Calcium Extrusion from Mammalian Photoreceptor Terminals

Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominan...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 18; no. 7; pp. 2467 - 2474
Main Authors: Morgans, Catherine W, El Far, Oussama, Berntson, Amy, Wassle, Heinz, Taylor, W. Rowland
Format: Journal Article
Language:English
Published: United States Soc Neuroscience 01-04-1998
Society for Neuroscience
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and the Na+/Ca2+-exchanger. Immunohistochemical staining of retina sections revealed strong immunoreactivity for the PMCA in rod and cone terminals, whereas staining for the Na+/Ca2+-exchanger was very weak. The PMCA was localized to the plasma membrane along the sides of the photoreceptor terminals and was excluded from the base of the terminals where the active zones are located. The amplitude of a calcium-activated chloride current was used to monitor the intracellular calcium concentration. An upper limit for the time required to remove intracellular free calcium is obtained from two time constants measured for the calcium-activated chloride current tail currents: one of 50 msec and a second of 190 msec. Calcium extrusion was inhibited in the absence of intracellular ATP or in the presence of the PMCA inhibitor orthovanadate, but was unaffected by replacement of external Na+ with Li+. The data indicate that the PMCA, rather than the Na+/Ca2+-exchanger, is the predominant mechanism for calcium extrusion from photoreceptor synaptic terminals.
AbstractList Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and the Na + /Ca 2+ -exchanger. Immunohistochemical staining of retina sections revealed strong immunoreactivity for the PMCA in rod and cone terminals, whereas staining for the Na + /Ca 2+ -exchanger was very weak. The PMCA was localized to the plasma membrane along the sides of the photoreceptor terminals and was excluded from the base of the terminals where the active zones are located. The amplitude of a calcium-activated chloride current was used to monitor the intracellular calcium concentration. An upper limit for the time required to remove intracellular free calcium is obtained from two time constants measured for the calcium-activated chloride current tail currents: one of 50 msec and a second of 190 msec. Calcium extrusion was inhibited in the absence of intracellular ATP or in the presence of the PMCA inhibitor orthovanadate, but was unaffected by replacement of external Na + with Li + . The data indicate that the PMCA, rather than the Na + /Ca 2+ -exchanger, is the predominant mechanism for calcium extrusion from photoreceptor synaptic terminals.
Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and the Na+/Ca2+-exchanger. Immunohistochemical staining of retina sections revealed strong immunoreactivity for the PMCA in rod and cone terminals, whereas staining for the Na+/Ca2+-exchanger was very weak. The PMCA was localized to the plasma membrane along the sides of the photoreceptor terminals and was excluded from the base of the terminals where the active zones are located. The amplitude of a calcium-activated chloride current was used to monitor the intracellular calcium concentration. An upper limit for the time required to remove intracellular free calcium is obtained from two time constants measured for the calcium-activated chloride current tail currents: one of 50 msec and a second of 190 msec. Calcium extrusion was inhibited in the absence of intracellular ATP or in the presence of the PMCA inhibitor orthovanadate, but was unaffected by replacement of external Na+ with Li+. The data indicate that the PMCA, rather than the Na+/Ca2+-exchanger, is the predominant mechanism for calcium extrusion from photoreceptor synaptic terminals.
Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through voltage-dependent calcium channels, implying the presence of a mechanism that is able to extrude calcium at an equal rate. The two predominant mechanisms of intracellular calcium extrusion are the plasma membrane calcium ATPase (PMCA) and the Na super(+)/Ca super(2+)-exchanger. Immunohistochemical staining of retina sections revealed strong immunoreactivity for the PMCA in rod and cone terminals, whereas staining for the Na super(+)/Ca super(2+)-exchanger was very weak. The PMCA was localized to the plasma membrane along the sides of the photoreceptor terminals and was excluded from the base of the terminals where the active zones are located. The amplitude of a calcium-activated chloride current was used to monitor the intracellular calcium concentration. An upper limit for the time required to remove intracellular free calcium is obtained from two time constants measured for the calcium-activated chloride current tail currents: one of 50 msec and a second of 190 msec. Calcium extrusion was inhibited in the absence of intracellular ATP or in the presence of the PMCA inhibitor orthovanadate, but was unaffected by replacement of external Na super(+) with Li super(+). The data indicate that the PMCA, rather than the Na super(+)/Ca super(2+)-exchanger, is the predominant mechanism for calcium extrusion from photoreceptor synaptic terminals.
