Calcium Extrusion from Mammalian Photoreceptor Terminals
Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominan...
Saved in:
Published in: | The Journal of neuroscience Vol. 18; no. 7; pp. 2467 - 2474 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Soc Neuroscience
01-04-1998
Society for Neuroscience |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and the Na+/Ca2+-exchanger. Immunohistochemical staining of retina sections revealed strong immunoreactivity for the PMCA in rod and cone terminals, whereas staining for the Na+/Ca2+-exchanger was very weak. The PMCA was localized to the plasma membrane along the sides of the photoreceptor terminals and was excluded from the base of the terminals where the active zones are located. The amplitude of a calcium-activated chloride current was used to monitor the intracellular calcium concentration. An upper limit for the time required to remove intracellular free calcium is obtained from two time constants measured for the calcium-activated chloride current tail currents: one of 50 msec and a second of 190 msec. Calcium extrusion was inhibited in the absence of intracellular ATP or in the presence of the PMCA inhibitor orthovanadate, but was unaffected by replacement of external Na+ with Li+. The data indicate that the PMCA, rather than the Na+/Ca2+-exchanger, is the predominant mechanism for calcium extrusion from photoreceptor synaptic terminals. |
---|---|
AbstractList | Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and the Na
+
/Ca
2+
-exchanger. Immunohistochemical staining of retina sections revealed strong immunoreactivity for the PMCA in rod and cone terminals, whereas staining for the Na
+
/Ca
2+
-exchanger was very weak. The PMCA was localized to the plasma membrane along the sides of the photoreceptor terminals and was excluded from the base of the terminals where the active zones are located. The amplitude of a calcium-activated chloride current was used to monitor the intracellular calcium concentration. An upper limit for the time required to remove intracellular free calcium is obtained from two time constants measured for the calcium-activated chloride current tail currents: one of 50 msec and a second of 190 msec. Calcium extrusion was inhibited in the absence of intracellular ATP or in the presence of the PMCA inhibitor orthovanadate, but was unaffected by replacement of external Na
+
with Li
+
. The data indicate that the PMCA, rather than the Na
+
/Ca
2+
-exchanger, is the predominant mechanism for calcium extrusion from photoreceptor synaptic terminals. Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and the Na+/Ca2+-exchanger. Immunohistochemical staining of retina sections revealed strong immunoreactivity for the PMCA in rod and cone terminals, whereas staining for the Na+/Ca2+-exchanger was very weak. The PMCA was localized to the plasma membrane along the sides of the photoreceptor terminals and was excluded from the base of the terminals where the active zones are located. The amplitude of a calcium-activated chloride current was used to monitor the intracellular calcium concentration. An upper limit for the time required to