The contribution of common CYP2A6 alleles to variation in nicotine metabolism among European–Americans

OBJECTIVETo study the association between cytochrome P450 2A6 (CYP2A6) genotype and metabolism of nicotine to cotinine, identify functional polymorphisms, and develop a predictive genetic model of nicotine metabolism. METHODSThe conversion of deuterated (D2)-nicotine to D2-cotinine was quantified in...

Full description

Saved in:
Bibliographic Details
Published in:Pharmacogenetics and genomics Vol. 21; no. 7; pp. 403 - 416
Main Authors: Bloom, Joseph, Hinrichs, Anthony L, Wang, Jen C, von Weymarn, Linda B, Kharasch, Evan D, Bierut, Laura J, Goate, Alison, Murphy, Sharon E
Format: Journal Article
Language:English
Published: Hagerstown, MD Lippincott Williams & Wilkins, Inc 01-07-2011
Lippincott Williams & Wilkins
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract OBJECTIVETo study the association between cytochrome P450 2A6 (CYP2A6) genotype and metabolism of nicotine to cotinine, identify functional polymorphisms, and develop a predictive genetic model of nicotine metabolism. METHODSThe conversion of deuterated (D2)-nicotine to D2-cotinine was quantified in 189 European–Americans and the contribution of CYP2A6 genotype to variability in first-pass nicotine metabolism was assessed. Specifically, (i) single time point measures of D2-cotinine/(D2-cotinine+D2-nicotine) after oral administration were used as a metric of CYP2A6 activity; (ii) the impact of CYP2A6 haplotype was treated as acting multiplicatively; (iii) parameter estimates were calculated for all haplotypes in the subject pool, defined by a set of polymorphisms previously reported to affect function, including gene copy number; and (iv) a minimum number of predictive polymorphisms were justified to be included in the model based on statistical evidence of differences between haplotypes. RESULTSThe final model includes seven polymorphisms and fits the phenotype, 30-min after D2-nicotine oral administration, with R=0.719. The predictive power of the model is robustparameter estimates calculated in men (n=89) predict the phenotype in women (n=100) with R=0.758 and vice versa with R=0.617; estimates calculated in current smokers (n=102) predict the phenotype in former-smokers (n=86) with R=0.690 and vice versa with R=0.703. Comparisons of haplotypes also demonstrate that CYP2A6*12 is a loss-of-function allele indistinguishable from CYP2A6*4 and CYP2A6*2 and that the CYP2A6*1B 5′-untranslated region conversion has negligible impact on metabolism. After controlling for CYP2A6 genotype, modest associations were found between increased metabolism and both female sex (P=4.8×10) and current smoking (P=0.02). CONCLUSIONAmong European–Americans, seven polymorphisms in the CYP2A6 gene explain the majority of variability in the metabolism of nicotine to cotinine after oral administration. Parameters determined from this in-vivo experiment can be used to predict nicotine metabolism based on CYP2A6 genotype.
AbstractList OBJECTIVETo study the association between cytochrome P450 2A6 (CYP2A6) genotype and metabolism of nicotine to cotinine, identify functional polymorphisms, and develop a predictive genetic model of nicotine metabolism. METHODSThe conversion of deuterated (D2)-nicotine to D2-cotinine was quantified in 189 European–Americans and the contribution of CYP2A6 genotype to variability in first-pass nicotine metabolism was assessed. Specifically, (i) single time point measures of D2-cotinine/(D2-cotinine+D2-nicotine) after oral administration were used as a metric of CYP2A6 activity; (ii) the impact of CYP2A6 haplotype was treated as acting multiplicatively; (iii) parameter estimates were calculated for all haplotypes in the subject pool, defined by a set of polymorphisms previously reported to affect function, including gene copy number; and (iv) a minimum number of predictive polymorphisms were justified to be included in the model based on statistical evidence of differences between haplotypes. RESULTSThe final model includes seven polymorphisms and fits the phenotype, 30-min after D2-nicotine oral administration, with R=0.719. The predictive power of the model is robustparameter estimates calculated in men (n=89) predict the phenotype in women (n=100) with R=0.758 and vice versa with R=0.617; estimates calculated in current smokers (n=102) predict the phenotype in former-smokers (n=86) with R=0.690 and vice versa with R=0.703. Comparisons of haplotypes also demonstrate that CYP2A6*12 is a loss-of-function allele indistinguishable from CYP2A6*4 and CYP2A6*2 and that the CYP2A6*1B 5′-untranslated region conversion has negligible impact on metabolism. After controlling for CYP2A6 genotype, modest associations were found between increased metabolism and both female sex (P=4.8×10) and current smoking (P=0.02). CONCLUSIONAmong European–Americans, seven polymorphisms in the CYP2A6 gene explain the majority of variability in the metabolism of nicotine to cotinine after oral administration. Parameters determined from this in-vivo experiment can be used to predict nicotine metabolism based on CYP2A6 genotype.
To study the association between cytochrome P450 2A6 (CYP2A6) genotype and metabolism of nicotine to cotinine, identify functional polymorphisms, and develop a predictive genetic model of nicotine metabolism. The conversion of deuterated (D2)-nicotine to D2-cotinine was quantified in 189 European-Americans and the contribution of CYP2A6 genotype to variability in first-pass nicotine metabolism was assessed. Specifically, (i) single time point measures of D2-cotinine/(D2-cotinine+D2-nicotine) after oral administration were used as a metric of CYP2A6 activity; (ii) the impact of CYP2A6 haplotype was treated as acting multiplicatively; (iii) parameter estimates were calculated for all haplotypes in the subject pool, defined by a set of polymorphisms previously reported to affect function, including gene copy number; and (iv) a minimum number of predictive polymorphisms were justified to be included in the model based on statistical evidence of differences between haplotypes. The final model includes seven polymorphisms and fits the phenotype, 30-min after D2-nicotine oral administration, with R=0.719. The predictive power of the model is robust: parameter estimates calculated in men (n=89) predict the phenotype in women (n=100) with R=0.758 and vice versa with R=0.617; estimates calculated in current smokers (n=102) predict the phenotype in former-smokers (n=86) with R=0.690 and vice versa with R=0.703. Comparisons of haplotypes also demonstrate that CYP2A6*12 is a loss-of-function allele indistinguishable from CYP2A6*4 and CYP2A6*2 and that the CYP2A6*1B 5'-untranslated region conversion has negligible impact on metabolism. After controlling for CYP2A6 genotype, modest associations were found between increased metabolism and both female sex (P=4.8×10) and current smoking (P=0.02). Among European-Americans, seven polymorphisms in the CYP2A6 gene explain the majority of variability in the metabolism of nicotine to cotinine after oral administration. Parameters determined from this in-vivo experiment can be used to predict nicotine metabolism based on CYP2A6 genotype.
