus local adaptation. Am. Nat. 159:579-596. Hubbell, S. P. 2001. The unified neutral theory of biodiversity and biogeography. Princeton Univ. Press, Princeton , NJ . Imbert, E., J. Escarré, and J. Lepart. 1997. Seed heterodimorphism in Crepis sancta (Asteraceae): performance of two morphs in different environments. Oikos 79:325-332. Hazell, S. P., D. M. Gwynn, S. Ceccarelli, and M. D. E. Fellowes. 2005. Competition and dispersal in the pea aphid: clonal variation and correlations across traits. Ecol. Entomol. 30:293-298. Comins, H. N., W. D. Hamilton, and R. M. May. 1980. Evolutionarily stable dispersal strategies. J. Theor. Biol. 82:205-230. Hofbauer, J., and K. Sigmund. 1990. Adaptive dynamics and evolutionary stability. Appl. Math. Lett. 3:75-79. Patterson, B. D., and W. Atmar. 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. 28:65-82. Charlesworth, B. 1994. Evolution in age-structured populations, 2nd ed. Cambridge Univ. Press, Cambridge . Clobert, J., J.-F. Le Galliard, J. Cote, S. Meylan, and M. Massot. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12:197-209. Roff, D. A. 1986. The evolution of wing dimorphisms in insects. Evolution 40:1009-1020. Cadet, C., R. Ferriere, J. A. J. Metz, and M. van Baalen. 2003. The evolution of dispersal under demographic stochasticity. Am. Nat. 162:427-441. Enfjall, K., and O. Leimar. 2009. The evolution of dispersal-the importance of information about population density and habitat characteristics. Oikos 118:291-299. Hanski, I., and I. Saccheri. 2006. Molecular-level variation affects population growth in a butterfly metapopulation. PLoS Biol. 4:719-726. Haag, C. R., M. Saastamoinen, J. H. Marden, and I. Hanski. 2005. A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc. R. Soc. Biol. Lond. B 272:2449-2456. Ajar, E. 2003. Analysis of disruptive selection in subdivided populations. BMC Evol. Biol. 3:22, doi:10.1186/1471-2148-3-22. Ronce, O., F. Perret, and I. Olivieri. 2000. Evolutionarily stable dispersal rates do not always increase with local extinction rates. Am. Nat. 155:485-496. Roze, D., and F. Rousset. 2005. Inbreeding depression and the evolution of dispersal rates: a multilocus model. Am. Nat. 166:708-721. Geritz, S. A. H., E. Kisdi, G. Meszena, and J. A. J. Metz. 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evol. Ecol. 12:35-57. Jansen, V. A. A., and R. Vitalis. 2007. The evolution of dispersal in a Levins' type metapopulation model. Evolution 61:2386-2397. Forest, F., R. Grenyer, M. Rouget, T. J. Davies, R. M. Cowling, D. P. Faith, A. Balmford, J. C. Manning, S. Proches, M. Van Der Bank, et al. 2007. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445:757-760. Clobert, J., E. Danchin, A. A. Dhondt, and J. D. Nichols. 2001. Dispersal. Oxford Univ. Press, New York . Semlitsch, R. D., and J. R. Bodie. 1998. Are small, isolated wetlands expendable? Conserv. Biol. 12:1129-1133. Holt, R. D. 1985. Population dynamics in two-patch environments: some anomalous consequences of an optimal habitat distribution. Theor. Popul. Biol. 28:181-208. 1997; 80 2004; 66 1985; 28 1978; 73 1984; 66 1975; 19 2002; 159 2009; 118 1996; 148 2001; 268 2007; 38 2009; 12 1974; 48 1997; 51 1986; 40 2001 2002; 45 2008; 27 2006; 69 2003; 162 1964; 76 2003; 3 2005; 30 2002; 269 1980; 82 2007; 61 2001; 55 2001; 12 1998; 12 1983; 24 2007; 445 2005; 272 1973; 74 1992; 140 1971; 25 1997 1994 1977; 269 2005 2006; 4 2000; 155 1999; 266 2003; 34 1990; 3 2009; 75 2005; 165 2005; 166 2006; 87 1997; 79 1986; 28 2000; 81 1983; 84 2001; 36 1992; 61 |