remove intracellular free calcium is obtained from two time constants measured for the calcium-activated chloride current tail currents: one of 50 msec and a second of 190 msec. Calcium extrusion was inhibited in the absence of intracellular ATP or in the presence of the PMCA inhibitor orthovanadate, but was unaffected by replacement of external Na+ with Li+. The data indicate that the PMCA, rather than the Na+/Ca2+-exchanger, is the predominant mechanism for calcium extrusion from photoreceptor synaptic terminals. Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and the Na super(+)/Ca super(2+)-exchanger. Immunohistochemical staining of retina sections revealed strong immunoreactivity for the PMCA in rod and cone terminals, whereas staining for the Na super(+)/Ca super(2+)-exchanger was very weak. The PMCA was localized to the plasma membrane along the sides of the photoreceptor terminals and was excluded from the base of the terminals where the active zones are located. The amplitude of a calcium-activated chloride current was used to monitor the intracellular calcium concentration. An upper limit for the time required to remove intracellular free calcium is obtained from two time constants measured for the calcium-activated chloride current tail currents: one of 50 msec and a second of 190 msec. Calcium extrusion was inhibited in the absence of intracellular ATP or in the presence of the PMCA inhibitor orthovanadate, but was unaffected by replacement of external Na super(+) with Li super(+). The data indicate that the PMCA, rather than the Na super(+)/Ca super(2+)-exchanger, is the predominant mechanism for calcium extrusion from photoreceptor synaptic terminals. |
Author | Wassle, Heinz Morgans, Catherine W Taylor, W. Rowland Berntson, Amy El Far, Oussama |
AuthorAffiliation | 2 Neurochemistry, Max-Planck-Institute für Hirnforschung, D-60528 Frankfurt, Germany 1 Departments of Neuroanatomy and |
AuthorAffiliation_xml | – name: 1 Departments of Neuroanatomy and – name: 2 Neurochemistry, Max-Planck-Institute für Hirnforschung, D-60528 Frankfurt, Germany |
Author_xml | – sequence: 1 fullname: Morgans, Catherine W – sequence: 2 fullname: El Far, Oussama – sequence: 3 fullname: Berntson, Amy – sequence: 4 fullname: Wassle, Heinz – sequence: 5 fullname: Taylor, W. Rowland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/9502807$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi3UqmwLj4AUceCW7Uzs2A4HJLRaaKuWImjPluN1uq4Se2snLLw93nZV4MTpl-xvfs3oOyYHPnhLyFuEOdYVPb33doohGTdHWYIooWJczLFp5Asyy0RTVgzwgMygElByJthLcpzSPQAIQHFEjpoaKgliRuRC98ZNQ7H8OcYpueCLLoahuNLDoHunffF1HcYQrbGbHMWNjYPzuk-vyGGXw77e5wm5_bS8WZyVl9efzxcfL0tTs2YsWSWlbaURRtacWs5RcJQt5023kkhRyJYy0yEDtnvkksKqkRKZrKGlFOgJ-fDUu5nawa6M9WPUvdpEN-j4SwXt1L8_3q3VXfihuGgoAssF7_YFMTxMNo1qcMnYvtfehikp0QgqZP1_EDmtaoGYwfdPoMkSUrTd8zYIaidIXXxZ3n67_r44VygVCPUoSO0E5eE3f9_zPLo38meLtbtbb120KmURfaZRbbfb3CfUro3-BmljnRw |