Author Wassle, Heinz
Morgans, Catherine W
Taylor, W. Rowland
Berntson, Amy
El Far, Oussama
AuthorAffiliation 2 Neurochemistry, Max-Planck-Institute für Hirnforschung, D-60528 Frankfurt, Germany
1 Departments of Neuroanatomy and
AuthorAffiliation_xml – name: 1 Departments of Neuroanatomy and
– name: 2 Neurochemistry, Max-Planck-Institute für Hirnforschung, D-60528 Frankfurt, Germany
Author_xml – sequence: 1
  fullname: Morgans, Catherine W
– sequence: 2
  fullname: El Far, Oussama
– sequence: 3
  fullname: Berntson, Amy
– sequence: 4
  fullname: Wassle, Heinz
– sequence: 5
  fullname: Taylor, W. Rowland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/9502807$$D View this record in MEDLINE/PubMed
BookMark eNqFkcFu1DAQhi3UqmwLj4AUceCW7Uzs2A4HJLRaaKuWImjPluN1uq4Se2snLLw93nZV4MTpl-xvfs3oOyYHPnhLyFuEOdYVPb33doohGTdHWYIooWJczLFp5Asyy0RTVgzwgMygElByJthLcpzSPQAIQHFEjpoaKgliRuRC98ZNQ7H8OcYpueCLLoahuNLDoHunffF1HcYQrbGbHMWNjYPzuk-vyGGXw77e5wm5_bS8WZyVl9efzxcfL0tTs2YsWSWlbaURRtacWs5RcJQt5023kkhRyJYy0yEDtnvkksKqkRKZrKGlFOgJ-fDUu5nawa6M9WPUvdpEN-j4SwXt1L8_3q3VXfihuGgoAssF7_YFMTxMNo1qcMnYvtfehikp0QgqZP1_EDmtaoGYwfdPoMkSUrTd8zYIaidIXXxZ3n67_r44VygVCPUoSO0E5eE3f9_zPLo38meLtbtbb120KmURfaZRbbfb3CfUro3-BmljnRw
CitedBy_id crossref_primary_10_1046_j_1471_4159_2001_00169_x
crossref_primary_10_1074_jbc_M308414200
crossref_primary_10_1152_physrev_00028_2016
crossref_primary_10_1073_pnas_97_15_8578
crossref_primary_10_1007_s12576_012_0220_0
crossref_primary_10_1017_S0952523805223027
crossref_primary_10_1038_s41598_023_40663_y
crossref_primary_10_1046_j_1460_9568_1999_00719_x
crossref_primary_10_1002_cne_21237
crossref_primary_10_1093_hmg_ddm047
crossref_primary_10_1002_cne_22045
crossref_primary_10_1016_j_preteyeres_2005_04_002
crossref_primary_10_1002_1097_0029_20000715_50_2_141__AID_JEMT6_3_0_CO_2_B
crossref_primary_10_1002__SICI_1096_9861_19991206_415_1_1__AID_CNE1_3_0_CO_2_G
crossref_primary_10_1016_j_neuroscience_2003_08_012
crossref_primary_10_1038_nn1320
crossref_primary_10_1523_JNEUROSCI_0454_05_2005
crossref_primary_10_1002_jnr_10459
crossref_primary_10_1523_JNEUROSCI_23_14_06041_2003
crossref_primary_10_1002_jnr_21906
crossref_primary_10_1152_jn_00775_2006
crossref_primary_10_1002_cne_21909
crossref_primary_10_1016_S0896_6273_04_00254_5
crossref_primary_10_1113_jphysiol_2006_123901
crossref_primary_10_1085_jgp_200308863
crossref_primary_10_1016_S0168_0102_98_00037_6
crossref_primary_10_1152_physrev_2001_81_1_117
crossref_primary_10_1007_s00424_007_0348_6
crossref_primary_10_1523_JNEUROSCI_21_24_09598_2001
crossref_primary_10_4161_chan_26368
crossref_primary_10_5665_sleep_2456
crossref_primary_10_1016_j_ceca_2012_08_002
crossref_primary_10_1002__SICI_1096_9861_19991018_413_2_209__AID_CNE3_3_0_CO_2_J
crossref_primary_10_1152_jn_00874_2004
crossref_primary_10_1113_jphysiol_2008_160051
crossref_primary_10_3902_jnns_12_196
crossref_primary_10_1152_jn_01193_2004
