Water Relations in Single Cells [and Discussion]

The intracellular water content is an important factor affecting the growth and survival of single cells of microorganisms under adverse environmental conditions. Certain types of bacteria, yeasts, filamentous fungi and algae are capable of growth in environments with water activities below 0.9 and...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series B, Biological sciences Vol. 278; no. 959; pp. 151 - 166
Main Authors: Gould, G. W., Measures, J. C., Wilkie, D. R., Meares, P.
Format: Journal Article
Language:English
Published: London The Royal Society 29-03-1977
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The intracellular water content is an important factor affecting the growth and survival of single cells of microorganisms under adverse environmental conditions. Certain types of bacteria, yeasts, filamentous fungi and algae are capable of growth in environments with water activities below 0.9 and even as low as 0.6, and are the most osmotolerant living organisms known. The two most important factors that determine such extreme osmotolerance are: (1) the resistance of the enzymes in a cell to the solutes present, and (2) the cell's ability to maintain within itself particular solutes, which are compatible with continued activity of intracellular enzymes, at levels sufficient to balance the external osmotic pressure and thus avoid dehydration. The levels of such compatible solutes are metabolically controlled and include polyols in yeasts, glutamic acid in the least osmotolerant bacteria, γ-aminobutyric acid and proline in the more osmotolerant bacteria and potassium in specifically halophilic bacteria. In contrast, under certain conditions osmoregulatory mechanisms in microorganisms may reduce rather than maintain the water content of the cell. For example, during the morphogenic changes that accompany the formation of endospores by some bacteria, a special form of osmoregulation occurs in which a newly synthesized electronegative polymer ('peptidoglycan') in the outer region of the spore brings about and maintains, rather than avoids, dehydration of the central core. Indeed, spore heat resistance can be predictably modified experimentally by osmotic manipulation. The core dehydration mechanism is probably implicated in the enormous resistance of endospores to heat. It may also be involved in the exceptional dormancy and longevity of such cells, and suggests a principle that may operate in other dormant biological systems.
AbstractList The intracellular water content is an important factor affecting the growth and survival of single cells of microorganisms under adverse environmental conditions. Certain types of bacteria, yeasts, filamentous fungi and algae are capable of growth in environments with water activities below 0.9 and even as low as 0.6, and are the most osmotolerant living organisms known. The two most important factors that determine such extreme osmotolerance are: (1) the resistance of the enzymes in a cell to the solutes present, and (2) the cell’s ability to maintain within itself particular solutes, which are compatible with continued activity of intracellular enzymes, at levels sufficient to balance the external osmotic pressure and thus avoid dehydration. The levels of such compatible solutes are metabolically controlled and include polyols in yeasts, glutamic acid in the least osmotolerant bacteria, y-aminobutyric acid and proline in the more osmotolerant bacteria and potassium in specifically halophilic bacteria. In contrast, under certain conditions osmoregulatory mechanisms in microorganisms may reduce rather than maintain the water content of the cell. For example, during the morphogenic changes that accompany the formation of endospores by some bacteria, a special form of osmoregulation occurs in which a newly synthesized electronegative polymer (‘peptidoglycan’) in the outer region of the spore brings about and maintains, rather than avoids, dehydration of the central core. Indeed, spore heat resistance can be predictably modified experimentally by osmotic manipulation. The core dehydration mechanism is probably implicated in the enormous resistance of endospores to heat. It may also be involved in the exceptional dormancy and longevity of such cells, and suggests a principle that may operate in other dormant biological systems.
The intracellular water content is an important factor affecting the growth and survival of single cells of microorganisms under adverse environmental conditions. Certain types of bacteria, yeasts, filamentous fungi and algae are capable of growth in environments with water activities below 0.9 and even as low as 0.6, and are the most osmotolerant living organisms known. The two most important factors that determine such extreme osmotolerance are: (1) the resistance of the enzymes in a cell to the solutes present, and (2) the cell's ability to maintain within itself particular solutes, which are compatible with continued activity of intracellular enzymes, at levels sufficient to balance the external osmotic pressure and thus avoid dehydration. The levels of such compatible solutes are metabolically controlled and include polyols in yeasts, glutamic acid in the least osmotolerant bacteria, γ-aminobutyric acid and proline in the more osmotolerant bacteria and potassium in specifically halophilic bacteria. In contrast, under certain conditions osmoregulatory mechanisms in microorganisms may reduce rather than maintain the water content of the cell. For example, during the morphogenic changes that accompany the formation of endospores by some bacteria, a special form of osmoregulation occurs in which a newly synthesized electronegative polymer ('peptidoglycan') in the outer region of the spore brings about and maintains, rather than avoids, dehydration of the central core. Indeed, spore heat resistance can be predictably modified experimentally by osmotic manipulation. The core dehydration mechanism is probably implicated in the enormous resistance of endospores to heat. It may also be involved in the exceptional dormancy and longevity of such cells, and suggests a principle that may operate in other dormant biological systems.