CitedBy_id | crossref_primary_10_1046_j_1471_4159_2001_00169_x crossref_primary_10_1074_jbc_M308414200 crossref_primary_10_1152_physrev_00028_2016 crossref_primary_10_1073_pnas_97_15_8578 crossref_primary_10_1007_s12576_012_0220_0 crossref_primary_10_1017_S0952523805223027 crossref_primary_10_1038_s41598_023_40663_y crossref_primary_10_1046_j_1460_9568_1999_00719_x crossref_primary_10_1002_cne_21237 crossref_primary_10_1093_hmg_ddm047 crossref_primary_10_1002_cne_22045 crossref_primary_10_1016_j_preteyeres_2005_04_002 crossref_primary_10_1002_1097_0029_20000715_50_2_141__AID_JEMT6_3_0_CO_2_B crossref_primary_10_1002__SICI_1096_9861_19991206_415_1_1__AID_CNE1_3_0_CO_2_G crossref_primary_10_1016_j_neuroscience_2003_08_012 crossref_primary_10_1038_nn1320 crossref_primary_10_1523_JNEUROSCI_0454_05_2005 crossref_primary_10_1002_jnr_10459 crossref_primary_10_1523_JNEUROSCI_23_14_06041_2003 crossref_primary_10_1002_jnr_21906 crossref_primary_10_1152_jn_00775_2006 crossref_primary_10_1002_cne_21909 crossref_primary_10_1016_S0896_6273_04_00254_5 crossref_primary_10_1113_jphysiol_2006_123901 crossref_primary_10_1085_jgp_200308863 crossref_primary_10_1016_S0168_0102_98_00037_6 crossref_primary_10_1152_physrev_2001_81_1_117 crossref_primary_10_1007_s00424_007_0348_6 crossref_primary_10_1523_JNEUROSCI_21_24_09598_2001 crossref_primary_10_4161_chan_26368 crossref_primary_10_5665_sleep_2456 crossref_primary_10_1016_j_ceca_2012_08_002 crossref_primary_10_1002__SICI_1096_9861_19991018_413_2_209__AID_CNE3_3_0_CO_2_J crossref_primary_10_1152_jn_00874_2004 crossref_primary_10_1113_jphysiol_2008_160051 crossref_primary_10_3902_jnns_12_196 crossref_primary_10_1152_jn_01193_2004 crossref_primary_10_1002_cne_10933 crossref_primary_10_1002_cne_20170 crossref_primary_10_1124_jpet_102_042457 crossref_primary_10_1523_JNEUROSCI_18_23_10136_1998 crossref_primary_10_1523_JNEUROSCI_4264_07_2007 crossref_primary_10_1016_j_neuroscience_2009_04_059 crossref_primary_10_4331_wjbc_v1_i5_103 crossref_primary_10_1016_j_biocel_2012_09_016 crossref_primary_10_1016_j_preteyeres_2012_04_003 crossref_primary_10_1523_JNEUROSCI_5546_08_2009 crossref_primary_10_1016_j_isci_2020_101830 crossref_primary_10_1523_JNEUROSCI_1324_18_2020 crossref_primary_10_1046_j_1440_1711_2000_00923_x crossref_primary_10_1016_j_celrep_2017_04_060 crossref_primary_10_1080_01677063_2018_1498496 crossref_primary_10_1002_cne_10281 crossref_primary_10_1002_syn_21678 crossref_primary_10_1152_jn_00130_2002 crossref_primary_10_1016_j_neuroscience_2006_03_054 crossref_primary_10_1046_j_0953_816x_2001_01515_x crossref_primary_10_1016_j_csbj_2022_11_049 crossref_primary_10_1017_S1461145709990368 crossref_primary_10_1111_jdi_12312 crossref_primary_10_1016_j_preteyeres_2015_04_001 crossref_primary_10_1016_S0306_4522_99_00170_0 crossref_primary_10_1073_pnas_96_17_9909 crossref_primary_10_1017_S0952523808080814 crossref_primary_10_1152_jn_00213_2012 crossref_primary_10_1007_s12035_007_0019_9 crossref_primary_10_1042_AN20110059 crossref_primary_10_7554_eLife_54997 crossref_primary_10_1016_j_visres_2017_03_011 crossref_primary_10_1016_S0896_6273_00_80885_5 crossref_primary_10_1007_s12035_009_8058_z crossref_primary_10_1017_S0952523811000356 crossref_primary_10_1523_JNEUROSCI_2665_06_2006 crossref_primary_10_1017_S0952523805225038 crossref_primary_10_1152_jn_00867_2000 crossref_primary_10_1152_jn_01025_2002 crossref_primary_10_1523_JNEUROSCI_6384_11_2013 