References_xml | – volume: 73 start-page: 439 year: 1978 end-page: 444 article-title: Avoiding inbreeding: at what cost? publication-title: J. Theor. Biol. – volume: 118 start-page: 291 year: 2009 end-page: 299 article-title: The evolution of dispersal—the importance of information about population density and habitat characteristics publication-title: Oikos – volume: 28 start-page: 181 year: 1985 end-page: 208 article-title: Population dynamics in two‐patch environments: some anomalous consequences of an optimal habitat distribution publication-title: Theor. Popul. Biol. – volume: 140 start-page: 1010 year: 1992 end-page: 1027 article-title: The evolution of dispersal in spatially and temporally varying environments publication-title: Am. Nat. – year: 2005 – volume: 69 start-page: 297 year: 2006 end-page: 321 article-title: Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models publication-title: Theor. Popul. Biol. – year: 2001 – volume: 3 start-page: 22 year: 2003 article-title: Analysis of disruptive selection in subdivided populations publication-title: BMC Evol. Biol. – volume: 81 start-page: 734 year: 2000 end-page: 748 article-title: Individuals‐area relationships: the relationship between animal population density and area publication-title: Ecology – volume: 3 start-page: 75 year: 1990 end-page: 79 article-title: Adaptive dynamics and evolutionary stability publication-title: Appl. Math. Lett. – year: 1994 – volume: 155 start-page: 485 year: 2000 end-page: 496 article-title: Evolutionarily stable dispersal rates do not always increase with local extinction rates publication-title: Am. Nat. – volume: 82 start-page: 205 year: 1980 end-page: 230 article-title: Evolutionarily stable dispersal strategies publication-title: J. Theor. Biol. – volume: 28 start-page: 65 year: 1986 end-page: 82 article-title: Nested subsets and the structure of insular mammalian faunas and archipelagos publication-title: Biol. J. Linn. Soc. – volume: 87 start-page: 1616 year: 2006 end-page: 1626 article-title: Evolving metacommunities: toward an evolutionary perspective on metacommunities publication-title: Ecology – volume: 12 start-page: 35 year: 1998 end-page: 57 article-title: Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree publication-title: Evol. Ecol. – year: 1997 – volume: 162 start-page: 427 year: 2003 end-page: 441 article-title: The evolution of dispersal under demographic stochasticity publication-title: Am. Nat. – volume: 272 start-page: 2449 year: 2005 end-page: 2456 article-title: A candidate locus for variation in dispersal rate in a butterfly metapopulation publication-title: Proc. R. Soc. Biol. Lond. B – volume: 27 start-page: 555 year: 2008 end-page: 568 article-title: Patch‐reef morphology as a proxy for Holocene sea‐level variability, Northern Florida Keys, USA publication-title: Coral Reefs – volume: 4 start-page: 719 year: 2006 end-page: 726 article-title: Molecular‐level variation affects population growth in a butterfly metapopulation publication-title: PLoS Biol. – volume: 30 start-page: 293 year: 2005 end-page: 298 article-title: Competition and dispersal in the pea aphid: clonal variation and correlations across traits publication-title: Ecol. Entomol. – start-page: 155 year: 2001 end-page: 167 – volume: 269 start-page: 637 year: 2002 end-page: 645 article-title: Evolution of density‐ and patch‐size‐dependent dispersal rates publication-title: Proc. R. Soc. Biol. Sci. Lond. B – volume: 268 start-page: 499 year: 2001 end-page: 508 article-title: How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies publication-title: Proc. R. Soc. Biol. Sci. Lond. B – volume: 19 start-page: 217 year: 1975 end-page: 237 article-title: Population stability and the evolution of dispersal in a heterogeneous environment publication-title: Oecologia – volume: 51 start-page: 1730 year: 1997 end-page: 1741 article-title: Evolution of dispersal rates in metapopulation models: branching and cyclic dynamics in phenotype space publication-title: Evolution – volume: 12 start-page: 1129 year: 1998 end-page: 1133 article-title: Are small, isolated wetlands expendable? publication-title: Conserv. Biol. – volume: 84 start-page: 135 year: 1983 end-page: 156 article-title: Group sizes of Antelopes in an East African national park publication-title: Behaviour – volume: 165 start-page: 669 year: 2005 end-page: 681 article-title: The evolution of phenotypic polymorphism: randomized strategies versus evolutionary branching publication-title: Am. Nat. – volume: 45 start-page: 106 year: 2002 end-page: 124 article-title: Evolutionary branching of dispersal strategies in structured metapopulations publication-title: J. Math. Biol. – volume: 40 start-page: 1009 year: 1986 end-page: 1020 article-title: The evolution of wing dimorphisms in insects publication-title: Evolution – volume: 269 start-page: 578 year: 1977 end-page: 581 article-title: Dispersal in stable habitats publication-title: Nature – volume: 55 start-page: 246 year: 2001 end-page: 259 article-title: Divergent evolution of dispersal in a heterogeneous landscape publication-title: Evolution – volume: 266 start-page: 1837 year: 1999 end-page: 1842 article-title: The evolution of density‐dependent dispersal publication-title: Proc. R. Soc. Biol. Sci. Lond. B – volume: 118 start-page: 309 year: 2009 end-page: 319 article-title: The evolution of an ‘intelligent’ dispersal strategy: biased, correlated random walks in patchy landscapes publication-title: Oikos – volume: 48 start-page: 215 year: 1974 end-page: 267 article-title: The social organisation of antelope in relation to their ecology publication-title: Behaviour – volume: 25 start-page: 591 year: 1971 end-page: 598 article-title: Group selection and the evolution of dispersal publication-title: Evolution – volume: 159 start-page: 579 year: 2002 end-page: 596 article-title: Dispersal: risk spreading versus local adaptation publication-title: Am. Nat. – volume: 76 start-page: 282 year: 1964 end-page: 285 article-title: Flock size in a spring concentration of Whistling Swans publication-title: Wilson Bull. – volume: 80 start-page: 448 year: 1997 end-page: 458 article-title: Metapopulation extinction and genetic variation in dispersal‐related traits publication-title: Oikos – volume: 75 start-page: 183 year: 2009 end-page: 200 article-title: The metapopulation fitness criterion: proof and perspectives publication-title: Theor. Popul. Biol. – volume: 61 start-page: 37 year: 1992 end-page: 40 article-title: Dynamics of metapopulations: habitat destruction and competitive coexistence publication-title: J. Anim. Ecol. – volume: 66 start-page: 97 year: 1984 end-page: 107 article-title: Persistence of a Markovian population in a patchy environment publication-title: Z Wahrscheinlichkeit. – volume: 38 start-page: 231 year: 2007 end-page: 253 article-title: How does it feel to be like a rolling stone? Ten questions about dispersal evolution publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 74 start-page: 171 year: 1973 end-page: 174 