Author Meares, P.
Gould, G. W.
Wilkie, D. R.
Measures, J. C.
Author_xml – sequence: 1
  givenname: G. W.
  surname: Gould
  fullname: Gould, G. W.
– sequence: 2
  givenname: J. C.
  surname: Measures
  fullname: Measures, J. C.
– sequence: 3
  givenname: D. R.
  surname: Wilkie
  fullname: Wilkie, D. R.
– sequence: 4
  givenname: P.
  surname: Meares
  fullname: Meares, P.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17871$$D View this record in MEDLINE/PubMed
BookMark eNp9j19LwzAUxYNs6Ka--qIP_QKtN0nTJI86_8JA2CY-iISuTSSja2fSCvPT21pRRPTpcjnn3Ht-YzQoq1IjdIQhwiDFqfP1MsKS8wiAsh00IsDiEIiAARoBCAjjhJA9NPZ-BcCkJGIXDTEXHI8QPKS1dsFMF2ltq9IHtgzmtnwudDDRReGDx7TMgwvrs8b71vB0gIYmLbw-_Jz76P7qcjG5Cad317eTs2mYMRbXIQORCJbIJTEJYCkoJxlPCOVgdAxJlmMKSa55bgxkWhtBRcyMyRmkmOaC0n0U9XczV3nvtFEbZ9ep2yoMquNWHbfquFXH3QaO-8CmWa51_m3vQFv1pVddtW1rV5nV9VatqsaV7apm88U5lol8JVxYyaQCQTFwHBNQb3bz8avTVasr632jVef6WeF3I_rfzz85TvrUyteV-8IgMeZcYvoOIfCTMg
CitedBy_id crossref_primary_10_1111_j_1365_2621_1980_tb00953_x
crossref_primary_10_2298_CICEQ100123021P
crossref_primary_10_1098_rstb_1990_0029
crossref_primary_10_1111_j_1462_2920_2008_01802_x
crossref_primary_10_1016_j_ifset_2014_10_015
crossref_primary_10_1080_10408399609527742
crossref_primary_10_1111_pce_14117
crossref_primary_10_1128_jb_135_3_868_875_1978
crossref_primary_10_1007_BF01577207
crossref_primary_10_1111_j_1469_8137_2008_02551_x
crossref_primary_10_2136_sssaj2000_6451630x
crossref_primary_10_1002_jobm_3620270713
crossref_primary_10_1111_j_1462_2920_2011_02496_x
crossref_primary_10_1128_jb_164_3_1218_1223_1985
crossref_primary_10_1111_j_1399_3054_1982_tb00315_x
crossref_primary_10_1111_j_1745_4549_1993_tb00733_x
crossref_primary_10_1016_S0007_1536_87_80088_8
crossref_primary_10_1093_treephys_tpn024
crossref_primary_10_1007_s10533_011_9672_1
crossref_primary_10_1080_10408399109527543
crossref_primary_10_1016_0168_1605_86_90040_1
crossref_primary_10_1016_0260_8774_94_00033_6
crossref_primary_10_1111_j_1365_3040_2003_01141_x
crossref_primary_10_1111_j_1365_2672_1993_tb03002_x
crossref_primary_10_1016_0304_4165_82_90349_X
crossref_primary_10_1111_j_1365_2672_1987_tb02389_x
crossref_primary_10_1016_0304_4165_82_90323_3
crossref_primary_10_1111_j_1365_2621_1982_tb12921_x
crossref_primary_10_1111_j_1365_2672_1980_tb01220_x
crossref_primary_10_1016_0005_2736_80_90432_0
crossref_primary_10_1017_S0033583500005369
crossref_primary_10_1080_10408399609527736
crossref_primary_10_1016_S0301_4622_00_00214_3
crossref_primary_10_1016_j_fm_2009_12_006
ContentType Journal Article
Contributor Meares, P
Franks, F.