Cytochrome P450 2A6 (CYP2A6) is the primary catalyst of nicotine metabolism. To develop a predictive genetic model of nicotine metabolism, the conversion of deuterated (D 2 )-nicotine to D 2 -cotinine was quantified in 189 European Americans and the contribution of CYP2A6 genotype to variability in first-pass nicotine metabolism was assessed. Specifically, 1) single time-point measures of D 2 -cotinine/(D 2 -cotinine + D 2 -nicotine) following oral administration were used as a metric of CYP2A6 activity; 2) the impact of CYP2A6 haplotype was treated as acting multiplicatively; 3) parameter estimates were calculated for all haplotypes in the subject pool, defined by a set of polymorphisms previously reported to affect function, including gene copy number; and 4) a minimum number of predictive polymorphisms are justified to be included in the model based on statistical evidence of differences between haplotypes. The final model includes seven polymorphisms and fits the phenotype, 30 minutes following D 2 -nicotine oral administration, with R 2 =0.719. The predictive power of the model is robust: parameter estimates calculated in men (n=89) predict the phenotype in women (n=100) with R 2 =0.758 and vice versa with R 2 =0.617; estimates calculated in current smokers (n=102) predict phenotype in former smokers (n=86) with R 2 =0.690 and vice versa with R 2 =0.703. Comparisons of haplotypes also demonstrate that CYP2A6*12 is a loss of function allele indistinguishable from CYP2A6*4 and CYP2A6*2 and that the CYP2A6*1B 5′ UTR conversion has negligible impact on metabolism. After controlling for CYP2A6 genotype modest associations were found between increased metabolism and both female gender (p= 4.8×10 −4 ) and current smoking (p=0.02).
OBJECTIVETo study the association between cytochrome P450 2A6 (CYP2A6) genotype and metabolism of nicotine to cotinine, identify functional polymorphisms, and develop a predictive genetic model of nicotine metabolism. METHODSThe conversion of deuterated (D2)-nicotine to D2-cotinine was quantified in 189 European-Americans and the contribution of CYP2A6 genotype to variability in first-pass nicotine metabolism was assessed. Specifically, (i) single time point measures of D2-cotinine/(D2-cotinine+D2-nicotine) after oral administration were used as a metric of CYP2A6 activity; (ii) the impact of CYP2A6 haplotype was treated as acting multiplicatively; (iii) parameter estimates were calculated for all haplotypes in the subject pool, defined by a set of polymorphisms previously reported to affect function, including gene copy number; and (iv) a minimum number of predictive polymorphisms were justified to be included in the model based on statistical evidence of differences between haplotypes. RESULTSThe final model includes seven polymorphisms and fits the phenotype, 30-min after D2-nicotine oral administration, with R=0.719. The predictive power of the model is robust: parameter estimates calculated in men (n=89) predict the phenotype in women (n=100) with R=0.758 and vice versa with R=0.617; estimates calculated in current smokers (n=102) predict the phenotype in former-smokers (n=86) with R=0.690 and vice versa with R=0.703. Comparisons of haplotypes also demonstrate that CYP2A6*12 is a loss-of-function allele indistinguishable from CYP2A6*4 and CYP2A6*2 and that the CYP2A6*1B 5'-untranslated region conversion has negligible impact on metabolism. After controlling for CYP2A6 genotype, modest associations were found between increased metabolism and both female sex (P=4.8×10) and current smoking (P=0.02). CONCLUSIONAmong European-Americans, seven polymorphisms in the CYP2A6 gene explain the majority of variability in the metabolism of nicotine to cotinine after oral administration. Parameters determined from this in-vivo experiment can be used to predict nicotine metabolism based on CYP2A6 genotype.
Author Wang, Jen C
Bierut, Laura J
Bloom, Joseph
Goate, Alison
von Weymarn, Linda B
Kharasch, Evan D
Murphy, Sharon E
Hinrichs, Anthony L
AuthorAffiliation aDepartment of Psychiatry bDivision of Clinical and Translational Research, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, Missouri cDepartment of Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
AuthorAffiliation_xml – name: aDepartment of Psychiatry bDivision of Clinical and Translational Research, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, Missouri cDepartment of Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
Author_xml – sequence: 1
  givenname: Joseph
  surname: Bloom
  fullname: Bloom, Joseph
  organization: aDepartment of Psychiatry bDivision of Clinical and Translational Research, Department of Anesthesiology, Washington University School of Medicine, Saint Louis, Missouri cDepartment of Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
– sequence: 2
  givenname: Anthony
  surname: Hinrichs
  middlename: L
  fullname: Hinrichs, Anthony L
– sequence: 3
  givenname: Jen
  surname: Wang
  middlename: C
  fullname: Wang, Jen C
– sequence: 4
  givenname: Linda
  surname: von Weymarn
  middlename: B
  fullname: von Weymarn, Linda B
– sequence: 5
  givenname: Evan
