HIV-Specific T Cell Responses Are Highly Stable on Antiretroviral Therapy
HIV infection induces a robust T cell response that is sustained by high viremia, but falls following the onset of antiretroviral therapy (ART). Relatively little has been reported on the subsequent stability of the HIV-specific T cell response in individuals on durable therapy. Such data are critic...
Saved in:
Published in: | Molecular therapy. Methods & clinical development Vol. 15; pp. 9 - 17 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
13-12-2019
Elsevier Limited American Society of Gene & Cell Therapy Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | HIV infection induces a robust T cell response that is sustained by high viremia, but falls following the onset of antiretroviral therapy (ART). Relatively little has been reported on the subsequent stability of the HIV-specific T cell response in individuals on durable therapy. Such data are critical for powering clinical trials testing T cell-based immunotherapies. In a cross-sectional study, HIV-specific T cell responses were detectable by ex vivo interferon (IFN)-γ ELISpot (average ∼1,100 spot-forming units [SFUs]/106 peripheral blood mononuclear cells) in persons living with HIV (PLWH; n = 34), despite median durable ART suppression of 5.0 years. No substantial association was detected between the summed HIV-specific T cell response and the size of the replication-competent HIV reservoir. T cell responses were next measured in participants sampled weekly, monthly, or yearly. HIV-specific T cell responses were highly stable over the time periods examined; within-individual variation ranged from 16% coefficient of variation (CV) for weekly to 27% CV for yearly sampling. These data were used to generate power calculations for future immunotherapy studies. The stability of the HIV-specific T cell response in suppressed PLWH will enable powered studies of small sizes (e.g., n = 6–12), facilitating rapid and iterative testing for T cell-based immunotherapies against HIV. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2329-0501 2329-0501 |
DOI: | 10.1016/j.omtm.2019.07.008 |