crossref_primary_10_1002_cne_10933
crossref_primary_10_1002_cne_20170
crossref_primary_10_1124_jpet_102_042457
crossref_primary_10_1523_JNEUROSCI_18_23_10136_1998
crossref_primary_10_1523_JNEUROSCI_4264_07_2007
crossref_primary_10_1016_j_neuroscience_2009_04_059
crossref_primary_10_4331_wjbc_v1_i5_103
crossref_primary_10_1016_j_biocel_2012_09_016
crossref_primary_10_1016_j_preteyeres_2012_04_003
crossref_primary_10_1523_JNEUROSCI_5546_08_2009
crossref_primary_10_1016_j_isci_2020_101830
crossref_primary_10_1523_JNEUROSCI_1324_18_2020
crossref_primary_10_1046_j_1440_1711_2000_00923_x
crossref_primary_10_1016_j_celrep_2017_04_060
crossref_primary_10_1080_01677063_2018_1498496
crossref_primary_10_1002_cne_10281
crossref_primary_10_1002_syn_21678
crossref_primary_10_1152_jn_00130_2002
crossref_primary_10_1016_j_neuroscience_2006_03_054
crossref_primary_10_1046_j_0953_816x_2001_01515_x
crossref_primary_10_1016_j_csbj_2022_11_049
crossref_primary_10_1017_S1461145709990368
crossref_primary_10_1111_jdi_12312
crossref_primary_10_1016_j_preteyeres_2015_04_001
crossref_primary_10_1016_S0306_4522_99_00170_0
crossref_primary_10_1073_pnas_96_17_9909
crossref_primary_10_1017_S0952523808080814
crossref_primary_10_1152_jn_00213_2012
crossref_primary_10_1007_s12035_007_0019_9
crossref_primary_10_1042_AN20110059
crossref_primary_10_7554_eLife_54997
crossref_primary_10_1016_j_visres_2017_03_011
crossref_primary_10_1016_S0896_6273_00_80885_5
crossref_primary_10_1007_s12035_009_8058_z
crossref_primary_10_1017_S0952523811000356
crossref_primary_10_1523_JNEUROSCI_2665_06_2006
crossref_primary_10_1017_S0952523805225038
crossref_primary_10_1152_jn_00867_2000
crossref_primary_10_1152_jn_01025_2002
crossref_primary_10_1523_JNEUROSCI_6384_11_2013
crossref_primary_10_1016_j_neuro_2009_08_007
crossref_primary_10_1073_pnas_2001776117
crossref_primary_10_1152_jn_00486_2004
crossref_primary_10_1016_S0896_6273_01_00535_9
crossref_primary_10_1523_JNEUROSCI_3195_04_2005
crossref_primary_10_1046_j_1460_9568_2000_00235_x
crossref_primary_10_3389_fncel_2015_00422
crossref_primary_10_14814_phy2_12567
crossref_primary_10_1002_syn_21768
crossref_primary_10_1016_S0896_6273_02_00667_0
crossref_primary_10_1085_jgp_201912520
crossref_primary_10_1016_j_mcn_2009_02_003
crossref_primary_10_3389_fncel_2021_667046
crossref_primary_10_1139_y05_075
crossref_primary_10_1016_j_neuroscience_2004_08_043
crossref_primary_10_1093_hmg_ddi336
Cites_doi 10.1111/j.1460-9568.1996.tb01268.x
10.1074/jbc.270.20.12184
10.1523/JNEUROSCI.13-07-02898.1993
10.1016/0166-2236(88)90195-6
10.1016/0896-6273(94)90252-6
10.1038/363074a0
10.1016/S0092-8674(05)80033-9
10.1113/jphysiol.1996.sp021360
10.1016/S0021-9258(18)55499-5
10.1038/341536a0
10.1523/JNEUROSCI.16-21-06713.1996
10.1038/278271a0
10.1038/371513a0
10.1002/(SICI)1096-9861(19960617)370:1<1::AID-CNE1>3.0.CO;2-7
10.1016/0896-6273(88)90181-X
10.1073/pnas.85.12.4548
10.1016/S0006-3495(77)85538-0