  surname: Kharasch
  middlename: D
  fullname: Kharasch, Evan D
– sequence: 6
  givenname: Laura
  surname: Bierut
  middlename: J
  fullname: Bierut, Laura J
– sequence: 7
  givenname: Alison
  surname: Goate
  fullname: Goate, Alison
– sequence: 8
  givenname: Sharon
  surname: Murphy
  middlename: E
  fullname: Murphy, Sharon E
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24326183$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21597399$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1uFDEQhS0URJKBGyDUG5TVBP91294gjUYJIEUii7BgZdnu6ozBbQ92dyJ23IEbchIMMww_C1Yuy997Va53io5iioDQU4LPCVbixeX1-hxbTBgwKhnvQDr8AJ0QwfmykxIfHWpBj9FpKR8wZp3i9BE6pqRVgil1gjY3G2hcilP2dp58ik0a6n0ca7V-f01XXWNCgAClmVJzZ7I3Pykfm-hdmnyEZoTJ2BR8GRtTdbfNxZzTFkz89uXraoTsnYnlMXo4mFDgyf5coHeXFzfr18urt6_erFdXS9e2FC-tUz2RHbSKCtoZqajqmRJgKadD2zNjreScGomFdY5I1_ZccGyEAjt0INgCvdz5bmc7Qu-gfs0Evc1-NPmzTsbrv1-i3-jbdKcZIR3mbTU42xvk9GmGMunRFwchmAhpLrquk1BJ6-IXiO9Il1MpGYZDF4L1j4x0zUj_m1GVPftzwoPoVygVeL4HTHEmDNlE58tvjjPaEckqJ3fcfQoT5PIxzPeQ9QZMmDb_n-E7q_-xyg
CitedBy_id crossref_primary_10_1093_hmg_ddt432
crossref_primary_10_1080_10590501_2015_1131539
crossref_primary_10_1016_j_gene_2017_07_051
crossref_primary_10_1093_ntr_ntw117
crossref_primary_10_1371_journal_pone_0050913
crossref_primary_10_1016_j_drugalcdep_2020_108210
crossref_primary_10_1097_FPC_0b013e32835caf7d
crossref_primary_10_1093_ntr_ntab124
crossref_primary_10_1093_carcin_bgw012
crossref_primary_10_1093_ntr_ntx096
crossref_primary_10_1016_j_neuropharm_2013_09_008
crossref_primary_10_1371_journal_pone_0079700
crossref_primary_10_4278_ajhp_120912_ARB_445
crossref_primary_10_3892_etm_2017_5396
crossref_primary_10_1021_acs_chemrestox_6b00387
crossref_primary_10_1158_1940_6207_CAPR_11_0366
crossref_primary_10_2217_pgs_2018_0081
crossref_primary_10_1542_peds_2013_3118
crossref_primary_10_1038_tpj_2016_92
crossref_primary_10_1093_ntr_nty172
crossref_primary_10_1158_1055_9965_EPI_22_0868
crossref_primary_10_1038_srep42185
crossref_primary_10_1093_ntr_ntab175
crossref_primary_10_1177_1091581819884544
crossref_primary_10_1093_hmg_ddr524
crossref_primary_10_1080_15376516_2019_1628141
crossref_primary_10_1002_cpt_2135
crossref_primary_10_1124_jpet_117_245126
crossref_primary_10_1146_annurev_genom_090711_163844
crossref_primary_10_2133_dmpk_DMPK_12_RG_029
crossref_primary_10_1093_ntr_ntv049
crossref_primary_10_1093_ntr_ntv244
crossref_primary_10_1002_ijc_29963
crossref_primary_10_1186_s12864_016_2495_7
crossref_primary_10_1513_AnnalsATS_201401_010OC
crossref_primary_10_1124_jpet_112_195255
crossref_primary_10_1038_s41598_024_56750_7
crossref_primary_10_1111_adb_12477
crossref_primary_10_1007_s40263_015_0243_1
crossref_primary_10_1016_j_biochi_2023_08_014
crossref_primary_10_1016_j_mgene_2019_100616
crossref_primary_10_1002_j_1875_9114_2012_01117
crossref_primary_10_1371_journal_pone_0126113
crossref_primary_10_1016_j_neulet_2016_05_033
crossref_primary_10_1158_1055_9965_EPI_14_0815
crossref_primary_10_1016_j_neubiorev_2023_105499
crossref_primary_10_1038_jes_2013_7
crossref_primary_10_1097_FPC_0b013e3283540217
crossref_primary_10_1590_0001_3765201520140187
crossref_primary_10_1093_hmg_dds114
crossref_primary_10_1016_j_molmed_2017_12_008
crossref_primary_10_1158_0008_5472_CAN_16_0446
crossref_primary_10_1111_add_12353
crossref_primary_10_1016_j_yrtph_2012_09_006
crossref_primary_10_1097_FPC_0000000000000466
crossref_primary_10_1111_adb_12741
crossref_primary_10_1111_ejn_14171
crossref_primary_10_1080_17425255_2021_1863948
crossref_primary_10_1093_hmg_ddad172
crossref_primary_10_1124_jpet_119_260653
crossref_primary_10_1093_carcin_bgx012
crossref_primary_10_1097_FPC_0b013e32835c3b48
crossref_primary_10_1007_s00439_012_1143_9
Cites_doi 10.1158/1055-9965.EPI-05-0723
10.1038/sj.tpj.6500436
10.1021/tx0501381
10.1158/1055-9965.EPI-09-0959
10.1067/mcp.2000.103957
10.1093/aje/kwm010
10.1542/peds.2006-1583
10.1016/S0009-9236(03)00090-0
10.1021/bi00457a031
10.1080/004982598238895
10.1016/j.clpt.2004.02.011
10.1081/DCT-120003260
10.1158/0008-5472.CAN-09-0786
10.1124/jpet.105.091306
10.1093/hmg/ddl441
10.1097/00008571-200409000-00006
10.1016/j.clpt.2006.06.011
10.1038/clpt.1981.35
10.1016/S0091-3057(00)00261-6
10.2133/dmpk.17.482
10.1007/s00228-006-0113-3
10.1002/humu.10126
10.1097/00008571-200406000-00006
10.1007/s00228-009-0762-0
10.1038/clpt.1990.208
10.1042/bj3060161
10.1111/j.1365-2125.1986.tb02933.x
10.2105/AJPH.79.8.1046
10.1093/jnci/djh163
10.1007/s002040050588
10.1038/nsmb971
10.1067/mcp.2000.107086
10.1016/j.clpt.2006.01.008
10.1016/j.clpt.2004.10.011
10.1038/ng1847
10.1016/j.clpt.2006.05.012
10.1038/sj.mp.4001794
10.1136/tc.2003.007070
10.1016/j.clpt.2006.08.011
10.1183/09031936.06.00056305
10.1002/humu.20698
10.1097/01.fpc.0000171517.22258.f1
10.1093/hmg/10.6.591
10.1038/nprot.2009.86
10.1016/j.ejps.2004.04.012
10.1016/j.drugalcdep.2006.06.017
10.1097/01213011-200502000-00007
10.1016/j.bbrc.2005.12.035
10.1038/sj.clpt.6100246
10.1124/pr.57.1.3
10.1016/j.jchromb.2007.06.018
ContentType Journal Article
Copyright 2011 Lippincott Williams & Wilkins, Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2011 Lippincott Williams & Wilkins, Inc.