crossref_primary_10_1016_j_neuro_2009_08_007 crossref_primary_10_1073_pnas_2001776117 crossref_primary_10_1152_jn_00486_2004 crossref_primary_10_1016_S0896_6273_01_00535_9 crossref_primary_10_1523_JNEUROSCI_3195_04_2005 crossref_primary_10_1046_j_1460_9568_2000_00235_x crossref_primary_10_3389_fncel_2015_00422 crossref_primary_10_14814_phy2_12567 crossref_primary_10_1002_syn_21768 crossref_primary_10_1016_S0896_6273_02_00667_0 crossref_primary_10_1085_jgp_201912520 crossref_primary_10_1016_j_mcn_2009_02_003 crossref_primary_10_3389_fncel_2021_667046 crossref_primary_10_1139_y05_075 crossref_primary_10_1016_j_neuroscience_2004_08_043 crossref_primary_10_1093_hmg_ddi336 |
Cites_doi | 10.1111/j.1460-9568.1996.tb01268.x 10.1074/jbc.270.20.12184 10.1523/JNEUROSCI.13-07-02898.1993 10.1016/0166-2236(88)90195-6 10.1016/0896-6273(94)90252-6 10.1038/363074a0 10.1016/S0092-8674(05)80033-9 10.1113/jphysiol.1996.sp021360 10.1016/S0021-9258(18)55499-5 10.1038/341536a0 10.1523/JNEUROSCI.16-21-06713.1996 10.1038/278271a0 10.1038/371513a0 10.1002/(SICI)1096-9861(19960617)370:1<1::AID-CNE1>3.0.CO;2-7 10.1016/0896-6273(88)90181-X 10.1073/pnas.85.12.4548 10.1016/S0006-3495(77)85538-0 10.1113/jphysiol.1992.sp019000 10.1016/S0021-9258(19)70149-5 10.1113/jphysiol.1987.sp016492 10.1152/jn.1994.71.2.656 10.1523/JNEUROSCI.15-04-02668.1995 10.1085/jgp.94.4.719 10.1038/227680a0 10.1017/S0952523898153142 10.1113/jphysiol.1996.sp021519 10.1073/pnas.90.24.11949 10.1085/jgp.107.5.621 10.1016/S0021-9258(19)49704-4 10.1113/jphysiol.1967.sp008183 10.1016/S0896-6273(00)80226-3 10.1016/S0306-4522(96)00678-1 10.1016/S0021-9258(17)42854-7 10.1007/BF00370781 10.1038/367735a0 10.1016/S0021-9258(18)45848-6 10.1016/0005-2736(91)90346-A |
ContentType | Journal Article |
Copyright | Copyright © 1998 Society for Neuroscience 1998 |
Copyright_xml | – notice: Copyright © 1998 Society for Neuroscience 1998 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7TK 7X8 5PM |
DOI | 10.1523/jneurosci.18-07-02467.1998 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Calcium & Calcified Tissue Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Calcium & Calcified Tissue Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 2474 |
ExternalDocumentID | 10_1523_JNEUROSCI_18_07_02467_1998 9502807 www18_7_2467 |
Genre | Journal Article |
GroupedDBID | - 08R 2WC 3O- 53G 55 5GY 5RE 5VS ABFLS ABIVO ABPTK ABUFD ACNCT ADACO ADBBV ADCOW AENEX AETEA AFFNX AFMIJ AIZTS AJYGW ALMA_UNASSIGNED_HOLDINGS BAWUL CS3 DIK DL DU5 DZ E3Z EBS EJD F5P FA8 FH7 GJ GX1 H13 HYE H~9 KQ8 L7B MVM O0- OK1 P0W P2P QZG R.V RHF RHI RIG RPM TFN UQL VH1 WH7 WOQ X X7M XJT ZA5 ZGI ZXP --- -DZ -~X .55 .GJ 18M AAFWJ ABBAR ACGUR AFCFT AFHIN AFOSN AHWXS AI. AOIJS BTFSW CGR CUY CVF ECM EIF NPM TR2 W8F YBU YHG YKV YNH YSK YYP AAYXX CITATION 7QP 7TK 7X8 5PM |
ID | FETCH-LOGICAL-c549t-4288eb8c7c8563e6617618b669fd813178b34cf1404b6696830d98814850b3303 |
IEDL.DBID | RPM |
ISSN | 0270-6474 |
IngestDate | Tue Sep 17 21:20:14 EDT 2024 Fri Oct 25 11:42:45 EDT 2024 Fri Oct 25 23:11:11 EDT 2024 Thu Nov 21 22:06:19 EST 2024 Sat Sep 28 07:41:02 EDT 2024 Tue Nov 10 20:54:55 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-4288eb8c7c8563e6617618b669fd813178b34cf1404b6696830d98814850b3303 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/18/7/2467.full.pdf |