Richards, Rex Edward
Wilkie, Douglas Robert
Contributor_xml – sequence: 3
  givenname: Douglas Robert
  surname: Wilkie
  fullname: Wilkie, Douglas Robert
  organization: Department Physiology, University College London
– sequence: 4
  givenname: P
  surname: Meares
  fullname: Meares, P
  organization: Chemistry Department, University of Aberdeen, Meston Walk, Old Aberdeen, AB9 2UE
– sequence: 5
  givenname: Rex Edward
  surname: Richards
  fullname: Richards, Rex Edward
– sequence: 6
  givenname: F.
  surname: Franks
  fullname: Franks, F.
Copyright Scanned images copyright © 2017, Royal Society
Copyright_xml – notice: Scanned images copyright © 2017, Royal Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1098/rstb.1977.0035
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Medicine
Sciences (General)
EISSN 2054-0280
EndPage 166
ExternalDocumentID 10_1098_rstb_1977_0035
17871
2417791
Genre Journal Article
Review
GroupedDBID 53G
6TJ
AACGO
AANCE
AANZV
ABBHK
ABPLY
ABTLG
ABXSQ
ABXXB
ACMKX
ADZLD
AEUPB
AEXZC
AJZGM
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BGBPD
DCCCD
DNJUQ
DOOOF
DWIUU
HGD
HQ3
HTVGU
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
MRS
OK1
RGL
SA0
V1E
---
-~X
0R~
4.4
ACPRK
ACSFO
ADBBV
ADULT
AFRAH
BTFSW
CGR
CUY
CVF
EBS
ECM
EIF
EJD
F5P
GX1
H13
HZ~
K-O
KQ8
MV1
MVM
NPM
O9-
OP1
RPM
RRY
TN5
YNT
~02
AAYXX
ABIEJ
ADACV
ALMYZ
CITATION
IPSME
ID FETCH-LOGICAL-c554t-50868569b2f60198372c762370fe406cd1306de7dff0ceef83845ffd50a13d833
IEDL.DBID JSG
ISSN 0080-4622
0962-8436
IngestDate Thu Nov 21 22:39:42 EST 2024
Sat Sep 28 08:37:37 EDT 2024
Tue May 24 16:17:20 EDT 2022
Wed Jan 17 02:37:36 EST 2024
Fri Feb 02 07:04:24 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 959
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c554t-50868569b2f60198372c762370fe406cd1306de7dff0ceef83845ffd50a13d833
PMID 17871
PageCount 16
ParticipantIDs royalsociety_journals_10_1098_rstb_1977_0035
jstor_primary_2417791
pubmed_primary_17871
royalsociety_journals_RSTB1969v278i959_0831071420_zip_rstb1969_278_issue_959_rstb_1977_0035_rstb_1977_0035
crossref_primary_10_1098_rstb_1977_0035
PublicationCentury 1900
PublicationDate 19770329
PublicationDateYYYYMMDD 1977-03-29
PublicationDate_xml – month: 03
  year: 1977
  text: 19770329
  day: 29
PublicationDecade 1970
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B, Biological sciences
PublicationTitleAbbrev Phil. Trans. R. Soc. Lond. B
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 1977
Publisher The Royal Society
Publisher_xml – name: The Royal Society
SSID ssj0059928
ssj0009574
Score 1.3520427
SecondaryResourceType review_article
Snippet The intracellular water content is an important factor affecting the growth and survival of single cells of microorganisms under adverse environmental...
SourceID crossref
pubmed
royalsociety
jstor
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 151
SubjectTerms Amino acids
Bacillus - physiology
Bacillus - ultrastructure
Bacteria
Bacterial Physiological Phenomena
Bacterial spores
Cell Division
Cell growth
Cell Physiological Phenomena
Cell Survival
Enzymes
gamma-Aminobutyric Acid - physiology
Glutamates - physiology
Halobacterium - physiology