– notice: 2015 INIST-CNRS
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1097/FPC.0b013e328346e8c0
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1744-6880
EndPage 416
ExternalDocumentID 10_1097_FPC_0b013e328346e8c0
21597399
24326183
10.1097/FPC.0b013e328346e8c0
Genre Journal Article
Research Support, N.I.H., Extramural
GeographicLocations Europe
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: K02 DA021237
– fundername: NCI NIH HHS
  grantid: 5 P01CA89392
– fundername: NIMH NIH HHS
  grantid: 5T32MH014677-33
– fundername: NCI NIH HHS
  grantid: P30 CA077598-12S2
– fundername: NCI NIH HHS
  grantid: P30 CA077598
– fundername: NIAAA NIH HHS
  grantid: AA015572
– fundername: NIDA NIH HHS
  grantid: DA021237
– fundername: NIAAA NIH HHS
  grantid: K01 AA015572-05
– fundername: NIDA NIH HHS
  grantid: K24DA00417
– fundername: NIDA NIH HHS
  grantid: K02 DA021237-05
– fundername: National Cancer Institute : NCI
  grantid: P30 CA077598-12S2 || CA
– fundername: National Institute on Drug Abuse : NIDA
  grantid: K02 DA021237-05 || DA
– fundername: National Cancer Institute : NCI
  grantid: P01 CA089392-05 || CA
– fundername: National Institute on Alcohol Abuse and Alcoholism : NIAAA
  grantid: K01 AA015572-05 || AA
– fundername: National Institute on Drug Abuse : NIDA
  grantid: K24 DA000417-11 || DA
– fundername: National Institute of Mental Health : NIMH
  grantid: T32 MH014677-34 || MH
GroupedDBID -
.Z2
0R
123
4Q1
4Q2
4Q3
53G
5VS
8L-
AAMTA
AAPBV
AARTV
ABBUW
ABFLS
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFS
ACWDW
ACWRI
ACXNZ
ADNKB
AE3
AENEX
AFUWQ
AHULI
AHVBC
AJIOK
AJNYG
ALMA_UNASSIGNED_HOLDINGS
AMJPA
ASCII
AWKKM
BQLVK
C45
CS3
DU5
DUNZO
E.X
EBS
EJD
EX3
F2K
F2L
F5P
FL-
HZ
IN
IN~
JF9
JG8
KD2
KMI
L-C
O9-
OAG
OAH
OCUKA
OHASI
OL1
OLV
OLW
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OXXIT
P2P
RIG
RLZ
RSW
S4S
V2I
WOQ
WOW
X3V
X3W
Z2
---
0R~
AAHPQ
AAYOK
ABASU
ABDIG
ACGFO
ACILI
ADGGA
AE6
AEETU
AFDTB
AHRYX
AJNWD
AKALU
ALMTX
AMKUR
AMNEI
AOHHW
DIWNM
EEVPB
FCALG
GNXGY
GQDEL
HZ~
IKREB
IPNFZ
IQODW
OJAPA
OPC
OWU
OWV
T8P
TEORI
TSPGW
VVN
W3M
ZFV
ZZMQN
AAAAV
AAIQE
AASCR
ABJNI
ABVCZ
ACXJB
ADHPY
AHQNM
AINUH
AJZMW
CGR
CUY
CVF
ECM
EIF
HLJTE
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c5520-bc9d186e592726a8929d397eb242f5d3abb8442a807bcc18c5d4740a79ebf6e73
ISSN 1744-6872
IngestDate Tue Sep 17 21:25:38 EDT 2024
Sat Aug 17 00:50:00 EDT 2024
Fri Aug 23 00:28:14 EDT 2024
Sat Sep 28 07:48:33 EDT 2024
Sun Oct 22 16:04:35 EDT 2023
Thu Aug 13 19:47:40 EDT 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Allele
Pharmacogenetics
American
CNS stimulant
Psychotropic
Cytochrome P450
cytochrome P450 2A6
nicotine metabolism
Cotinine
European
Metabolism
Nicotine
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c5520-bc9d186e592726a8929d397eb242f5d3abb8442a807bcc18c5d4740a79ebf6e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc3116045?pdf=render
PMID 21597399
PQID 872128201
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3116045
proquest_miscellaneous_872128201
crossref_primary_10_1097_FPC_0b013e328346e8c0
pubmed_primary_21597399
pascalfrancis_primary_24326183
wolterskluwer_health_10_1097_FPC_0b013e328346e8c0
ProviderPackageCode L-C
C45
AARTV
ASCII
ABZAD
ABBUW
ADNKB
OLV
8L-
JG8
OLW
OLZ
F2K
F2L
OHASI
AHVBC
AJNYG
FL-
KMI
AJIOK
OPUJH
V2I
S4S
4Q1
DUNZO
OAG
4Q2
OVDNE
4Q3
AMJPA
OAH
OVD
AHULI
ACEWG
.Z2
AWKKM
OUVQU
ORVUJ
X3V
X3W
ACDDN
ACWRI
AAMTA
E.X
OCUKA
ACXNZ
OL1
ABXVJ
IN~
KD2
OXXIT
ACWDW
JF9
PublicationCentury 2000
PublicationDate 2011-July
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-July
PublicationDecade 2010
PublicationPlace Hagerstown, MD
PublicationPlace_xml – name: Hagerstown, MD
– name: United States
PublicationTitle Pharmacogenetics and genomics
PublicationTitleAlternate Pharmacogenet Genomics
PublicationYear 2011
Publisher Lippincott Williams & Wilkins, Inc
Lippincott Williams & Wilkins
Publisher_xml – name: Lippincott Williams & Wilkins, Inc
– name: Lippincott Williams & Wilkins
References 10668854 - Clin Pharmacol Ther. 2000 Jan;67(1):57-69
16378601 - Biochem Biophys Res Commun. 2006 Feb 10;340(2):491-7
10872647 - Clin Pharmacol Ther. 2000 Jun;67(6):653-9
20012030 - Eur J Clin Pharmacol. 2010 Mar;66(3):239-51
17224913 - Pharmacogenomics J. 2007 Apr;7(2):81-98
10565842 - J Pharmacol Exp Ther. 1999 Dec;291(3):1196-203
17158188 - Hum Mol Genet. 2007 Jan 1;16(1):24-35
16086027 - Nat Struct Mol Biol. 2005 Sep;12(9):822-3
16174803 - Drug Metab Dispos. 2005 Dec;33(12):1760-4
20887713 - Biochem Pharmacol. 2011 Jan 15;81(2):289-94
9890160 - Xenobiotica. 1998 Dec;28(12):1255-73