10.1113/jphysiol.1992.sp019000
10.1016/S0021-9258(19)70149-5
10.1113/jphysiol.1987.sp016492
10.1152/jn.1994.71.2.656
10.1523/JNEUROSCI.15-04-02668.1995
10.1085/jgp.94.4.719
10.1038/227680a0
10.1017/S0952523898153142
10.1113/jphysiol.1996.sp021519
10.1073/pnas.90.24.11949
10.1085/jgp.107.5.621
10.1016/S0021-9258(19)49704-4
10.1113/jphysiol.1967.sp008183
10.1016/S0896-6273(00)80226-3
10.1016/S0306-4522(96)00678-1
10.1016/S0021-9258(17)42854-7
10.1007/BF00370781
10.1038/367735a0
10.1016/S0021-9258(18)45848-6
10.1016/0005-2736(91)90346-A
ContentType Journal Article
Copyright Copyright © 1998 Society for Neuroscience 1998
Copyright_xml – notice: Copyright © 1998 Society for Neuroscience 1998
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QP
7TK
7X8
5PM
DOI 10.1523/jneurosci.18-07-02467.1998
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Calcium & Calcified Tissue Abstracts
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 2474
ExternalDocumentID 10_1523_JNEUROSCI_18_07_02467_1998
9502807
www18_7_2467
Genre Journal Article
GroupedDBID -
08R
2WC
3O-
53G
55
5GY
5RE
5VS
ABFLS
ABIVO
ABPTK
ABUFD
ACNCT
ADACO
ADBBV
ADCOW
AENEX
AETEA
AFFNX
AFMIJ
AIZTS
AJYGW
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DL
DU5
DZ
E3Z
EBS
EJD
F5P
FA8
FH7
GJ
GX1
H13
HYE
H~9
KQ8
L7B
MVM
O0-
OK1
P0W
P2P
QZG
R.V
RHF
RHI
RIG
RPM
TFN
UQL
VH1
WH7
WOQ
X
X7M
XJT
ZA5
ZGI
ZXP
---
-DZ
-~X
.55
.GJ
18M
AAFWJ
ABBAR
ACGUR
AFCFT
AFHIN
AFOSN
AHWXS
AI.
AOIJS
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
TR2
W8F
YBU
YHG
YKV
YNH
YSK
YYP
AAYXX
CITATION
7QP
7TK
7X8
5PM
ID FETCH-LOGICAL-c549t-4288eb8c7c8563e6617618b669fd813178b34cf1404b6696830d98814850b3303
IEDL.DBID RPM
ISSN 0270-6474
IngestDate Tue Sep 17 21:20:14 EDT 2024
Fri Oct 25 11:42:45 EDT 2024
Fri Oct 25 23:11:11 EDT 2024
Thu Nov 21 22:06:19 EST 2024
Sat Sep 28 07:41:02 EDT 2024
Tue Nov 10 20:54:55 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c549t-4288eb8c7c8563e6617618b669fd813178b34cf1404b6696830d98814850b3303
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://www.jneurosci.org/content/jneuro/18/7/2467.full.pdf
PMID 9502807
PQID 16325711
PQPubID 23462
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6793104
proquest_miscellaneous_79737854
proquest_miscellaneous_16325711
crossref_primary_10_1523_JNEUROSCI_18_07_02467_1998
pubmed_primary_9502807
highwire_smallpub1_www18_7_2467
ProviderPackageCode RHF
RHI
PublicationCentury 1900
PublicationDate 19980401
1998-Apr-01
1998-04-01
PublicationDateYYYYMMDD 1998-04-01
PublicationDate_xml – month: 04
  year: 1998
  text: 19980401
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 1998
Publisher Soc Neuroscience
Society for Neuroscience
Publisher_xml – name: Soc Neuroscience
– name: Society for Neuroscience
References Niggli (2023041302381609000_18.7.2467.24) 1981; 256
Reeves (2023041302381609000_18.7.2467.26) 1984; 259
2023041302381609000_18.7.2467.20