Hot Temperature
Microorganisms
Moisture content
Osmolar Concentration
Proline - physiology
Solutes
Spores
Spores - analysis
Spores - physiology
Thermal resistance
Water - analysis
Water - physiology
Water-Electrolyte Balance
Yeasts - physiology
Title Water Relations in Single Cells [and Discussion]
URI https://www.jstor.org/stable/2417791
https://royalsocietypublishing.org/doi/full/10.1098/rstb.1977.0035
https://www.ncbi.nlm.nih.gov/pubmed/17871
Volume 278
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA5uIPjirynOH6MPA1-s69KkuT7qNh2CPjhFQSR0SQqTUWV1gv71XtJtbuLAx7bXo_2a3PeluVwIqQOPE6oF91OtQp-xPvgQKuorzhLOtQki9yu72xM3j9Du2DI59elaGJtW6fIC3Sw-CqT-0DSQZYSwS9RL4DrfVe9yGm15HNMi2kLgs4jSWWFGaKB86p82UeCc2vmyBeIpcg_nWWdkR-t5kSk5xzAXG_97tk2yPlGQ3lnxybfIism2yWqxp-RnhQQPqB5H3izJzRtkXg_5aWi8lhkOc-8pybTXHuRqbBNgs-cdcn_RuWt1_cm2CAggZ-8-SqoIeBT3aYqjqRhHmFRhSAtFkBqkZ6WRliJthE7TACkwhRAYT1PNg6QZagjDXVLOXjOzRzyUfwYiTRUXmilqa7WDBgGJRs_MqCo5nmIm34rqF7KYtQZp0ZUWXVtelFfJjoNmZjbBpUoqBcQ_92OIwNMn84DLScfJl3p_-dv8tnd3bgv8fFABg5jH0m2cJpqMBvJr8Obc2OsSr0vXkqW1WvT-63B_yasckDVrYxPQaHxIyu-jsTkipVyPa6jCW9c1l09ac83zG4JU2uE
link.rule.ids 315,782,786,808,811,27933,27934,58025,58037,58258,58270
linkProvider JSTOR
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46EX3xtzh_9kHwxWqXJs31UbfJxOmDmyiIhC5JYTKqrE7Qv95Ls81NFHxscz3ar-l9l-bLhZBD4HFCteB-qlXoM9YBH0JFfcVZwrk2QVT8ym60xM0D1Oq2TM7haC2MlVUWusBiFh8TpE7PnCLLCGGXqM9xCELhhHujeMvjmLp4C4HPIkrHpRnhFBOozkkFU5wTO2M2RT1OfTjJO307Xs-dVnKCYy6W_3d3K2RpmEN6Z-6lr5IZk62Reber5Mc6Ce4xf-x7Y5mb1828FjJUz3hV0-vl3mOSaa_WzdXASmCzpw1yd1FvVxv-cGMEhJCzNx-Tqgh4FHdoiuOpGMeYVGFQC0WQGiRopZGYIm2ETtMASTCFEBhPU82DpBJqCMNNUspeMrNFPEwADUSaKi40U9RWawcNAhKNnplRZXI0wky-uvoX0s1bg7ToSouuLTDKy2SjgGZsNsSlTNYdxN_XY5DA08eTgMvhp5P_6f35d_PbVvvclvh5pwK6MY9lsXWaqDAayM_ua-HGtktsl0VfltZq2vuPw-0_HuWALDTa103ZvLy52iGL1t7K0Wi8S0pv_YHZI7O5HuwX3fML_RncRA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swELegCLQXvhFljOUBaTwQmjp2fHkcLVWnoQqtRSAhZKX-kIqqrGraSdtfv3PclhYNaY-JL6fkF-d-d_H5jpBz4GlGteCh1SoOGetDCLGioeIs41ybKCl_Zbe7ovMIzRtXJudivhfGpVWWeYHlKj46SP2hqY20rSHTCOG2qW9wDGrA9waY21yeptTbXIhCllC6KM8INXSi-ld1dHOu3KrZCv34DMRl7hm7mL3w-ZJLPNPa-f873CXbM18y-Opf_h5ZM_k-2fTdJX8fkOgB_chxsEh3CwZ50EWmGpqgYYbDInjKch00B4WaulTY_PmQ3Ldueo12OGuQgFByNgnRuUqAJ2mfWoyrUow1qULjFovIGiRqpZGgEm2EtjZCMrQQA-PWah5l9VhDHB-RSv4zN8ckQEfQQKKp4kIzRV3VdtAgINOomRlVJV_muMmRr4Mh_fo1SIewdAi7QqO8Sg5LeBZiM1yq5MDD_Ho9Ggs8fbkMupx9QsW72l_-Lf6j27t2pX5-UQGDlKeybKEm6oxG8s9gVKpx4xLHZTmnpZNa1f7m8OSdR_lMtu6aLXn7rfP9I_ngxF1WGk1PSWUynppPZL3Q07Nyhv4FUMnevQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+Relations+in+Single+Cells+%5Band+Discussion%5D&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B%2C+Biological+sciences&rft.au=Gould%2C+G.+W.&rft.au=Measures%2C+J.+C.&rft.au=Wilkie%2C+D.+R.&rft.au=Meares%2C+P.&rft.date=1977-03-29&rft.pub=The+Royal+Society&rft.issn=0080-4622&rft.volume=278&rft.issue=959&rft.spage=151&rft.epage=166&rft_id=info:doi/10.1098%2Frstb.1977.0035&rft.externalDocID=2417791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0080-4622&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0080-4622&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0080-4622&client=summon