17112802 - Clin Pharmacol Ther. 2006 Nov;80(5):457-67
16359169 - Chem Res Toxicol. 2005 Dec;18(12):1792-8
10350185 - Arch Toxicol. 1999 Mar;73(2):65-70
17322544 - Am J Epidemiol. 2007 Apr 15;165(8):901-10
10899369 - Pharmacol Biochem Behav. 2000 Jul;66(3):553-8
15173268 - J Natl Cancer Inst. 2004 Jun 2;96(11):844-52
15735609 - Clin Pharmacol Ther. 2005 Mar;77(3):145-58
16758265 - Eur J Clin Pharmacol. 2006 Jun;62(6):481-4
3790400 - Br J Clin Pharmacol. 1986 Nov;22(5):541-50
19561590 - Nat Protoc. 2009;4(7):1073-81
16188955 - J Pharmacol Exp Ther. 2006 Jan;316(1):295-303
17015050 - Clin Pharmacol Ther. 2006 Oct;80(4):319-30
16952495 - Clin Pharmacol Ther. 2006 Sep;80(3):282-97
15229465 - Clin Pharmacol Ther. 2004 Jul;76(1):64-72
17130279 - Pediatrics. 2007 Jan;119(1):e264-74
16930853 - Drug Alcohol Depend. 2007 Jan 12;86(2-3):294-300
2322567 - Biochemistry. 1990 Feb 6;29(5):1322-9
12325023 - Hum Mutat. 2002 Oct;20(4):275-83
12844137 - Clin Pharmacol Ther. 2003 Jul;74(1):69-76
15564629 - Tob Control. 2004 Dec;13(4):422-8
8627511 - J Pharmacol Exp Ther. 1996 May;277(2):1010-5
20501767 - Cancer Epidemiol Biomarkers Prev. 2010 Jun;19(6):1423-31
15618701 - Drug Metab Pharmacokinet. 2002;17(5):482-7
15861035 - Pharmacogenet Genomics. 2005 Feb;15(2):115-25
15475735 - Pharmacogenetics. 2004 Sep;14(9):615-26
16452582 - Eur Respir J. 2006 Feb;27(2):289-92
11230178 - Hum Mol Genet. 2001 Mar 15;10(6):591-7
15247629 - Pharmacogenetics. 2004 Jun;14(6):369-79
15265511 - Eur J Pharm Sci. 2004 Aug;22(5):419-25
2249376 - Clin Pharmacol Ther. 1990 Dec;48(6):641-51
18360915 - Hum Mutat. 2008 May;29(5):679-88
16678549 - Clin Pharmacol Ther. 2006 May;79(5):480-8
2751025 - Am J Public Health. 1989 Aug;79(8):1046-8
16041240 - Pharmacogenet Genomics. 2005 Sep;15(9):609-24
17644451 - J Chromatogr B Analyt Technol Biomed Life Sci. 2007 Sep 15;857(1):1-8
19706762 - Cancer Res. 2009 Sep 1;69(17):6848-56
7460485 - Clin Pharmacol Ther. 1981 Feb;29(2):218-23
12024803 - Drug Chem Toxicol. 2002 May;25(2):203-13
7864805 - Biochem J. 1995 Feb 15;306 ( Pt 1):161-6
17522595 - Clin Pharmacol Ther. 2008 Jan;83(1):115-21
15734728 - Pharmacol Rev. 2005 Mar;57(1):79-115
17035386 - Cancer Epidemiol Biomarkers Prev. 2006 Oct;15(10):1812-9
16402128 - Mol Psychiatry. 2006 Apr;11(4):400-9
Nakajima (R43-6-20210213) 2006; 80
Hatsukami (R5-6-20210213) 2004; 96
Yoshida (R24-6-20210213) 2003; 74
Saccone (R2-6-20210213) 2009; 69
Malaiyandi (R45-6-20210213) 2005; 77
Hukkanen (R7-6-20210213) 2005; 57
Dicke (R42-6-20210213) 2005; 33
Benowitz (R47-6-20210213) 2006; 79
Al Koudsi (R46-6-20210213) 2010; 66
Berg (R55-6-20210213) 2010; 19
Brown (R10-6-20210213) 2005; 18
Mwenifumbo (R28-6-20210213) 2008; 83
Al Koudsi (R33-6-20210213) 2006; 62
Audrain-McGovern (R38-6-20210213) 2007; 119
Zhang (R12-6-20210213) 2002; 25
Yamano (R27-6-20210213) 1990; 29
Von Richter (R23-6-20210213) 2004; 14
Yamanaka (R40-6-20210213) 2004; 22
Wang (R37-6-20210213) 2006; 340
Tucker (R36-6-20210213) 1998; 28
Oscarson (R19-6-20210213) 2002; 20
OLoughlin (R39-6-20210213) 2004; 13
Haberl (R25-6-20210213) 2005; 15
Kandel (R49-6-20210213) 2007; 165
Benowitz (R52-6-20210213) 2000; 67
Jarvik (R3-6-20210213) 2000; 66
Murphy (R22-6-20210213) 2007; 857
Kyerematen (R51-6-20210213) 1990; 48
Kiyotani (R26-6-20210213) 2002; 17
Yamazaki (R41-6-20210213) 1999; 73
Strasser (R4-6-20210213) 2007; 86
Nakajima (R11-6-20210213) 2000; 67
Ho (R17-6-20210213) 2007; 7
Minematsu (R18-6-20210213) 2006; 27
Benowitz (R15-6-20210213) 2006; 80
Ding (R44-6-20210213) 1995; 306
Schoedel (R6-6-20210213) 2004; 14
Von Weymarn (R8-6-20210213) 2006; 316
Swan (R20-6-20210213) 2005; 15
Yano (R31-6-20210213) 2005; 12
Jackson (R34-6-20210213) 1986; 22
Malaiyandi (R16-6-20210213) 2006; 11
Inaba (R35-6-20210213) 1981; 29
Mwenifumbo (R32-6-20210213) 2008; 29
Malaiyandi (R13-6-20210213) 2006; 15
Dempsey (R14-6-20210213) 2004; 76
Bierut (R1-6-20210213) 2007; 16
Haley (R50-6-20210213) 1989; 79
Benowitz (R54-6-20210213) 1999; 291
Kumar (R29-6-20210213) 2009; 4
Price (R21-6-20210213) 2006; 38
Sunyaev (R30-6-20210213) 2001; 10
Nakajima (R9-6-20210213) 1996; 277
Johnstone (R48-6-20210213) 2006; 80
References_xml – volume: 277
  start-page: 1010
  year: 1996
  ident: R9-6-20210213
  article-title: Characterization of CYP2A6 involved in 3-hydroxylation of cotinine in human liver microsomes.
  publication-title: J Pharmacol Exp Ther
  contributor:
    fullname: Nakajima
– volume: 15
  start-page: 1812
  year: 2006
  ident: R13-6-20210213
  article-title: CYP2A6 genotype, phenotype, and the use of nicotine metabolites as biomarkers during ad libitum smoking.
