Sampling precautions for the measurement of nitrated polycyclic aromatic hydrocarbons in ambient air

Because of the toxicity of polycyclic aromatic hydrocarbons (PAHs) and of their oxidation products, such as nitrated and oxygenated PAHs (NPAHs and OPAHs), the determination of their concentrations is of great interest in terms of atmospheric pollution control. Then, normalisation of sampling proced...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric environment (1994) Vol. 41; no. 23; pp. 4988 - 4994
Main Authors: Albinet, A., Leoz-Garziandia, E., Budzinski, H., ViIlenave, E.
Format: Journal Article
Language:English
Published: Oxford Elsevier Ltd 01-07-2007
Elsevier Science
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Because of the toxicity of polycyclic aromatic hydrocarbons (PAHs) and of their oxidation products, such as nitrated and oxygenated PAHs (NPAHs and OPAHs), the determination of their concentrations is of great interest in terms of atmospheric pollution control. Then, normalisation of sampling procedures appears essential. In this context, this paper presents a comparison of particulate PAH, OPAH and NPAH concentrations determined with two different samplers (cascade impactor and conventional high volume sampler) installed in parallel during several field sampling campaigns carried out under different environmental conditions. For winter and summer periods, the PAH and OPAH concentrations determined with both sampling systems were considered as equivalent. In the summer period, NPAH concentrations quantified with both sampling devices were similar whereas in the winter period, the conventional high volume sampler underestimated their concentrations by a factor of 3–4. This underestimation was observed in the same proportion for all the 17 quantified NPAHs. Analytical error, NPAH formation during the sampling and NPAH degradation by reaction with gaseous oxidants associated to sampling methodology were unable to explain such differences between both samplers used in parallel. A probable hypothesis is that the heating of the PM 10 head of the high volume sampler in the winter period generates an increase of the internal sampler temperature that could intensify the chemical degradation of the NPAHs inducing the underestimation of their concentrations in the atmosphere. Further investigations will be necessary to confirm the importance of the temperature on the chemical degradation of these compounds and to understand the different behaviour of PAHs and OPAHs. Consequently, we suggest using oxidant scrubber to prevent chemical degradation of PAHs and derivatives during their sampling. Moreover, we advise against the heating of the sampling head which could induce an increase of these reactions of degradation especially for NPAHs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2007.01.061