PMID | 9502807 |
PQID | 16325711 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793104 proquest_miscellaneous_79737854 proquest_miscellaneous_16325711 crossref_primary_10_1523_JNEUROSCI_18_07_02467_1998 pubmed_primary_9502807 highwire_smallpub1_www18_7_2467 |
ProviderPackageCode | RHF RHI |
PublicationCentury | 1900 |
PublicationDate | 19980401 1998-Apr-01 1998-04-01 |
PublicationDateYYYYMMDD | 1998-04-01 |
PublicationDate_xml | – month: 04 year: 1998 text: 19980401 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 1998 |
Publisher | Soc Neuroscience Society for Neuroscience |
Publisher_xml | – name: Soc Neuroscience – name: Society for Neuroscience |
References | Niggli (2023041302381609000_18.7.2467.24) 1981; 256 Reeves (2023041302381609000_18.7.2467.26) 1984; 259 2023041302381609000_18.7.2467.20 2023041302381609000_18.7.2467.21 2023041302381609000_18.7.2467.22 2023041302381609000_18.7.2467.23 2023041302381609000_18.7.2467.25 2023041302381609000_18.7.2467.27 2023041302381609000_18.7.2467.2 2023041302381609000_18.7.2467.28 2023041302381609000_18.7.2467.3 2023041302381609000_18.7.2467.29 2023041302381609000_18.7.2467.4 2023041302381609000_18.7.2467.5 2023041302381609000_18.7.2467.6 2023041302381609000_18.7.2467.7 2023041302381609000_18.7.2467.8 Adamo (2023041302381609000_18.7.2467.1) 1992; 267 Kessler (2023041302381609000_18.7.2467.17) 1990; 265 Carafoli (2023041302381609000_18.7.2467.9) 1992; 267 2023041302381609000_18.7.2467.30 2023041302381609000_18.7.2467.31 2023041302381609000_18.7.2467.32 2023041302381609000_18.7.2467.11 2023041302381609000_18.7.2467.33 2023041302381609000_18.7.2467.12 2023041302381609000_18.7.2467.34 2023041302381609000_18.7.2467.13 2023041302381609000_18.7.2467.35 2023041302381609000_18.7.2467.14 2023041302381609000_18.7.2467.36 2023041302381609000_18.7.2467.15 2023041302381609000_18.7.2467.37 2023041302381609000_18.7.2467.16 Copenhagen (2023041302381609000_18.7.2467.10) 1989; 341 2023041302381609000_18.7.2467.18 2023041302381609000_18.7.2467.19 |
References_xml | – ident: 2023041302381609000_18.7.2467.8 doi: 10.1111/j.1460-9568.1996.tb01268.x – ident: 2023041302381609000_18.7.2467.31 doi: 10.1074/jbc.270.20.12184 – ident: 2023041302381609000_18.7.2467.32 doi: 10.1523/JNEUROSCI.13-07-02898.1993 – ident: 2023041302381609000_18.7.2467.4 doi: 10.1016/0166-2236(88)90195-6 – ident: 2023041302381609000_18.7.2467.27 doi: 10.1016/0896-6273(94)90252-6 – ident: 2023041302381609000_18.7.2467.29 doi: 10.1038/363074a0 – ident: 2023041302381609000_18.7.2467.12 doi: 10.1016/S0092-8674(05)80033-9 – ident: 2023041302381609000_18.7.2467.28 doi: 10.1113/jphysiol.1996.sp021360 – volume: 265 start-page: 16012 year: 1990 ident: 2023041302381609000_18.7.2467.17 article-title: Partial purification and characterization of the Ca2(+)-pumping ATPase of the liver plasma membrane. publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)55499-5 contributor: fullname: Kessler – volume: 341 start-page: 356 year: 1989 ident: 2023041302381609000_18.7.2467.10 article-title: Release of endogenous excitatory amino acids from turtle photoreceptors. publication-title: Nature doi: 10.1038/341536a0 contributor: fullname: Copenhagen – ident: 2023041302381609000_18.7.2467.23 doi: 10.1523/JNEUROSCI.16-21-06713.1996 – ident: 2023041302381609000_18.7.2467.13 doi: 10.1038/278271a0 – ident: 2023041302381609000_18.7.2467.15 doi: 10.1038/371513a0 – ident: 2023041302381609000_18.7.2467.7 doi: 10.1002/(SICI)1096-9861(19960617)370:1<1::AID-CNE1>3.0.CO;2-7 – ident: 2023041302381609000_18.7.2467.22 doi: 10.1016/0896-6273(88)90181-X – ident: 2023041302381609000_18.7.2467.19 doi: 10.1073/pnas.85.12.4548 – ident: 2023041302381609000_18.7.2467.5 doi: 10.1016/S0006-3495(77)85538-0 – ident: 2023041302381609000_18.7.2467.14 doi: 10.1113/jphysiol.1992.sp019000 – volume: 256 start-page: 395 year: 1981 ident: 2023041302381609000_18.7.2467.24 article-title: Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)70149-5 contributor: fullname: Niggli – ident: 2023041302381609000_18.7.2467.2 doi: 10.1113/jphysiol.1987.sp016492 – ident: 2023041302381609000_18.7.2467.37 doi: 10.1152/jn.1994.71.2.656 – ident: 2023041302381609000_18.7.2467.25 doi: 10.1523/JNEUROSCI.15-04-02668.1995 – ident: 2023041302381609000_18.7.2467.3 doi: 10.1085/jgp.94.4.719 – ident: 2023041302381609000_18.7.2467.18 doi: 10.1038/227680a0 – ident: 2023041302381609000_18.7.2467.33 doi: 10.1017/S0952523898153142 – ident: 2023041302381609000_18.7.2467.34 doi: 10.1113/jphysiol.1996.sp021519 – ident: 2023041302381609000_18.7.2467.11 doi: 10.1073/pnas.90.24.11949 – ident: 2023041302381609000_18.7.2467.36 doi: 10.1085/jgp.107.5.621 – volume: 267 start-page: 14244 year: 1992 ident: 2023041302381609000_18.7.2467.1 article-title: Use of expression mutants and monoclonal antibodies to map the erythrocyte Ca2+ pump. publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)49704-4 contributor: fullname: Adamo – ident: 2023041302381609000_18.7.2467.16 doi: 10.1113/jphysiol.1967.sp008183 – ident: 2023041302381609000_18.7.2467.20 doi: 10.1016/S0896-6273(00)80226-3 – ident: 2023041302381609000_18.7.2467.30 doi: 10.1016/S0306-4522(96)00678-1 – volume: 259 start-page: 7733 year: 1984 ident: 2023041302381609000_18.7.2467.26 article-title: The stoichiometry of the cardiac sodium-calcium exchange system. publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)42854-7 contributor: fullname: Reeves – ident: 2023041302381609000_18.7.2467.6 doi: 10.1007/BF00370781 – ident: 2023041302381609000_18.7.2467.35 doi: 10.1038/367735a0 – volume: 267 start-page: 2115 year: 1992 ident: 2023041302381609000_18.7.2467.9 article-title: The Ca2+ pump of the plasma membrane. publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)45848-6 contributor: fullname: Carafoli – ident: 2023041302381609000_18.7.2467.21 doi: 10.1016/0005-2736(91)90346-A |
SSID | ssj0007017 |
Score | 1.9578208 |
Snippet | Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through... |
SourceID | pubmedcentral proquest crossref pubmed highwire |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 2467 |