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-05-0723
  contributor:
    fullname: Malaiyandi
– volume: 7
  start-page: 81
  year: 2007
  ident: R17-6-20210213
  article-title: Overview of the pharmacogenomics of cigarette smoking.
  publication-title: Pharmacogenomics J
  doi: 10.1038/sj.tpj.6500436
  contributor:
    fullname: Ho
– volume: 18
  start-page: 1792
  year: 2005
  ident: R10-6-20210213
  article-title: Identification of N-(hydroxymethyl) norcotinine as a major product of cytochrome P450 2A6, but not cytochrome P450 2A13-catalyzed cotinine metabolism.
  publication-title: Chem Res Toxicol
  doi: 10.1021/tx0501381
  contributor:
    fullname: Brown
– volume: 19
  start-page: 1423
  year: 2010
  ident: R55-6-20210213
  article-title: UGT2B10 genotype influences nicotine glucuronidation, oxidation, and consumption.
  publication-title: Cancer Epidemiol Biomarkers Prev
  doi: 10.1158/1055-9965.EPI-09-0959
  contributor:
    fullname: Berg
– volume: 291
  start-page: 1196
  year: 1999
  ident: R54-6-20210213
  article-title: Ethnic differences in N-glucuronidation of nicotine and cotinine.
  publication-title: J Pharmacol Exp Ther
  contributor:
    fullname: Benowitz
– volume: 67
  start-page: 57
  year: 2000
  ident: R11-6-20210213
  article-title: Deficient cotinine formation from nicotine is attributed to the whole deletion of the CYP2A6 gene in humans.
  publication-title: Clin Pharmacol Ther
  doi: 10.1067/mcp.2000.103957
  contributor:
    fullname: Nakajima
– volume: 165
  start-page: 901
  year: 2007
  ident: R49-6-20210213
  article-title: Urine nicotine metabolites and smoking behavior in a multiracialmultiethnic national sample of young adults.
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwm010
  contributor:
    fullname: Kandel
– volume: 119
  start-page: e264
  year: 2007
  ident: R38-6-20210213
  article-title: The role of CYP2A6 in the emergence of nicotine dependence in adolescents.
  publication-title: Pediatrics
  doi: 10.1542/peds.2006-1583
  contributor:
    fullname: Audrain-McGovern
– volume: 74
  start-page: 69
  year: 2003
  ident: R24-6-20210213
  article-title: Effects of polymorphism in promoter region of human CYP2A6 gene (CYP2A69) on expression level of messenger ribonucleic acid and enzymatic activity in vivo and in vitro.
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/S0009-9236(03)00090-0
  contributor:
    fullname: Yoshida
– volume: 29
  start-page: 1322
  year: 1990
  ident: R27-6-20210213
  article-title: The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes.
  publication-title: Biochemistry
  doi: 10.1021/bi00457a031
  contributor:
    fullname: Yamano
– volume: 28
  start-page: 1255
  year: 1998
  ident: R36-6-20210213
  article-title: Determination of drug-metabolizing enzyme activity in vivo: pharmacokinetic and statistical issues.
  publication-title: Xenobiotica
  doi: 10.1080/004982598238895
  contributor:
    fullname: Tucker
– volume: 76
  start-page: 64
  year: 2004
  ident: R14-6-20210213
  article-title: Nicotine metabolite ratio as an index of cytochrome P450 2A6 metabolic activity.
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/j.clpt.2004.02.011
  contributor:
    fullname: Dempsey
– volume: 25
  start-page: 203
  year: 2002
  ident: R12-6-20210213
  article-title: Effects of whole deletion of CYP2A6 on nicotine metabolism in humans.
  publication-title: Drug Chem Toxicol
  doi: 10.1081/DCT-120003260
  contributor:
    fullname: Zhang
– volume: 69
  start-page: 6848
  year: 2009
  ident: R2-6-20210213
  article-title: The CHRNA5-CHRNA3-CHRNB4 nicotinic receptor subunit gene cluster affects risk for nicotine dependence in African-Americans and in European-Americans.
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-09-0786
  contributor:
    fullname: Saccone
– volume: 316
  start-page: 295
  year: 2006
  ident: R8-6-20210213
  article-title: Inactivation of CYP2A6 and CYP2A13 during nicotine metabolism.
  publication-title: J Pharmacol Exp Ther
  doi: 10.1124/jpet.105.091306
  contributor:
    fullname: Von Weymarn
– volume: 16
  start-page: 24
  year: 2007
  ident: R1-6-20210213
  article-title: Novel genes identified in a high-density genome wide association study for nicotine dependence.
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddl441
  contributor:
    fullname: Bierut
– volume: 14
  start-page: 615
  year: 2004
  ident: R6-6-20210213
  article-title: Ethnic variation in CYP2A6 and association of genetically slow nicotine metabolism and smoking in adult Caucasians.
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-200409000-00006
  contributor:
    fullname: Schoedel
– volume: 80
  start-page: 319
  year: 2006
  ident: R48-6-20210213
  article-title: Determinants of the rate of nicotine metabolism and effects on smoking behavior.
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/j.clpt.2006.06.011
  contributor:
    fullname: Johnstone
– volume: 29
  start-page: 218
  year: 1981
  ident: R35-6-20210213
  article-title: Debrisoquine hydroxylation capacity: problems of assessment in two populations.
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1981.35
  contributor:
    fullname: Inaba
– volume: 66
  start-page: 553
  year: 2000
  ident: R3-6-20210213
  article-title: Nicotine blood levels and subjective craving for cigarettes.
  publication-title: Pharmacol Biochem Behav
  doi: 10.1016/S0091-3057(00)00261-6
  contributor:
    fullname: Jarvik
– volume: 17
  start-page: 482
  year: 2002
  ident: R26-6-20210213
  article-title: Twenty one novel single nucleotide polymorphisms (SNPs) of the CYP2A6 gene in Japanese and Caucasians.
  publication-title: Drug Metab Pharmacokinet
  doi: 10.2133/dmpk.17.482
  contributor:
    fullname: Kiyotani
– volume: 62
  start-page: 481
  year: 2006
  ident: R33-6-20210213
  article-title: Characterization of the novel CYP2A621 allele using in vivo nicotine kinetics.