2023041302381609000_18.7.2467.21
2023041302381609000_18.7.2467.22
2023041302381609000_18.7.2467.23
2023041302381609000_18.7.2467.25
2023041302381609000_18.7.2467.27
2023041302381609000_18.7.2467.2
2023041302381609000_18.7.2467.28
2023041302381609000_18.7.2467.3
2023041302381609000_18.7.2467.29
2023041302381609000_18.7.2467.4
2023041302381609000_18.7.2467.5
2023041302381609000_18.7.2467.6
2023041302381609000_18.7.2467.7
2023041302381609000_18.7.2467.8
Adamo (2023041302381609000_18.7.2467.1) 1992; 267
Kessler (2023041302381609000_18.7.2467.17) 1990; 265
Carafoli (2023041302381609000_18.7.2467.9) 1992; 267
2023041302381609000_18.7.2467.30
2023041302381609000_18.7.2467.31
2023041302381609000_18.7.2467.32
2023041302381609000_18.7.2467.11
2023041302381609000_18.7.2467.33
2023041302381609000_18.7.2467.12
2023041302381609000_18.7.2467.34
2023041302381609000_18.7.2467.13
2023041302381609000_18.7.2467.35
2023041302381609000_18.7.2467.14
2023041302381609000_18.7.2467.36
2023041302381609000_18.7.2467.15
2023041302381609000_18.7.2467.37
2023041302381609000_18.7.2467.16
Copenhagen (2023041302381609000_18.7.2467.10) 1989; 341
2023041302381609000_18.7.2467.18
2023041302381609000_18.7.2467.19
References_xml – ident: 2023041302381609000_18.7.2467.8
  doi: 10.1111/j.1460-9568.1996.tb01268.x
– ident: 2023041302381609000_18.7.2467.31
  doi: 10.1074/jbc.270.20.12184
– ident: 2023041302381609000_18.7.2467.32
  doi: 10.1523/JNEUROSCI.13-07-02898.1993
– ident: 2023041302381609000_18.7.2467.4
  doi: 10.1016/0166-2236(88)90195-6
– ident: 2023041302381609000_18.7.2467.27
  doi: 10.1016/0896-6273(94)90252-6
– ident: 2023041302381609000_18.7.2467.29
  doi: 10.1038/363074a0
– ident: 2023041302381609000_18.7.2467.12
  doi: 10.1016/S0092-8674(05)80033-9
– ident: 2023041302381609000_18.7.2467.28
  doi: 10.1113/jphysiol.1996.sp021360
– volume: 265
  start-page: 16012
  year: 1990
  ident: 2023041302381609000_18.7.2467.17
  article-title: Partial purification and characterization of the Ca2(+)-pumping ATPase of the liver plasma membrane.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)55499-5
  contributor:
    fullname: Kessler
– volume: 341
  start-page: 356
  year: 1989
  ident: 2023041302381609000_18.7.2467.10
  article-title: Release of endogenous excitatory amino acids from turtle photoreceptors.
  publication-title: Nature
  doi: 10.1038/341536a0
  contributor:
    fullname: Copenhagen
– ident: 2023041302381609000_18.7.2467.23
  doi: 10.1523/JNEUROSCI.16-21-06713.1996
– ident: 2023041302381609000_18.7.2467.13
  doi: 10.1038/278271a0
– ident: 2023041302381609000_18.7.2467.15
  doi: 10.1038/371513a0
– ident: 2023041302381609000_18.7.2467.7
  doi: 10.1002/(SICI)1096-9861(19960617)370:1<1::AID-CNE1>3.0.CO;2-7
– ident: 2023041302381609000_18.7.2467.22
  doi: 10.1016/0896-6273(88)90181-X
– ident: 2023041302381609000_18.7.2467.19
  doi: 10.1073/pnas.85.12.4548
– ident: 2023041302381609000_18.7.2467.5
