Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals
Despite extensive studies of femtosecond laser-material interactions, even the simplest morphological responses following femtosecond pulse irradiation have not been fully resolved. Past studies have revealed only partial dynamics. Here we develop a zero-background and high-contrast scattered-light-...
Saved in:
Published in: | Light, science & applications Vol. 6; no. 3; p. e16256 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
01-03-2017
Springer Nature B.V Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Despite extensive studies of femtosecond laser-material interactions, even the simplest morphological responses following femtosecond pulse irradiation have not been fully resolved. Past studies have revealed only partial dynamics. Here we develop a zero-background and high-contrast scattered-light-based optical imaging technique through which we capture, for the first time, the complete temporal and spatial evolution of the femtosecond laser-induced morphological surface structural dynamics of metals from start to finish, that is, from the initial transient surface fluctuations, through melting and ablation, to the end of resolidification. We find that transient surface structures first appear at a delay time on the order of 100 ps, which is attributed to ablation driven by pressure relaxation in the surface layer. The formation dynamics of the surface structures at different length scales are individually resolved, and the sequence of their appearance changes with laser fluence is found. Cooling and complete resolidification, observed here for the first time, are shown to occur more slowly than previously predicted by two orders of magnitude. We examine and identify the mechanisms driving each of these dynamic steps. The visualization and control of morphological surface structural dynamics not only are of fundamental importance for understanding femtosecond laser-induced material responses but also pave the way for the design of new material functionalities through surface structuring.
Laser–material interactions: optical imaging reveals the full story
An ultrafast optical imaging technique has been used to thoroughly characterize the interaction between a femtosecond laser beam and a metal. While an impressive array of techniques have been used to explore what happens when a femtosecond laser beams interacts with a metal surface, none has succeeded in fully characterizing the process, and so many questions remain. Now, researchers at the University of Rochester in the USA led by Chunlei Guo have developed an optical imaging technique that analyzes scattered rather than reflected light. This technique allowed them to capture the complete laser-induced dynamics of a metal surface in both space and time. The imaging technique revealed that transient surface structures appear after about 100 picoseconds and that cooling and resolidification of molten metal occur two orders of magnitude slower than previously predicted. |
---|---|
AbstractList | Despite extensive studies of femtosecond laser-material interactions, even the simplest morphological responses following femto-second pulse irradiation have not been fully resolved. Past studies have revealed only partial dynamics. Here we develop a zero-background and high-contrast scattered-light-based optical imaging technique through which we capture, for the rst time, the complete temporal and spatial evolution of the femtosecond laser-induced morphological surface structural dynamics of metals from start to nish, that is, from the initial transient surface uctuations, through melting and ablation, to the end of resolidication. We nd that transient surface structures rst appear at a delay time on the order of 100 ps, which is attributed to ablation driven by pressure relaxation in the surface layer. The formation dynamics of the surface structures at different length scales are individually resolved, and the sequence of their appearance changes with laser uence is found. Cooling and complete resolidication, observed here for the rst time, are shown to occur more slowly than previously predicted by two orders of magnitude. We examine and identify the mechanisms driving each of these dynamic steps. The visualization and control of morphological surface structural dynamics not only are of fundamental importance for understanding femtosecond laser-induced material responses but also pave the way for the design of new material functionalities through surface structuring. Despite extensive studies of femtosecond laser-material interactions, even the simplest morphological responses following femtosecond pulse irradiation have not been fully resolved. Past studies have revealed only partial dynamics. Here we develop a zero-background and high-contrast scattered-light-based optical imaging technique through which we capture, for the first time, the complete temporal and spatial evolution of the femtosecond laser-induced morphological surface structural dynamics of metals from start to finish, that is, from the initial transient surface fluctuations, through melting and ablation, to the end of resolidification. We find that transient surface structures first appear at a delay time on the order of 100 ps, which is attributed to ablation driven by pressure relaxation in the surface layer. The formation dynamics of the surface structures at different length scales are individually resolved, and the sequence of their appearance changes with laser fluence is found. Cooling and complete resolidification, observed here for the first time, are shown to occur more slowly than previously predicted by two orders of magnitude. We examine and identify the mechanisms driving each of these dynamic steps. The visualization and control of morphological surface structural dynamics not only are of fundamental importance for understanding femtosecond laser-induced material responses but also pave the way for the design of new material functionalities through surface structuring. Despite extensive studies of femtosecond laser-material interactions, even the simplest morphological responses following femtosecond pulse irradiation have not been fully resolved. Past studies have revealed only partial dynamics. Here we develop a zero-background and high-contrast scattered-light-based optical imaging technique through which we capture, for the first time, the complete temporal and spatial evolution of the femtosecond laser-induced morphological surface structural dynamics of metals from start to finish, that is, from the initial transient surface fluctuations, through melting and ablation, to the end of resolidification. We find that transient surface structures first appear at a delay time on the order of 100 ps, which is attributed to ablation driven by pressure relaxation in the surface layer. The formation dynamics of the surface structures at different length scales are individually resolved, and the sequence of their appearance changes with laser fluence is found. Cooling and complete resolidification, observed here for the first time, are shown to occur more slowly than previously predicted by two orders of magnitude. We examine and identify the mechanisms driving each of these dynamic steps. The visualization and control of morphological surface structural dynamics not only are of fundamental importance for understanding femtosecond laser-induced material responses but also pave the way for the design of new material functionalities through surface structuring. Laser–material interactions: optical imaging reveals the full story An ultrafast optical imaging technique has been used to thoroughly characterize the interaction between a femtosecond laser beam and a metal. While an impressive array of techniques have been used to explore what happens when a femtosecond laser beams interacts with a metal surface, none has succeeded in fully characterizing the process, and so many questions remain. Now, researchers at the University of Rochester in the USA led by Chunlei Guo have developed an optical imaging technique that analyzes scattered rather than reflected light. This technique allowed them to capture the complete laser-induced dynamics of a metal surface in both space and time. The imaging technique revealed that transient surface structures appear after about 100 picoseconds and that cooling and resolidification of molten metal occur two orders of magnitude slower than previously predicted. |
Author | Guo, Chunlei Vorobyev, Anatoliy Fang, Ranran |