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-006-0113-3
  contributor:
    fullname: Al Koudsi
– volume: 20
  start-page: 275
  year: 2002
  ident: R19-6-20210213
  article-title: Characterization of a novel CYP2A7CYP2A6 hybrid allele (CYP2A612) that causes reduced CYP2A6 activity.
  publication-title: Hum Mutat
  doi: 10.1002/humu.10126
  contributor:
    fullname: Oscarson
– volume: 14
  start-page: 369
  year: 2004
  ident: R23-6-20210213
  article-title: Polymorphic NF-Y dependent regulation of human nicotine C-oxidase (CYP2A6).
  publication-title: Pharmacogenetics
  doi: 10.1097/00008571-200406000-00006
  contributor:
    fullname: Von Richter
– volume: 66
  start-page: 239
  year: 2010
  ident: R46-6-20210213
  article-title: Hepatic CYP2A6 levels and nicotine metabolism: impact of genetic, physiological, environmental, and epigenetic factors.
  publication-title: Eur J Clin Pharmacol
  doi: 10.1007/s00228-009-0762-0
  contributor:
    fullname: Al Koudsi
– volume: 48
  start-page: 641
  year: 1990
  ident: R51-6-20210213
  article-title: Disposition of nicotine and eight metabolites in smokers and nonsmokers: identification in smokers of two metabolites that are longer lived than cotinine.
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/clpt.1990.208
  contributor:
    fullname: Kyerematen
– volume: 306
  start-page: 161
  issue: Pt 1
  year: 1995
  ident: R44-6-20210213
  article-title: Expression and alternative splicing of the cytochrome P-450 CYP2A7.
  publication-title: Biochem J
  doi: 10.1042/bj3060161
  contributor:
    fullname: Ding
– volume: 22
  start-page: 541
  year: 1986
  ident: R34-6-20210213
  article-title: Polymorphic drug oxidation: pharmacokinetic basis and comparison of experimental indices.
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.1986.tb02933.x
  contributor:
    fullname: Jackson
– volume: 79
  start-page: 1046
  year: 1989
  ident: R50-6-20210213
  article-title: Elimination of cotinine from body fluids: disposition in smokers and nonsmokers.
  publication-title: Am J Public Health
  doi: 10.2105/AJPH.79.8.1046
  contributor:
    fullname: Haley
– volume: 96
  start-page: 844
  year: 2004
  ident: R5-6-20210213
  article-title: Evaluation of carcinogen exposure in people who used reduced exposure tobacco products.
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djh163
  contributor:
    fullname: Hatsukami
– volume: 73
  start-page: 65
  year: 1999
  ident: R41-6-20210213
  article-title: Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes.
  publication-title: Arch Toxicol
  doi: 10.1007/s002040050588
  contributor:
    fullname: Yamazaki
– volume: 33
  start-page: 1760
  year: 2005
  ident: R42-6-20210213
  article-title: Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone metabolism by cytochrome P450 2B6.
  publication-title: Drug Metab Dispos
  contributor:
    fullname: Dicke
– volume: 12
  start-page: 822
  year: 2005
  ident: R31-6-20210213
  article-title: Structures of human microsomal cytochrome P450 2A6 complexed with coumarin and methoxsalen.
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb971
  contributor:
    fullname: Yano
– volume: 67
  start-page: 653
  year: 2000
  ident: R52-6-20210213
  article-title: Effects of cigarette smoking and carbon monoxide on nicotine and cotinine metabolism.
  publication-title: Clin Pharmacol Ther
  doi: 10.1067/mcp.2000.107086
  contributor:
    fullname: Benowitz
– volume: 79
  start-page: 480
  year: 2006
  ident: R47-6-20210213
  article-title: Female sex and oral contraceptive use accelerate nicotine metabolism.
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/j.clpt.2006.01.008
  contributor:
    fullname: Benowitz
– volume: 77
  start-page: 145
  year: 2005
  ident: R45-6-20210213
  article-title: Implications of CYP2A6 genetic variation for smoking behaviors and nicotine dependence.
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/j.clpt.2004.10.011
  contributor:
    fullname: Malaiyandi
– volume: 38
  start-page: 904
  year: 2006
  ident: R21-6-20210213
  article-title: Principal components analysis corrects for stratification in genome-wide association studies.
  publication-title: Nat Genet
  doi: 10.1038/ng1847
  contributor:
    fullname: Price
– volume: 80
  start-page: 282
  year: 2006
  ident: R43-6-20210213
  article-title: Comprehensive evaluation of variability in nicotine metabolism and CYP2A6 polymorphic alleles in four ethnic populations.
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/j.clpt.2006.05.012
  contributor:
    fullname: Nakajima
– volume: 11
  start-page: 400
  year: 2006
  ident: R16-6-20210213
  article-title: Impact of CYP2A6 genotype on pretreatment smoking behaviour and nicotine levels from and usage of nicotine replacement therapy.
  publication-title: Mol Psychiatry
  doi: 10.1038/sj.mp.4001794
  contributor:
    fullname: Malaiyandi
– volume: 13
  start-page: 422
  year: 2004
  ident: R39-6-20210213
  article-title: Genetically decreased CYP2A6 and the risk of tobacco dependence: a prospective study of novice smokers.
  publication-title: Tob Control
  doi: 10.1136/tc.2003.007070
  contributor:
    fullname: OLoughlin
– volume: 80
  start-page: 457
  year: 2006
  ident: R15-6-20210213
  article-title: CYP2A6 genotype and the metabolism and disposition kinetics of nicotine.
  publication-title: Clin Pharmacol Ther
  doi: 10.1016/j.clpt.2006.08.011
  contributor:
    fullname: Benowitz
– volume: 27
  start-page: 289
  year: 2006
  ident: R18-6-20210213
  article-title: Limitation of cigarette consumption by CYP2A64, 7 and 9 polymorphisms.
  publication-title: Eur Respir J
  doi: 10.1183/09031936.06.00056305
  contributor:
    fullname: Minematsu
– volume: 29
  start-page: 679
  year: 2008
  ident: R32-6-20210213
  article-title: Novel and established CYP2A6 alleles impair in vivo nicotine metabolism in a population of Black African descent.
  publication-title: Hum Mutat
  doi: 10.1002/humu.20698
  contributor:
    fullname: Mwenifumbo
– volume: 15
  start-page: 609
  year: 2005
  ident: R25-6-20210213
  article-title: Three haplotypes associated with CYP2A6 phenotypes in Caucasians.
  publication-title: Pharmacogenet Genomics
  doi: 10.1097/01.fpc.0000171517.22258.f1
  contributor:
    fullname: Haberl
– volume: 10
  start-page: 591
  year: 2001
  ident: R30-6-20210213
  article-title: Prediction of deleterious human alleles.