  doi: 10.1016/S0006-3495(77)85538-0
– ident: 2023041302381609000_18.7.2467.14
  doi: 10.1113/jphysiol.1992.sp019000
– volume: 256
  start-page: 395
  year: 1981
  ident: 2023041302381609000_18.7.2467.24
  article-title: Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)70149-5
  contributor:
    fullname: Niggli
– ident: 2023041302381609000_18.7.2467.2
  doi: 10.1113/jphysiol.1987.sp016492
– ident: 2023041302381609000_18.7.2467.37
  doi: 10.1152/jn.1994.71.2.656
– ident: 2023041302381609000_18.7.2467.25
  doi: 10.1523/JNEUROSCI.15-04-02668.1995
– ident: 2023041302381609000_18.7.2467.3
  doi: 10.1085/jgp.94.4.719
– ident: 2023041302381609000_18.7.2467.18
  doi: 10.1038/227680a0
– ident: 2023041302381609000_18.7.2467.33
  doi: 10.1017/S0952523898153142
– ident: 2023041302381609000_18.7.2467.34
  doi: 10.1113/jphysiol.1996.sp021519
– ident: 2023041302381609000_18.7.2467.11
  doi: 10.1073/pnas.90.24.11949
– ident: 2023041302381609000_18.7.2467.36
  doi: 10.1085/jgp.107.5.621
– volume: 267
  start-page: 14244
  year: 1992
  ident: 2023041302381609000_18.7.2467.1
  article-title: Use of expression mutants and monoclonal antibodies to map the erythrocyte Ca2+ pump.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)49704-4
  contributor:
    fullname: Adamo
– ident: 2023041302381609000_18.7.2467.16
  doi: 10.1113/jphysiol.1967.sp008183
– ident: 2023041302381609000_18.7.2467.20
  doi: 10.1016/S0896-6273(00)80226-3
– ident: 2023041302381609000_18.7.2467.30
  doi: 10.1016/S0306-4522(96)00678-1
– volume: 259
  start-page: 7733
  year: 1984
  ident: 2023041302381609000_18.7.2467.26
  article-title: The stoichiometry of the cardiac sodium-calcium exchange system.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)42854-7
  contributor:
    fullname: Reeves
– ident: 2023041302381609000_18.7.2467.6
  doi: 10.1007/BF00370781
– ident: 2023041302381609000_18.7.2467.35
  doi: 10.1038/367735a0
– volume: 267
  start-page: 2115
  year: 1992
  ident: 2023041302381609000_18.7.2467.9
  article-title: The Ca2+ pump of the plasma membrane.
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)45848-6
  contributor:
    fullname: Carafoli
– ident: 2023041302381609000_18.7.2467.21
  doi: 10.1016/0005-2736(91)90346-A
SSID ssj0007017
Score 1.9578208
Snippet Ribbon synapses of vertebrate photoreceptors constantly release glutamate in darkness. Transmitter release is maintained by a steady influx of calcium through...
SourceID pubmedcentral
proquest
crossref
pubmed
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2467
SubjectTerms Animals
Biological Transport - physiology
Calcium - metabolism
Calcium-Transporting ATPases - analysis
Calcium-Transporting ATPases - metabolism
Mammals
Microscopy, Confocal
Photoreceptor Cells - chemistry
Photoreceptor Cells - metabolism
Presynaptic Terminals - chemistry
Presynaptic Terminals - enzymology
Rats
Sodium-Calcium Exchanger - analysis