Author_xml | – sequence: 1 givenname: Ranran surname: Fang fullname: Fang, Ranran organization: The Institute of Optics, University of Rochester, Present address: School of Science, Chongqing University of Posts and Telecommunications – sequence: 2 givenname: Anatoliy surname: Vorobyev fullname: Vorobyev, Anatoliy organization: The Institute of Optics, University of Rochester – sequence: 3 givenname: Chunlei surname: Guo fullname: Guo, Chunlei email: guo@optics.rochester.edu organization: The Institute of Optics, University of Rochester, The Guo China-US Photonics Laboratory, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30167238$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctrHSEUxqWkNI9m13UZ6CaLzK06juNsCiV9BQLdtGvx6jExzOiNjwvpXx-Hm4TbUoibc-D7nc-j3zE68MEDQu8IXhHciY9TUiuKCV_Rnr9CRxSzoR36Thzs9YfoNKVbXM_ICBbDG3TY1ZGBduII3X1xEXRuti4VNbk_Krvgm2CbfAONDvNmggwNbMNUnhQLcw4JdPCmmVSC2DpvigbTpBKt0tCkHIvOJaqpMfdezU6nZXCGrKb0Fr22tcDpYz1Bv799_XXxo736-f3y4vNVq3s25pZSS4Aa2nFN7ciYMqa2eo2VEgZzrjjwcd2PuiemV9qyXncaQyUxVWtLuxP0aee7KesZjAaf60JyE92s4r0Mysm_Fe9u5HXYSo45JQOrBmePBjHcFUhZzi5pmCblIZQkKR7FwFk_dC-iRIydEMNAFvTDP-htKNHXn1gowrjAYln-fEfpGFKKYJ_3JlguycuavFySlzX5ir_ff-sz_JRzBdodkKrkryHu3fo_wwc8mb0h |
CitedBy_id | crossref_primary_10_1002_advs_202207222 crossref_primary_10_1364_OE_25_018131 crossref_primary_10_1016_j_optlastec_2022_108100 crossref_primary_10_1364_OL_43_001139 crossref_primary_10_1038_s41598_021_91894_w crossref_primary_10_1016_j_apenergy_2020_115404 crossref_primary_10_1088_1361_6463_aaff43 crossref_primary_10_1016_j_apsusc_2020_148449 crossref_primary_10_1088_1674_1056_27_7_077901 crossref_primary_10_1080_10739149_2020_1739069 crossref_primary_10_1016_j_optlastec_2023_109232 crossref_primary_10_3390_nano11123326 crossref_primary_10_1063_5_0049987 crossref_primary_10_1038_s41598_017_16400_7 crossref_primary_10_1016_j_apsusc_2018_11_106 crossref_primary_10_1364_PRJ_458613 crossref_primary_10_3390_nano11040899 crossref_primary_10_1016_j_apsusc_2020_145463 crossref_primary_10_1016_j_optlastec_2020_106687 crossref_primary_10_1063_5_0165363 crossref_primary_10_1063_5_0036557 crossref_primary_10_1364_OE_25_020323 crossref_primary_10_3788_LOP230574 crossref_primary_10_1016_j_optlaseng_2020_106067 crossref_primary_10_3390_photonics11030264 crossref_primary_10_1103_PhysRevB_99_235412 crossref_primary_10_1117_1_OE_58_8_083104 crossref_primary_10_7567_JJAP_57_08PF04 crossref_primary_10_1364_OL_495730 crossref_primary_10_1088_1742_6596_1128_1_012092 crossref_primary_10_1007_s00339_020_04226_6 crossref_primary_10_1134_S0021364022603050 crossref_primary_10_1002_smll_202205696 crossref_primary_10_1364_OE_412480 crossref_primary_10_1088_1361_6455_ab4cc3 crossref_primary_10_7498_aps_66_147901 crossref_primary_10_2351_1_5119995 crossref_primary_10_1007_s00339_019_3243_z crossref_primary_10_31857_S0044451024020032 crossref_primary_10_1016_j_apsusc_2019_02_037 crossref_primary_10_1186_s12951_022_01578_4 crossref_primary_10_1364_AO_57_009604 crossref_primary_10_1038_s41377_020_0242_y crossref_primary_10_1063_5_0138916 crossref_primary_10_1002_lpor_202300912 crossref_primary_10_1088_1742_6596_1147_1_012065 crossref_primary_10_1016_j_optlaseng_2019_105823 crossref_primary_10_1088_2040_8986_aa9dc6 crossref_primary_10_1126_sciadv_adf6397 crossref_primary_10_31857_S1234567823020040 crossref_primary_10_1088_1742_6596_1787_1_012024 crossref_primary_10_1002_ctpp_201800180 crossref_primary_10_1088_1742_6596_1092_1_012052 crossref_primary_10_1002_adpr_202200045 crossref_primary_10_1103_PhysRevResearch_2_033418 crossref_primary_10_1038_s41377_022_00800_0 crossref_primary_10_1109_JSEN_2017_2761794 crossref_primary_10_1016_j_actamat_2020_04_058 crossref_primary_10_1016_j_matdes_2019_107675 crossref_primary_10_1002_admi_201801148 crossref_primary_10_1063_1_5039811 crossref_primary_10_1016_j_optlastec_2017_11_039 crossref_primary_10_1002_adfm_202108802 crossref_primary_10_1049_bsb2_12039 crossref_primary_10_1364_OE_26_034558 crossref_primary_10_1038_lsa_2017_88 crossref_primary_10_3390_mi12040458 crossref_primary_10_1039_C7NR04377E crossref_primary_10_1364_OE_400804 crossref_primary_10_3390_nano11112964 crossref_primary_10_1002_lpor_202200511 crossref_primary_10_3390_atoms9010001 crossref_primary_10_1515_nanoph_2020_0310 crossref_primary_10_1364_OE_26_018664 crossref_primary_10_1103_PhysRevApplied_8_044016 crossref_primary_10_1007_s11082_020_2214_0 crossref_primary_10_3390_nano13081392 crossref_primary_10_1016_j_optlaseng_2018_12_009 crossref_primary_10_2139_ssrn_3867732 crossref_primary_10_1016_j_mtphys_2023_101000 crossref_primary_10_3390_nano10040796 crossref_primary_10_29026_oea_2022_210052 crossref_primary_10_1021_acs_langmuir_1c03488 crossref_primary_10_1016_j_surfcoat_2019_03_036 crossref_primary_10_1039_C9LC00883G crossref_primary_10_3390_nano13010218 crossref_primary_10_1088_1748_0221_14_11_P11030 crossref_primary_10_1016_j_apsusc_2021_150913 crossref_primary_10_1515_nanoph_2017_0060 crossref_primary_10_1016_j_apsusc_2023_157866 crossref_primary_10_1016_j_jmrt_2023_06_227 crossref_primary_10_7498_aps_72_20230733 |
Cites_doi | 10.1038/35065045 10.1364/OE.20.010330 10.1016/j.apsusc.2005.03.018 10.1063/1.114912 10.1002/lpor.201200017 10.1016/j.apsusc.2011.12.020 10.1126/science.286.5443.1340 10.1063/1.3507123 10.1002/ctpp.201010103 10.1016/j.tsf.2003.11.115 10.1364/JOSAB.2.000595 10.1063/1.2885105 10.1007/978-3-642-03307-0_4 10.1103/PhysRevB.79.144120 10.1364/OE.14.002164 10.1103/PhysRevB.91.035413 10.1103/PhysRevB.74.134106 10.1103/PhysRevLett.103.195002 10.1201/9789814267809 10.1146/annurev-bioeng-061008-124811 10.1007/s00339-004-2682-2 10.1016/j.cirp.2011.05.005 10.1103/PhysRevLett.81.224 10.1016/S0169-4332(99)00440-7 10.1007/s003390051045 10.1007/s00339-010-5767-0 10.1117/12.271674 10.1134/S1063776115010136 10.1126/science.1090052 10.1021/jp902294m 10.1364/OE.14.013113 10.1016/j.optlastec.2012.06.037 10.1063/1.3620898 10.1070/PU2002v045n03ABEH000966 10.1088/1742-6596/510/1/012041 10.1016/j.apsusc.2011.07.126 10.1007/BF02670829 10.1007/s00339-008-4568-1 10.1063/1.4729873 10.3390/mi5041219 10.1038/nphoton.2008.128 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Copyright Nature Publishing Group Mar 2017 Copyright © 2017 The Author(s) 2017 The Author(s) |
Copyright_xml | – notice: The Author(s) 2017 – notice: Copyright Nature Publishing Group Mar 2017 – notice: Copyright © 2017 The Author(s) 2017 The Author(s) |
DBID | C6C NPM AAYXX CITATION 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7SP 7U5 8FD H8D L7M 7X8 5PM |
DOI | 10.1038/lsa.2016.256 |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Science Journals Biological Science Database Publicly Available Content Database (Proquest) (PQ_SDU_P3) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database Aerospace Database PubMed |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Visualization of laser-induced structural dynamics |
EISSN | 2047-7538 |
EndPage | e16256 |
ExternalDocumentID | 4321968133 10_1038_lsa_2016_256 30167238 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS EJD FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP NPM AAYXX CITATION 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7SP 7U5 8FD H8D L7M 7X8 5PM |
ID | FETCH-LOGICAL-c549t-22f1e2d236c2f944add36ccb0aa8d066a6e69b59c51d5acf45c3c0e94402abf23 |
IEDL.DBID | RPM |
ISSN | 2047-7538 2095-5545 |
IngestDate | Tue Sep 17 21:14:59 EDT 2024 Fri Aug 16 08:01:22 EDT 2024 Fri Aug 16 02:17:54 EDT 2024 Thu Oct 10 18:22:40 EDT 2024 Fri Aug 23 00:34:11 EDT 2024 Wed Oct 16 00:57:21 EDT 2024 Fri Oct 11 20:48:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | femtosecond laser ultrafast imaging ultrafast dynamics ablation surface nano/microstructures |
Language | English |
License | This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c549t-22f1e2d236c2f944add36ccb0aa8d066a6e69b59c51d5acf45c3c0e94402abf23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6062174/ |
PMID | 30167238 |
PQID | 1891468082 |
PQPubID | 2041947 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6062174 proquest_miscellaneous_2098764573 proquest_miscellaneous_1893887713 proquest_journals_1891468082 crossref_primary_10_1038_lsa_2016_256 pubmed_primary_30167238 springer_journals_10_1038_lsa_2016_256 |
PublicationCentury | 2000 |
PublicationDate | 2017-03-01 |
PublicationDateYYYYMMDD | 2017-03-01 |
PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | GamalyEGFemtosecond Laser-Matter Interaction: Theory, Experiments and Applications2011Singapore: Pan Stanford Publishing10.1201/9789814267809 Sokolowski-TintenKBialkowskiJCavalleriAvon der LindeDOparinATransient states of matter during short pulse laser ablationPhys Rev Lett1998812242271998PhRvL..81..224S10.1103/PhysRevLett.81.224 AnisimovSILuk’yanchukBSSelected problems of laser ablation theoryPhys Uspekhi2002452933242002PhyU...45..293A10.1070/PU2002v045n03ABEH000966 BonseJWigginsSMSolisJPhase transitions induced by femtosecond laser pulse irradiation of indium phosphideAppl Surf Sci20052481511562005ApSS..248..151B10.1016/j.apsusc.2005.03.018 InogamovNAZhakhovskiiVVKhokhlovVAJet formation in spallation of metal film from substrate under action of femtosecond laser pulseJ Exp Theor Phys201512015482015JETP..120...15I10.1134/S1063776115010136 InogamovNAFaenovAYZhakhovskiiVVSkobelevIYKhokhlovVAInteraction of short laser pulses in wavelength range from infrared to X-ray with metals, semiconductors, and dielectricsContrib Plasma Phys2011513613662011CoPP...51..361I10.1002/ctpp.201010103 VorobyevAYGuoCDirect femtosecond laser surface nano/microstructuring and its applicationsLaser Photon Rev201373854072013LPRv....7..385V10.1002/lpor.201200017 InogamovNAZhakhovskyVVKhokhlovVAAshitkovSIEmirovYNUltrafast lasers and solids in highly excited states: results of hydrodynamics and molecular dynamics simulationsJ Phys Conf Ser201451001204110.1088/1742-6596/510/1/012041 AssaelMJArmyraIJBrilloJStankusSVWuJTReference data for the density and viscosity of liquid cadmium, cobalt, gallium, indium, mercury, silicon, thallium, and zincJ Phys Chem Ref Data2012410331012012JPCRD..41c3101A10.1063/1.4729873 VorobyevAYGuoCEnhanced energy coupling in femtosecond laser-metal interactions at high intensitiesOpt Express20061413113131192006OExpr..1413113V10.1364/OE.14.013113 DownerMCForkRLShankCVFemtosecond imaging of melting and evaporation at a photoexcited silicon surfaceJ Opt Soc Am B198525955991985OSAJB...2..595D10.1364/JOSAB.2.000595 BulgakovaNMEvtushenkoABShukhovYGKudryashovSIBulgakovAVRole of laser-induced plasma in ultradeep drilling of materials by nanosecond laser pulsesAppl Surf Sci201125710876108822011ApSS..25710876B10.1016/j.apsusc.2011.07.126 AgranatMBAshitkovSIFortovVEKirillinAVKostanovskiiAVUse of optical anisotropy for study of ultrafast phase transformations at solid surfacesAppl Phys A1999696376401999ApPhA..69..637A10.1007/s003390051045 DomkeMRappSSchmidtMHuberHPUltrafast pump-probe microscopy with high temporal dynamic rangeOpt Express20122010330103382012OExpr..2010330D10.1364/OE.20.010330 LideDRCRC Handbook of Chemistry and Physics2003Boca Raton: CRC Press AnisimovSIRethfeldBOn the theory of ultrashort laser pulse interaction with a metalProc SPIE199730931922031997SPIE.3093..192A10.1117/12.271674 ZhigileiLVLinZBIvanovDSAtomistic modeling of short pulse laser ablation of metals: connections between melting, spallation, and phase explosionJ Phys Chem C2009113118921190610.1021/jp902294m RousseARischelCFourmauxSUschmannISebbanSNon-thermal melting in semiconductors measured at femtosecond resolutionNature200141065682001Natur.410...65R10.1038/35065045 KirkwoodSETsuiYYFedosejevsRBrantovAVBychenkovVYExperimental and theoretical study of absorption of femtosecond laser pulses in interaction with solid copper targetsPhys Rev B2009791441202009PhRvB..79n4120K10.1103/PhysRevB.79.144120 Vorob’evAYDorofeevIALibensonMNConcerning the chemical source of energy in a laser flareSov Tech Phys Lett199218172173 VorobyevAYGuoCFemtosecond laser nanostructuring of metalsOpt Express200614216421692006OExpr..14.2164V10.1364/OE.14.002164 BulgakovaNMStoianRRosenfeldAHertelIVMiotelloAOssiPLaser-Surface Interactions for New Materials Production2010Berlin: Springer819710.1007/978-3-642-03307-0_4 ChengJLiuCSShangSLiuDPerrieWA review of ultrafast laser materials micromachiningOpt Laser Technol201346881022013OptLT..46...88C10.1016/j.optlastec.2012.06.037 SiwickBJDwyerJRJordanREMillerRJDAn atomic-level view of melting using femtosecond electron diffractionScience2003302138213852003Sci...302.1382S10.1126/science.1090052 von der LindeDSokolowski-TintenKThe physical mechanisms of short-pulse laser ablationAppl Surf Sci2000154-1551102000ApSS..154....1V10.1016/S0169-4332(99)00440-7 VorobyevAYGuoCReflection of femtosecond laser light in multipulse ablation of metalsJ Appl Phys20111100431022011JAP...110d3102V10.1063/1.3620898 SemerokADutouquetCUltrashort double pulse laser ablation of metalsThin Solid Films2004453-4545015052004TSF...453..501S10.1016/j.tsf.2003.11.115 BartyABoutetSBoganMJHau-RiegeSMarchesiniSUltrafast single-shot diffraction imaging of nanoscale dynamicsNat Photonics2008241541910.1038/nphoton.2008.128 BoustanyNNBoppartSABackmanVMicroscopic imaging and spectroscopy with scattered lightAnnu Rev Biomed Eng20101228531410.1146/annurev-bioeng-061008-124811 BonseJBachelierGSiegelJSolisJSturmHTime- and space-resolved dynamics of ablation and optical breakdown induced by femtosecond laser pulses in indium phosphideJ Appl Phys20081030549102008JAP...103e4910B10.1063/1.2885105 AhmmedKMTGrambowCKietzigAMFabrication of micro/nano structures on metals by femtosecond laser micromachiningMicromachines201451219125310.3390/mi5041219 Hernandez-RuedaJPuertoDSiegelJGalvan-SosaMSolisJPlasma dynamics and structural modifications induced by femtosecond laser pulses in quartzAppl Surf Sci2012258938993932012ApSS..258.9389H10.1016/j.apsusc.2011.12.020 BonseJBachelierGSiegelJSolisJTime- and space-resolved dynamics of melting, ablation, and solidification phenomena induced by femtosecond laser pulses in germaniumPhys Rev B2006741341062006PhRvB..74m4106B10.1103/PhysRevB.74.134106 BulgakovaNMZhukovVPVorobyevAYGuoCModeling of residual thermal effect in femtosecond laser ablation