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/10.6.591
  contributor:
    fullname: Sunyaev
– volume: 4
  start-page: 1073
  year: 2009
  ident: R29-6-20210213
  article-title: Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2009.86
  contributor:
    fullname: Kumar
– volume: 22
  start-page: 419
  year: 2004
  ident: R40-6-20210213
  article-title: Metabolic profile of nicotine in subjects whose CYP2A6 gene is deleted.
  publication-title: Eur J Pharm Sci
  doi: 10.1016/j.ejps.2004.04.012
  contributor:
    fullname: Yamanaka
– volume: 86
  start-page: 294
  year: 2007
  ident: R4-6-20210213
  article-title: New lower nicotine cigarettes can produce compensatory smoking and increased carbon monoxide exposure.
  publication-title: Drug Alcohol Depend
  doi: 10.1016/j.drugalcdep.2006.06.017
  contributor:
    fullname: Strasser
– volume: 15
  start-page: 115
  year: 2005
  ident: R20-6-20210213
  article-title: Nicotine metabolism: the impact of CYP2A6 on estimates of additive genetic influence.
  publication-title: Pharmacogenet Genomics
  doi: 10.1097/01213011-200502000-00007
  contributor:
    fullname: Swan
– volume: 340
  start-page: 491
  year: 2006
  ident: R37-6-20210213
  article-title: 3-UTR polymorphism in the human CYP2A6 gene affects mRNA stability and enzyme expression.
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2005.12.035
  contributor:
    fullname: Wang
– volume: 83
  start-page: 115
  year: 2008
  ident: R28-6-20210213
  article-title: Identification of novel CYP2A61B variants: the CYP2A61B allele is associated with faster in vivo nicotine metabolism.
  publication-title: Clin Pharmacol Ther
  doi: 10.1038/sj.clpt.6100246
  contributor:
    fullname: Mwenifumbo
– volume: 57
  start-page: 79
  year: 2005
  ident: R7-6-20210213
  article-title: Metabolism and disposition kinetics of nicotine.
  publication-title: Pharmacol Rev
  doi: 10.1124/pr.57.1.3
  contributor:
    fullname: Hukkanen
– volume: 857
  start-page: 1
  year: 2007
  ident: R22-6-20210213
  article-title: Analysis of 3,3-d(2)-nicotine and 3,3-d(2)-cotinine by capillary liquid chromatography-electrospray tandem mass spectrometry.
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
  doi: 10.1016/j.jchromb.2007.06.018
  contributor:
    fullname: Murphy
SSID ssj0036942
Score 2.3392901
Snippet OBJECTIVETo study the association between cytochrome P450 2A6 (CYP2A6) genotype and metabolism of nicotine to cotinine, identify functional polymorphisms, and...
To study the association between cytochrome P450 2A6 (CYP2A6) genotype and metabolism of nicotine to cotinine, identify functional polymorphisms, and develop a...
Cytochrome P450 2A6 (CYP2A6) is the primary catalyst of nicotine metabolism. To develop a predictive genetic model of nicotine metabolism, the conversion of...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 403
SubjectTerms Alleles
Aryl Hydrocarbon Hydroxylases - genetics
Biological and medical sciences
Cotinine
Cytochrome P-450 CYP2A6
European Continental Ancestry Group - genetics
Female
General pharmacology
Genetic Variation
Humans
Male
Medical sciences
Middle Aged
Nicotine - metabolism
Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions
Pharmacology. Drug treatments
Polymorphism, Genetic
Polymorphism, Single Nucleotide
Smoking - genetics
Title The contribution of common CYP2A6 alleles to variation in nicotine metabolism among European–Americans
URI https://www.ncbi.nlm.nih.gov/pubmed/21597399
https://search.proquest.com/docview/872128201
https://pubmed.ncbi.nlm.nih.gov/PMC3116045
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb5swFLbS9mVSNe0-dqn8MPUlRTPG2PDYpommqeoijardEwJj1KoJqUbSKf9-B2wDWapdHvaCIhMcR9_HOcfH54LQh4LQSFIvcznJpcsYSd00oMrNVJjlhEhK0sZ18VWcX4WnYzYeDKwrvRv7r0jDGGBdZ87-A9rtpDAAnwFzuALqcP1r3Jv4c9PIysSNw-8PR9-m9JgP6-4pM13Z4R52yqkNdyyBFMva6JyrJVBj1rTPaHoRWZe9a893qr5NOzXVr2FJqi36XNd-nfci6U9mYKH3jhxaj3cJE15XvToGw9YdfWl82Z9V2Tlz72Gxl2o9N1HIjU_BtI7OO2-ssM4LpQWuYMzloe7mZCWyzpk2zBM98cqI39PUTGdpbikBXVx4Mh1ZLy-YUIyrUJJO6dmD_vMvyeTi7CyJx1fxDtqjIK5AWu4dT07jE6vRfR4xatMuI_HxoZk3zJr9u7SCN6zQrVEe2rtsh-Du_1jU4RHVbZMd0bNx4ifosdmc4GPNqqdooMpn6NDguz7CcZesVx3hQzzt6p6vn6MCbuM-9fCiwJp6WFMPG-rh5QK31MM3JbbUwx31cEM9vE29F-hiMo5Hn1zTxsOVQUCJm8ko90KugogKytMQDPIcrGCVgXVYBLmfZlnIGE1DIjIpvVAGORMgNESksoIr4b9Eu-WiVK8RhvkC0OyFz3nGUskyBepECq-gXh56hDvItSgkd7paS2KjLAC15FfUHHSwAVX7EGWwrQFt5yBssUtA7taHaWmpFqsqCQUYfbX57KBXGsruYdgiCDD8HSQ2QG6_UJd037xT3lw3pd19z-OwyXKQt0GHRCdF__a_vPnzUt-iR91L-A7tLr-v1Hu0U-WrA0P5nxH902M
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Ovid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+contribution+of+common+CYP2A6+alleles+to+variation+in+nicotine+metabolism+among+European-Americans&rft.jtitle=Pharmacogenetics+and+genomics&rft.au=Bloom%2C+Joseph&rft.au=Hinrichs%2C+Anthony+L&rft.au=Wang%2C+Jen+C&rft.au=von+Weymarn%2C+Linda+B&rft.date=2011-07-01&rft.eissn=1744-6880&rft.volume=21&rft.issue=7&rft.spage=403&rft.epage=416&rft_id=info:doi/10.1097%2FFPC.0b013e328346e8c0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1744-6872&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1744-6872&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1744-6872&client=summon