article-title: Selection for migration modification publication-title: Genetics – volume: 24 start-page: 244 year: 1983 end-page: 251 article-title: Can spatial variation alone lead to selection for dispersal? publication-title: Theor. Popul. Biol. – volume: 12 start-page: 99 year: 2001 end-page: 108 article-title: A practical approach to the study of spatial structure in simple cases of heterogeneous vegetation publication-title: J. Veg. Sci. – volume: 445 start-page: 757 year: 2007 end-page: 760 article-title: Preserving the evolutionary potential of floras in biodiversity hotspots publication-title: Nature – volume: 34 start-page: 575 year: 2003 end-page: 604 article-title: The ecology and evolution of seed dispersal: a theoretical perspective publication-title: Annu. Rev. Ecol. Syst. – volume: 36 start-page: 251 year: 2001 end-page: 263 article-title: Biodiversity and the history of reefs publication-title: Geol. J – volume: 79 start-page: 325 year: 1997 end-page: 332 article-title: Seed heterodimorphism in (Asteraceae): performance of two morphs in different environments publication-title: Oikos – volume: 66 start-page: 369 year: 2004 end-page: 380 article-title: Conditional dispersal under kin competition: extension of the Hamilton‐May model to brood size‐dependent dispersal publication-title: Theor. Popul. Biol. – volume: 61 start-page: 2386 year: 2007 end-page: 2397 article-title: The evolution of dispersal in a Levins’ type metapopulation model publication-title: Evolution – volume: 12 start-page: 197 year: 2009 end-page: 209 article-title: Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations publication-title: Ecol. Lett. – volume: 166 start-page: 708 year: 2005 end-page: 721 article-title: Inbreeding depression and the evolution of dispersal rates: a multilocus model publication-title: Am. Nat. – volume: 148 start-page: 709 year: 1996 end-page: 718 article-title: Chaotic population dynamics favors the evolution of dispersal publication-title: Am. Nat. |
SSID | ssj0009519 |
Score | 2.2820253 |
Snippet | Numerous models have been designed to understand how dispersal ability evolves when organisms live in a fragmented landscape. Most of them predict a single... |
SourceID | hal proquest pubmed wiley jstor istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 490 |
SubjectTerms | Adaptive dynamics Animals Biodiversity Biodiversity and Ecology Biological Evolution Biological variation Biota Carrying capacity Computer Simulation Conservation of Natural Resources dispersal evolution Disruptive selection Ecological competition Ecological genetics Ecosystem Environmental Sciences Evolution evolutionarily stable strategy Evolutionary biology evolutionary branching habitat heterogeneity kin selection Metapopulation ecology Modeling Models, Genetic Population size Selection, Genetic Species Stabilizing selection |
SummonAdditionalLinks | – databaseName: JSTOR Ecology & Botany Collection dbid: JEB link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD6iQ0i8cB-EAbIQ8BYRO4kvj1nr0U7tNjVtgb1Ydi5C2tShjaLx7_Fx2rJJICHlIbItyzrnWP5sf-czwDtpbVopTPvlVsVZW4lYpVUS5wl1jimhqhyTk4elOPoiBxplct5vcmGQVhl4geEW3wMkd958RJE7zGXoQU9mGMyHev-Gsi7tMC7N4tSvZ7fpOnku45xnfE3i8ug_RZWj3jekPd5FS15vmIh_w5i3IWtYcw4e_udoH8GDNagkRRcFj-FOs3wC97pnJn89hUlRfp1M9Gw66pOTYtYfknJ0qslgVPqi_TkeUpGxLgYlmR1j6XR-MhstNCn1WAeOCfEf0kz0tCzGz2B-oH0n8foZhbhC9a-YuRzzJJvcCeYYtc7ylqcuUcL55VnUaVsx2ggnFXeoRk8bmyCKYLVNeCvbdBd2lhfL5gUQ2dactRxxlt9XptJSp_AVq4ZZWismI3jrDWu-d0IZBqWrh8XYYBnq6nBB1U8awYdg920ze3mG9DKRm89Hn0z_cMjKxYIbHsFuMO624cayEextPGXWU-7KyBylbDzejIBsa_1cwQsQu2wuVtiEKb-d5SKC551__3SdSJFJ6gfHg8O3FTc2ST6WDMaSwVgyIZbMtdGLY_x7-a_B7sH97hwaKTCvYOfH5ap5Db2revUmBPJvJYbetA priority: 102 providerName: JSTOR |
Title | ASYMMETRIC PATCH SIZE DISTRIBUTION LEADS TO DISRUPTIVE SELECTION ON DISPERSAL |
URI | https://api.istex.fr/ark:/67375/WNG-CJH2SVV6-6/fulltext.pdf https://www.jstor.org/stable/27920068 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1558-5646.2010.01143.x https://www.ncbi.nlm.nih.gov/pubmed/20874811 https://www.proquest.com/docview/850509508 https://search.proquest.com/docview/852909467 https://hal.science/hal-02356719 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZby2Ava3dp53YLYoy9eVhyrMujk6hLQtKGOPEuL0LyhcEgHc0yun8_HTlxG-jTGBhjJFnYOjrWJ_k7nxB6L4yJCwlhv8zIsFsXPJRxEYVJRKylkssigeDkYcYvv4iBApmc8S4WptGHaBfcwDP89xoc3Nj1vpMniQgT1mVbhpaD9vFHwJNu0uCjOeLZPf1d0iBh0g1jN-rtk3oerMiNNt-BHHkI7X274ys-hET3ga0fmS6O_uc7HaNnW3yK06ZDPUePqtUL9KTZsfLPSzRNs6_TqVrMR308Sxf9Ic5G3xQejDKX1FvCeheeqHSQ4cUVpM6Xs8UoVzhTE-XpKtgdwFhR8yydvELLC-UqCbc7MoQFCImF1CYQclklllNLibGG1Sy2keTWjfS8jOuCkopbIZkFYXtSmQgACS1NxGpRxyfoYHW9ql4jLOqS0ZoBZHNT1FgYYiVsiFVRQ0pJRYDeudbXPxvNDQ0q2MN0oiENJHoYJ_I3CdAHb5y2mLn5AUw1nujPl590fzykWZ4zzQJ04q3XFgTdRAiPCdD5zpx6671rLRJQxXHQNUC4zXVuB_9SzKq63kARKt3MmPEAnTad4K7qSPCuIO7hmLd1m3FvvuWsrMHKGqysvZX1rVb5FVyd_euN5-hps-QNbJs36ODXzaZ6ix6vy03He0MHHaY9Nc47PsQHzqrX8SzYv3Ni_1A |
link.rule.ids | 230,315,782,786,808,814,843,887,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4IX7mNhXCyEeAuKncSXx9B6JCztqiYtlxfLzkVIkzq0UTT-PT5JG1ZpTwgpD5HtWEmOT_z55DufEXorjAkrCWm_zEg_aivuy7AK_Dgg1lLJZRVDcnJa8OkXMVYgk3OyzYXp9SGGgBt4Rve9BgeHgPSul8ex8GMWsQ1Fy2H78L0DlPsRc-MS8jnC2TUFXtJjYRL5oZv3dmk9N_bk5pvvQI_chzd-tWUs3oRFd6FtNzcdP_ivT_UQ3d9AVJz0Y-oRutWsHqM7_aaVv5-gSVJ8nUxUOc9GeJaUoxQX2TeFx1nhij4sIOSFc5WMC1yeQul8MSuzpcKFylXHWMHuANKKmhdJ_hQtjpXrxN9syuBXoCXmUxtD1mUTW04tJcYa1rLQBpJbN9nzOmwrShpuhWQWtO1JYwLAJLQ2AWtFGx6gvdX5qjlEWLQ1oy0D1OZWqaEwxErYE6uhhtSSCg-9ca9f_-hlNzQIYadJrqEMVHoYJ_IX8dC7zjpDM3NxBmQ1HuvP04969CmlxXLJNPPQQWe-oSFIJ0KGjIeOtvbUGwe-1CIGYRyHXj2Eh1rnefA7xaya8zU0odItjhn30LN-FPztOhA8EsTdHOuMPVRcW3I5K2uwsgYr687K-kqr5SmcPf_XC1-ju2k5yXWeTU-O0L0-Ag7kmxdo7-fFunmJbl_W61eda_wB10_-8Q |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLZgE4gX7oMwLhZCvAXFduLLY2hdmtF2VdOWwYtl56JJk7ppo2j8e3ySNqzSnhBSHiLbsRJ_OTmfnXM-I_RBWssKBWm_3KowrgsRKlZEYRIR56gSqkggOXmYi8mJ7GuQyTna5sK0-hDdghtYRvO9BgO_KOtdI08SGSY85psILU_t2SfPJ_djz8pBR5-x6Q0BXtJSYRKHzLu93aieW3vy7uYUoiP3YcCvtwGLt1HRXWbbuKbBo__5UI_Rww1BxWn7Rj1Bd6rVU3Sv3bLy9zM0TvPv47Gez7Ienqbz3hDn2Q-N-1nuiz4vYMELj3Taz_H8GEpni-k8W2qc65Fu4lWwPyBkRc_ydPQcLQbadxJutmQIC1ASC6lLIOeySpygjhLrLK85c5ESzrt6UbK6oKQSTiruQNmeVDYCRkJLG_Fa1uwA7a3OV9VLhGVdclpz4Gx-jsqkJU7BjlgVtaRUVAbovR99c9GKbhiQwR6mIwNloNHDBVG_SIA-NuB0zezlGYSqicR8m3wxvaMhzZdLbniADhr0uoYgnAj5MQE63MJpNuZ7ZWQCsjieuwYId7Xe7uBnil1V52toQpWfGnMRoBftS_C360iKWBJ_c7zBuqu4MeHyKBtA2QDKpkHZXBu9PIazV_964Tt0f9ofmFE2-XqIHrTL3xB58xrt_bxcV2_Q3aty_bYxjD-LBf2X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ASYMMETRIC+PATCH+SIZE+DISTRIBUTION+LEADS+TO+DISRUPTIVE+SELECTION+ON+DISPERSAL&rft.jtitle=Evolution&rft.au=Massol%2C+Fran%C3%A7ois&rft.au=Duputi%C3%A9%2C+Anne&rft.au=David%2C+Patrice&rft.au=Jarne%2C+Philippe&rft.date=2011-02-01&rft.pub=Blackwell+Publishing+Inc&rft.issn=0014-3820&rft.eissn=1558-5646&rft.volume=65&rft.issue=2&rft.spage=490&rft.epage=500&rft_id=info:doi/10.1111%2Fj.1558-5646.2010.01143.x&rft.externalDBID=10.1111%252Fj.1558-5646.2010.01143.x&rft.externalDocID=EVO1143 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-3820&client=summon |