Sodium-Calcium Exchanger - metabolism
Tupaiidae
Title Calcium Extrusion from Mammalian Photoreceptor Terminals
URI http://www.jneurosci.org/cgi/content/abstract/18/7/2467
https://www.ncbi.nlm.nih.gov/pubmed/9502807
https://search.proquest.com/docview/16325711
https://search.proquest.com/docview/79737854
https://pubmed.ncbi.nlm.nih.gov/PMC6793104
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-tAEB6sIPhy8Ir1mgfxLW22SXYnj1IrXlAEPXDelmyy4RSaVKwF_ffObJJiRV98zU5gMzPszrf55luAUzHIMRe58K2VGQGU3PoGA-OnNhcqVEmiDHcjXz2q-394MWKZnLjthXGk_cyMe9Wk7FXj_45b-Vxm_ZYn1n-4G0pKKoIR_Q50qDZsIXqz_KrAXbNLcItwUaSiRmmUAFf_5p7pcY_D655AR7kc0DLB_Xq4DmtJzH8Z1fL-1GoGf1d_fqVRftqXLjfgT1NQeuf1xDdhxVZbsH1eEZgu370zz1E83dn5NuAwnWTjeemN3rjXgkLicXuJd5eWpTvvIOspgXDLXJfpi_dUM2Umsx34ezl6Gl75zdUJfkaA79UnUIHWYKYyjGVoaRNWUqCRMilyFFQzoAmjrGBtHX4oMQzyBJGwURyYkLa1XVitppXdA08hq_xRyGRQRINCGmXCIo3TMEmlSWTahbB1mH6uFTI0IwtyuF44XAvUgdLO4Zod3oWT1rd6Rp84IVcKTdEnQ6XZjCxal2tKef6PkVZ2Op9pKiFpoRHiZwuVUJ5hHHVhtw7RYmZNlLuglmK3GGe17eURSkKnut0k3f6v3zyA9bqhkWk_h7BKgbZH0Jnl82Oq5a9vj10efwDrvPP5
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9swEB26W0r30q_t0mw_4kPpzYkV29L4uKRZkjYJhaTQm7BsmQZie2ka2P33OyPboSntZa_WGCw_STNPejMC-ChGOeYiF761MiOCklvfYGD81OZChSpJlOFs5OlKLX_g5wmXyYm7XBgn2s_MZlBty0G1-em0lTdlNux0YsNvi7GkQUU0YngCj2m-BkFH0tsFWAXuol0iXMSMIhW1tUaJcg2_LFkgtxrPBgKd6HJECwVn7OEZPEliPmdUxx6qqxr8rwj0byHlH57p-vkD-_QCnrWhqHfVNL-ER7Z6BedXFdHw8s775DlxqNt1Pwccp9tssy-9yS1naRCYHiemeIu0LN1OCVnXRN8tq2TqX9660dhsd6_h-_VkPZ767aULfkZU8bdPdAStwUxlGMvQkvtWUqCRMilyFBRtoAmjrOCqPPxQYhjkCSKxqjgwITnECzit6sq-AU8h1wcksGVQRKNCGmXCIo3TMEmlSWTag7D70fqmqa2hmZMQUPoAlBaoA6UdUJqB6kG_w0TvqItbgkBo-sdkqDSbkUUHlabJwicgaWXr_U5T8ElLlBD_t1AJjVCMox5cNNAevqwdHT1QR5gf2rlO93ELQe3qdbfQXj74zT48na4Xcz2fLb--hbMmLZLFQ-_glEC37-Fkl-8_uFlwD6uYCJU
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6xIdBe-DUmCozlAfGWJm4S-_I4da02YNWkDYk3K44drVKTVpRK8N9z5yQVReNle40vUpzP9t1nf3cG-ChGFq2wInROlkRQrAsNxiYsnBUqUXmuDGcjn1-r2Xc8m3CZnO1VX160X5r5sFnUw2Z-67WVq7qMep1YdHU5ljSoiEZEK1tFe_CY5mw86ol6twir2F-2S6SL2FGq0q7eKNGu6POMRXLX44uhQC-8HNFiwVl7eABP8ozPGtWul-orB98Vhf4rpvzLO02fP6BfL-BZF5IGp63JS3jkmldweNoQHa9_B58CLxL1u--HgONiUc43dTD5xdkaBGrACSrBZVHXfseErJdE4x2rZZY_gptWa7NYv4Zv08nN-DzsLl8IS6KMP0OiJegMlqrETCaO3LiSAo2UeWVRUNSBJknLiqvz8EOJSWxzRGJXWWwScoxHsN8sG_cGAoVcJ5BAl3GVjipplEmqIiuSvJAml8UAkv5n61VbY0MzNyGw9BYsLVDHSnuwNIM1gJMeF72mLi4IBqHpP5Oh0mxGFj1cmiYNn4QUjVtu1pqCUFqqhPi_hcpppGKWDuCohXf7Zd0IGYDawX3bzvW6d1sIbl-3u4P37b3fPIGnV2dT_fVi9uUdHLTZkawheg_7hLk7hr213XzwE-EPF_4LFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calcium+extrusion+from+mammalian+photoreceptor+terminals&rft.jtitle=The+Journal+of+neuroscience&rft.au=Morgans%2C+C+W&rft.au=El+Far%2C+O&rft.au=Berntson%2C+A&rft.au=W%C3%A4ssle%2C+H&rft.date=1998-04-01&rft.issn=0270-6474&rft.volume=18&rft.issue=7&rft.spage=2467&rft.epage=2474&rft_id=info:doi/10.1523%2Fjneurosci.18-07-02467.1998&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon