Turning a protein kinase on or off from a single allosteric site via disulfide trapping

There is significant interest in identifying and characterizing allosteric sites in enzymes such as protein kinases both for understanding allosteric mechanisms as well as for drug discovery. Here, we apply a site-directed technology, disulfide trapping, to interrogate structurally and functionally...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 108; no. 15; pp. 6056 - 6061
Main Authors: Sadowsky, Jack D, Burlingame, Mark A, Wolan, Dennis W, McClendon, Christopher L, Jacobson, Matthew P, Wells, James A
Format: Journal Article
Language:English
Published: United States National Academy of Sciences 12-04-2011
National Acad Sciences
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is significant interest in identifying and characterizing allosteric sites in enzymes such as protein kinases both for understanding allosteric mechanisms as well as for drug discovery. Here, we apply a site-directed technology, disulfide trapping, to interrogate structurally and functionally how an allosteric site on the Ser/Thr kinase, 3-phosphoinositide-dependent kinase 1 (PDK1)--the PDK1-interacting-fragment (PIF) pocket--is engaged by an activating peptide motif on downstream substrate kinases (PIFtides) and by small molecule fragments. By monitoring pairwise disulfide conjugation between PIFtide and PDK1 cysteine mutants, we defined the PIFtide binding orientation in the PIF pocket of PDK1 and assessed subtle relationships between PIFtide positioning and kinase activation. We also discovered a variety of small molecule fragment disulfides (< 300 Da) that could either activate or inhibit PDK1 by conjugation to the PIF pocket, thus displaying greater functional diversity than is displayed by PIFtides conjugated to the same sites. Biochemical data and three crystal structures provided insight into the mechanism of action of the best fragment activators and inhibitors. These studies show that disulfide trapping is useful for characterizing allosteric sites on kinases and that a single allosteric site on a protein kinase can be exploited for both activation and inhibition by small molecules.
Bibliography:http://dx.doi.org/10.1073/pnas.1102376108
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Author contributions: J.D.S., D.W.W., C.L.M., M.P.J., and J.A.W. designed research; J.D.S. and C.L.M. performed research; J.D.S. and M.A.B. contributed new reagents/analytic tools; J.D.S., D.W.W., and C.L.M. analyzed data; and J.D.S. and J.A.W. wrote the paper.
Contributed by James A. Wells, February 10, 2011 (sent for review September 28, 2010)
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1102376108