SubjectTerms | Animals Biological Transport - physiology Calcium - metabolism Calcium-Transporting ATPases - analysis Calcium-Transporting ATPases - metabolism Mammals Microscopy, Confocal Photoreceptor Cells - chemistry Photoreceptor Cells - metabolism Presynaptic Terminals - chemistry Presynaptic Terminals - enzymology Rats Sodium-Calcium Exchanger - analysis Sodium-Calcium Exchanger - metabolism Tupaiidae |
Title | Calcium Extrusion from Mammalian Photoreceptor Terminals |
URI | http://www.jneurosci.org/cgi/content/abstract/18/7/2467 https://www.ncbi.nlm.nih.gov/pubmed/9502807 https://search.proquest.com/docview/16325711 https://search.proquest.com/docview/79737854 https://pubmed.ncbi.nlm.nih.gov/PMC6793104 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-tAEB6sIPhy8Ir1mgfxLW22SXYnj1IrXlAEPXDelmyy4RSaVKwF_ffObJJiRV98zU5gMzPszrf55luAUzHIMRe58K2VGQGU3PoGA-OnNhcqVEmiDHcjXz2q-394MWKZnLjthXGk_cyMe9Wk7FXj_45b-Vxm_ZYn1n-4G0pKKoIR_Q50qDZsIXqz_KrAXbNLcItwUaSiRmmUAFf_5p7pcY_D655AR7kc0DLB_Xq4DmtJzH8Z1fL-1GoGf1d_fqVRftqXLjfgT1NQeuf1xDdhxVZbsH1eEZgu370zz1E83dn5NuAwnWTjeemN3rjXgkLicXuJd5eWpTvvIOspgXDLXJfpi_dUM2Umsx34ezl6Gl75zdUJfkaA79UnUIHWYKYyjGVoaRNWUqCRMilyFFQzoAmjrGBtHX4oMQzyBJGwURyYkLa1XVitppXdA08hq_xRyGRQRINCGmXCIo3TMEmlSWTahbB1mH6uFTI0IwtyuF44XAvUgdLO4Zod3oWT1rd6Rp84IVcKTdEnQ6XZjCxal2tKef6PkVZ2Op9pKiFpoRHiZwuVUJ5hHHVhtw7RYmZNlLuglmK3GGe17eURSkKnut0k3f6v3zyA9bqhkWk_h7BKgbZH0Jnl82Oq5a9vj10efwDrvPP5 |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9swEB26W0r30q_t0mw_4kPpzYkV29L4uKRZkjYJhaTQm7BsmQZie2ka2P33OyPboSntZa_WGCw_STNPejMC-ChGOeYiF761MiOCklvfYGD81OZChSpJlOFs5OlKLX_g5wmXyYm7XBgn2s_MZlBty0G1-em0lTdlNux0YsNvi7GkQUU0YngCj2m-BkFH0tsFWAXuol0iXMSMIhW1tUaJcg2_LFkgtxrPBgKd6HJECwVn7OEZPEliPmdUxx6qqxr8rwj0byHlH57p-vkD-_QCnrWhqHfVNL-ER7Z6BedXFdHw8s775DlxqNt1Pwccp9tssy-9yS1naRCYHiemeIu0LN1OCVnXRN8tq2TqX9660dhsd6_h-_VkPZ767aULfkZU8bdPdAStwUxlGMvQkvtWUqCRMilyFBRtoAmjrOCqPPxQYhjkCSKxqjgwITnECzit6sq-AU8h1wcksGVQRKNCGmXCIo3TMEmlSWTag7D70fqmqa2hmZMQUPoAlBaoA6UdUJqB6kG_w0TvqItbgkBo-sdkqDSbkUUHlabJwicgaWXr_U5T8ElLlBD_t1AJjVCMox5cNNAevqwdHT1QR5gf2rlO93ELQe3qdbfQXj74zT48na4Xcz2fLb--hbMmLZLFQ-_glEC37-Fkl-8_uFlwD6uYCJU |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xIdBe-DUmCozlAfGWJm4S-_I4da02YNWkDYk3K44drVKTVpRK8N9z5yQVReNle40vUpzP9t1nf3cG-ChGFq2wInROlkRQrAsNxiYsnBUqUXmuDGcjn1-r2Xc8m3CZnO1VX160X5r5sFnUw2Z-67WVq7qMep1YdHU5ljSoiEZEK1tFe_CY5mw86ol6twir2F-2S6SL2FGq0q7eKNGu6POMRXLX44uhQC-8HNFiwVl7eABP8ozPGtWul-orB98Vhf4rpvzLO02fP6BfL-BZF5IGp63JS3jkmldweNoQHa9_B58CLxL1u--HgONiUc43dTD5xdkaBGrACSrBZVHXfseErJdE4x2rZZY_gptWa7NYv4Zv08nN-DzsLl8IS6KMP0OiJegMlqrETCaO3LiSAo2UeWVRUNSBJknLiqvz8EOJSWxzRGJXWWwScoxHsN8sG_cGAoVcJ5BAl3GVjipplEmqIiuSvJAml8UAkv5n61VbY0MzNyGw9BYsLVDHSnuwNIM1gJMeF72mLi4IBqHpP5Oh0mxGFj1cmiYNn4QUjVtu1pqCUFqqhPi_hcpppGKWDuCohXf7Zd0IGYDawX3bzvW6d1sIbl-3u4P37b3fPIGnV2dT_fVi9uUdHLTZkawheg_7hLk7hr213XzwE-EPF_4LFQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium+extrusion+from+mammalian+photoreceptor+terminals&rft.jtitle=The+Journal+of+neuroscience&rft.au=Morgans%2C+C+W&rft.au=El+Far%2C+O&rft.au=Berntson%2C+A&rft.au=W%C3%A4ssle%2C+H&rft.date=1998-04-01&rft.issn=0270-6474&rft.volume=18&rft.issue=7&rft.spage=2467&rft.epage=2474&rft_id=info:doi/10.1523%2Fjneurosci.18-07-02467.1998&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |