Serum-Dependent Phosphorylation of Human MAP4 at Ser696 in Cultured Mammalian Cells
In the previous paper {Ookata et al., (1997) Biochemistry, 36: 249-259}, we identified two mitotic cdc2 kinase phosphorylation sites (Ser696 and Ser787) in the proline-rich region of human MAP4. One (Ser696) of them was also phosphorylated during interphase. A protein kinase responsible for interpha...
Saved in:
Published in: | Cell Structure and Function Vol. 24; no. 5; pp. 321 - 327 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
Japan Society for Cell Biology
1999
Japan Science and Technology Agency |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the previous paper {Ookata et al., (1997) Biochemistry, 36: 249-259}, we identified two mitotic cdc2 kinase phosphorylation sites (Ser696 and Ser787) in the proline-rich region of human MAP4. One (Ser696) of them was also phosphorylated during interphase. A protein kinase responsible for interphase phosphorylation of Ser696 could necessarily be distinct from cdc2/cyclin B kinase. To get insights into a physiological role for Ser696 phosphorylation, we searched for a Ser696 kinase and for cellular conditions under which Ser696 is dephosphorylated. Because Ser696 conforms to the MAP kinase phosphorylation consensus motif (PXSP), MAP kinase was tested as a possible kinase phosphorylating Ser696. MAP kinase, in fact, did phosphorylate Ser696 in MTB3, the carboxy-terminal half of human MAP4 in vitro. Phosphorylation of Ser696 in HeLa cell extract was suppressed by a MAP kinase inhibitor, DBTM-0004. Also consistent with the notion that Ser696 is a MAP kinase site were the fact that serum-starvation induced dephosphorylation of Ser696 in HeLa cells, TIG-3 and MRC-5-30 human fibroblasts, while readdition of serum recovered Ser696 phosphorylation, albeit after a surprisingly long interval. Thus, phosphorylation of Ser696 of MAP4, most likely carried out by MAP kinase, may play a role in modulation of MAP4 activity in proliferating versus quiescent cells. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0386-7196 1347-3700 |
DOI: | 10.1247/csf.24.321 |