of metals: role of a gas environmentAppl Phys A2008928838892008ApPhA..92..883B10.1007/s00339-008-4568-1 MiotelloAKellyRCritical assessment of thermal models for laser sputtering at high fluencesAppl Phys Lett199567353535371995ApPhL..67.3535M10.1063/1.114912 WuCPChristensenMSSavolainenJMBallingPZhigileiLVGeneration of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag targetPhys Rev B2015910354132015PhRvB..91c5413W10.1103/PhysRevB.91.035413 LeveugleEIvanovDSZhigileiLVPhotomechanical spallation of molecular and metal targets: molecular dynamics studyAppl Phys A200479164316552004ApPhA..79.1643L10.1007/s00339-004-2682-2 LiLHongMHSchmidtMZhongMLMalsheALaser nano-manufacturing—state of the art and challengesCIRP Ann—Manufact Technol20116073575510.1016/j.cirp.2011.05.005 SidersCWCavalleriASokolowski-TintenKTóthCGuoTDetection of nonthermal melting by ultrafast X-ray diffractionScience19992861340134210.1126/science.286.5443.1340 Sokolowski-TintenKBartyABoutetSShymanovichUChapmanHShort-pulse laser induced transient structure formation and ablation studied with time-resolved coherent XUV-scatteringAIP Conf Proc201012783733792010AIPC.1278..373S10.1063/1.3507123 ShugaevMVBulgakovaNMThermodynamic and stress analysis of laser-induced forward transfer of metalsAppl Phys A20101011031092010ApPhA.101..103S10.1007/s00339-010-5767-0 NogiKOginoKMcLeanAMillerWAThe temperature coefficient of the surface tension of pure liquid metalsMetall Trans B19861716317010.1007/BF02670829 PovarnitsynMEItinaTEKhishchenkoKVLevashovPRSuppression of ablation in femtosecond double-pulse experimentsPhys Rev Lett20091031950022009PhRvL.103s5002P10.1103/PhysRevLett.103.195002 19532208 - Opt Express. 2006 Dec 25;14(26):13113-9 20617940 - Annu Rev Biomed Eng. 2010 Aug 15;12:285-314 19503549 - Opt Express. 2006 Mar 20;14(6):2164-9 14631036 - Science. 2003 Nov 21;302(5649):1382-5 22535122 - Opt Express. 2012 Apr 23;20(9):10330-8 20365933 - Phys Rev Lett. 2009 Nov 6;103(19):195002 10558985 - Science. 1999 Nov 12;286(5443):1340-2 11242040 - Nature. 2001 Mar 1;410(6824):65-8 M Domke (BFlsa2016256_CR15) 2012; 20 LV Zhigilei (BFlsa2016256_CR38) 2009; 113 SE Kirkwood (BFlsa2016256_CR39) 2009; 79 K Sokolowski-Tinten (BFlsa2016256_CR9) 2010; 1278 K Sokolowski-Tinten (BFlsa2016256_CR13) 1998; 81 MB Agranat (BFlsa2016256_CR21) 1999; 69 MC Downer (BFlsa2016256_CR10) 1985; 2 NM Bulgakova (BFlsa2016256_CR30) 2010 E Leveugle (BFlsa2016256_CR25) 2004; 79 NA Inogamov (BFlsa2016256_CR35) 2015; 120 BJ Siwick (BFlsa2016256_CR8) 2003; 302 J Bonse (BFlsa2016256_CR14) 2006; 74 NM Bulgakova (BFlsa2016256_CR42) 2011; 257 D von der Linde (BFlsa2016256_CR12) 2000; 154-155 KMT Ahmmed (BFlsa2016256_CR3) 2014; 5 A Barty (BFlsa2016256_CR17) 2008; 2 MV Shugaev (BFlsa2016256_CR34) 2010; 101 J Bonse (BFlsa2016256_CR11) 2008; 103 NN Boustany (BFlsa2016256_CR18) 2010; 12 J Cheng (BFlsa2016256_CR4) 2013; 46 ME Povarnitsyn (BFlsa2016256_CR29) 2009; 103 EG Gamaly (BFlsa2016256_CR1) 2011 K Nogi (BFlsa2016256_CR24) 1986; 17 NA Inogamov (BFlsa2016256_CR26) 2011; 51 CP Wu (BFlsa2016256_CR37) 2015; 91 A Rousse (BFlsa2016256_CR7) 2001; 410 DR Lide (BFlsa2016256_CR27) 2003 NM Bulgakova (BFlsa2016256_CR41) 2008; 92 SI Anisimov (BFlsa2016256_CR33) 1997; 3093 A Semerok (BFlsa2016256_CR28) 2004; 453-454 AY Vorobyev (BFlsa2016256_CR40) 2006; 14 AY Vorob’ev (BFlsa2016256_CR43) 1992; 18 J Bonse (BFlsa2016256_CR22) 2005; 248 AY Vorobyev (BFlsa2016256_CR19) 2006; 14 MJ Assael (BFlsa2016256_CR23) 2012; 41 NA Inogamov (BFlsa2016256_CR36) 2014; 510 J Hernandez-Rueda (BFlsa2016256_CR16) 2012; 258 CW Siders (BFlsa2016256_CR6) 1999; 286 AY Vorobyev (BFlsa2016256_CR20) 2011; 110 A Miotello (BFlsa2016256_CR32) 1995; 67 SI Anisimov (BFlsa2016256_CR31) 2002; 45 L Li (BFlsa2016256_CR5) 2011; 60 AY Vorobyev (BFlsa2016256_CR2) 2013; 7 |
References_xml | – volume: 410 start-page: 65 year: 2001 ident: BFlsa2016256_CR7 publication-title: Nature doi: 10.1038/35065045 contributor: fullname: A Rousse – volume: 20 start-page: 10330 year: 2012 ident: BFlsa2016256_CR15 publication-title: Opt Express doi: 10.1364/OE.20.010330 contributor: fullname: M Domke – volume: 248 start-page: 151 year: 2005 ident: BFlsa2016256_CR22 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2005.03.018 contributor: fullname: J Bonse – volume: 67 start-page: 3535 year: 1995 ident: BFlsa2016256_CR32 publication-title: Appl Phys Lett doi: 10.1063/1.114912 contributor: fullname: A Miotello – volume: 7 start-page: 385 year: 2013 ident: BFlsa2016256_CR2 publication-title: Laser Photon Rev doi: 10.1002/lpor.201200017 contributor: fullname: AY Vorobyev – volume: 258 start-page: 9389 year: 2012 ident: BFlsa2016256_CR16 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2011.12.020 contributor: fullname: J Hernandez-Rueda – volume: 286 start-page: 1340 year: 1999 ident: BFlsa2016256_CR6 publication-title: Science doi: 10.1126/science.286.5443.1340 contributor: fullname: CW Siders – volume: 1278 start-page: 373 year: 2010 ident: BFlsa2016256_CR9 publication-title: AIP Conf Proc doi: 10.1063/1.3507123 contributor: fullname: K Sokolowski-Tinten – volume: 51 start-page: 361 year: 2011 ident: BFlsa2016256_CR26 publication-title: Contrib Plasma Phys doi: 10.1002/ctpp.201010103 contributor: fullname: NA Inogamov – volume: 453-454 start-page: 501 year: 2004 ident: BFlsa2016256_CR28 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2003.11.115 contributor: fullname: A Semerok – volume: 2 start-page: 595 year: 1985 ident: BFlsa2016256_CR10 publication-title: J Opt Soc Am B doi: 10.1364/JOSAB.2.000595 contributor: fullname: MC Downer – volume: 103 start-page: 054910 year: 2008 ident: BFlsa2016256_CR11 publication-title: J Appl Phys doi: 10.1063/1.2885105 contributor: fullname: J Bonse – start-page: 81 volume-title: Laser-Surface Interactions for New Materials Production year: 2010 ident: BFlsa2016256_CR30 doi: 10.1007/978-3-642-03307-0_4 contributor: fullname: NM Bulgakova – volume: 79 start-page: 144120 year: 2009 ident: BFlsa2016256_CR39 publication-title: Phys Rev B doi: 10.1103/PhysRevB.79.144120 contributor: fullname: SE Kirkwood – volume: 14 start-page: 2164 year: 2006 ident: BFlsa2016256_CR19 publication-title: Opt Express doi: 10.1364/OE.14.002164 contributor: fullname: AY Vorobyev – volume: 91 start-page: 035413 year: 2015 ident: BFlsa2016256_CR37 publication-title: Phys Rev B doi: 10.1103/PhysRevB.91.035413 contributor: fullname: CP Wu – volume: 74 start-page: 134106 year: 2006 ident: BFlsa2016256_CR14 publication-title: Phys Rev B doi: 10.1103/PhysRevB.74.134106 contributor: fullname: J Bonse – volume: 103 start-page: 195002 year: 2009 ident: BFlsa2016256_CR29 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.103.195002 contributor: fullname: ME Povarnitsyn – volume-title: Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications year: 2011 ident: BFlsa2016256_CR1 doi: 10.1201/9789814267809 contributor: fullname: EG Gamaly – volume: 12 start-page: 285 year: 2010 ident: BFlsa2016256_CR18 publication-title: Annu Rev Biomed Eng doi: 10.1146/annurev-bioeng-061008-124811 contributor: fullname: NN Boustany – volume: 79 start-page: 1643 year: 2004 ident: BFlsa2016256_CR25 publication-title: Appl Phys A doi: 10.1007/s00339-004-2682-2 contributor: fullname: E Leveugle – volume: 60 start-page: 735 year: 2011 ident: BFlsa2016256_CR5 publication-title: CIRP Ann—Manufact Technol doi: 10.1016/j.cirp.2011.05.005 contributor: fullname: L Li – volume-title: CRC Handbook of Chemistry and Physics year: 2003 ident: BFlsa2016256_CR27 contributor: fullname: DR Lide – volume: 81 start-page: 224 year: 1998 ident: BFlsa2016256_CR13 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.81.224 contributor: fullname: K Sokolowski-Tinten – volume: 154-155 start-page: 1 year: 2000 ident: BFlsa2016256_CR12 publication-title: Appl Surf Sci doi: 10.1016/S0169-4332(99)00440-7 contributor: fullname: D von der Linde – volume: 69 start-page: 637 year: 1999 ident: BFlsa2016256_CR21 publication-title: Appl Phys A doi: 10.1007/s003390051045 contributor: fullname: MB Agranat – volume: 101 start-page: 103 year: 2010 ident: BFlsa2016256_CR34 publication-title: Appl Phys A doi: 10.1007/s00339-010-5767-0 contributor: fullname: MV Shugaev – volume: 3093 start-page: 192 year: 1997 ident: BFlsa2016256_CR33 publication-title: Proc SPIE doi: 10.1117/12.271674 contributor: fullname: SI Anisimov – volume: 120 start-page: 15 year: 2015 ident: BFlsa2016256_CR35 publication-title: J Exp Theor Phys doi: 10.1134/S1063776115010136 contributor: fullname: NA Inogamov – volume: 302 start-page: 1382 year: 2003 ident: BFlsa2016256_CR8 publication-title: Science doi: 10.1126/science.1090052 contributor: fullname: BJ Siwick – volume: 113 start-page: 11892 year: 2009 ident: BFlsa2016256_CR38 publication-title: J Phys Chem C doi: 10.1021/jp902294m contributor: fullname: LV Zhigilei – volume: 18 start-page: 172 year: 1992 ident: BFlsa2016256_CR43 publication-title: Sov Tech Phys Lett contributor: fullname: AY Vorob’ev – volume: 14 start-page: 13113 year: 2006 ident: BFlsa2016256_CR40 publication-title: Opt Express doi: 10.1364/OE.14.013113 contributor: fullname: AY Vorobyev – volume: 46 start-page: 88 year: 2013 ident: BFlsa2016256_CR4 publication-title: Opt Laser Technol doi: 10.1016/j.optlastec.2012.06.037 contributor: fullname: J Cheng – volume: 110 start-page: 043102 year: 2011 ident: BFlsa2016256_CR20 publication-title: J Appl Phys doi: 10.1063/1.3620898 contributor: fullname: AY Vorobyev – volume: 45 start-page: 293 year: 2002 ident: BFlsa2016256_CR31 publication-title: Phys Uspekhi doi: 10.1070/PU2002v045n03ABEH000966 contributor: fullname: SI Anisimov – volume: 510 start-page: 012041 year: 2014 ident: BFlsa2016256_CR36 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/510/1/012041 contributor: fullname: NA Inogamov – volume: 257 start-page: 10876 year: 2011 ident: BFlsa2016256_CR42 publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2011.07.126 contributor: fullname: NM Bulgakova – volume: 17 start-page: 163 year: 1986 ident: BFlsa2016256_CR24 publication-title: Metall Trans B doi: 10.1007/BF02670829 contributor: fullname: K Nogi – volume: 92 start-page: 883 year: 2008 ident: BFlsa2016256_CR41 publication-title: Appl Phys A doi: 10.1007/s00339-008-4568-1 contributor: fullname: NM Bulgakova – volume: 41 start-page: 033101 year: 2012 ident: BFlsa2016256_CR23 publication-title: J Phys Chem Ref Data doi: 10.1063/1.4729873 contributor: fullname: MJ Assael – volume: 5 start-page: 1219 year: 2014 ident: BFlsa2016256_CR3 publication-title: Micromachines doi: 10.3390/mi5041219 contributor: fullname: KMT Ahmmed – volume: 2 start-page: 415 year: 2008 ident: BFlsa2016256_CR17 publication-title: Nat Photonics doi: 10.1038/nphoton.2008.128 contributor: fullname: A Barty |
SSID | ssj0000941087 ssib052855617 ssib026596979 ssib038074990 ssib054953849 |
Score | 2.4920065 |
Snippet | Despite extensive studies of femtosecond laser-material interactions, even the simplest morphological responses following femtosecond pulse irradiation have... Despite extensive studies of femtosecond laser-material interactions, even the simplest morphological responses following femto-second pulse irradiation have... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | e16256 |
SubjectTerms | 639/624/1107/510 639/624/399 Ablation Applied and Technical Physics Atomic Classical and Continuum Physics Cooling Dynamics Evolution Femtosecond Finishes Lasers Metals Molecular Optical and Plasma Physics Optical Devices Optics Original original-article Photonics Physics Physics and Astronomy Surface chemistry Surface structure Visualization |
Title | Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals |
URI | https://link.springer.com/article/10.1038/lsa.2016.256 https://www.ncbi.nlm.nih.gov/pubmed/30167238 https://www.proquest.com/docview/1891468082 https://search.proquest.com/docview/1893887713 https://search.proquest.com/docview/2098764573 https://pubmed.ncbi.nlm.nih.gov/PMC6062174 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlUC9IN4ESmUk4JbdZBIn9hGVVr2AkACJW-Q4tljUZEvTrcS_Z8Z50KVw4RbJk4c9Y8838TdjgFeIynldJ7En3xrnOrWxchS4lrVJC5shoWgOFE8_lR--qnfHXCZHTrkwgbRv6_WyO2uX3fpb4Faet3Y18cRWH98fEehmJL1awIKw4W6IjoXUhf699cQF1QnVz0YpUfGJkLPPlUywVGMM8n2g2qVJOFgPCX7E5G7lSJinZ63Oei5WlBZLggr7cCdjFj9ycst1r3YDqt5kXP6x7Rq82ck9uDvCUPF26O59uOW6B3A70EFt_xB-DCuhuFr3nHQ5pGqKjRcEF0VgoRPWFu5qtFtu8a693PQcXjeCELm7iCnaJ7tpRL-98MY6MZSq5TIfovnZmZbexDe2jvB__wi-nBx_PjqNx8MZYktDdhkj-tRhg1lh0es8p3WSLm2dGKMawjGmcIWupbYybaSxPpc2s4kjyQRN7TF7DHvdpnNPQTSp9oiWghulcuOUlmWdeIe5ranJFhG8nga3Oh9qcFRh7zxTFemjYn1UpI8IDqaRr8aZ2Fep0pxdRkgngpdzM80h3hgxndtsg0xGiy3F6_-WIWMgx5HLkmSeDMqcP2ayggjKHTXPAlzDe7eFTDvU8h5NOYI3k0Fc-_S_9PHZf7_iOewjQ5LAnzuAPdK5ewGLvtkehh8Rh2Ea_QJ3fRwW |
link.rule.ids | 230,315,729,782,786,866,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIqCX8ioQWsBIwC27iRMn9rEqrRbRVkgUiVvkOLZY1GRL063Ev2fGedBt4dJbpJm8PGPPN_I3Y4B3nEvrVBmFDmNrmKrYhNJi4pqXOs5MwhFFU6I4-5off5cf96lNjhhqYTxp35TzSXNaT5r5D8-tPKvNdOCJTb8c7SHoJiQ9XYO7OF-jaDVJ55lQmfq7-UQt1RHXj24puKQzIceoK4hiKfss5GdHtosjf7QeRwASYsAVPWUenzU9baldUZxNECxswP2EePycyluuxrUbYPUm5_LaxquPZwcPbzkSj2CzB7BstxM_hju2eQL3PJHUtE_hV7eGsst5S-WaXZEnWziGQJN5_jqidGYve48nibP1xaKlxLxiiOXteThvKvS4irXLc6eNZV2TW2oQwqrfja7xTXRjbTFzaLfg28H-yd4s7I91CA0O9UXIuYstr3iSGe5UmuIKi5emjLSWFSIgndlMlUIZEVdCG5cKk5jIombEdel48gzWm0VjXwCrYuU4N5gWSZlqK5XIy8hZnpoSRSYL4P1glOKs695R-F33RBZox4LsWKAdA9gZLFb0c7gtYqmoLg0xUgBvRzHOPtpS0Y1dLL1Ogss0Zvr_10EnwpCTihx1nndOMH7M4D0B5CvuMSpQ9-9VCbqC7wLemz6AD4MjXfn0f_zjy1u_4g08mJ0cHRaHn44_b8MGJ2DjWXg7sI72t69gra2Wr_0k_APvKjCj |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Zb9QwEB7RIqq-cB-BAkYC3rJJJpf9iNquioCqEiDxFjk-xKImuzTdSvx7xs5Bl8ILvEXy5PJ89nwjfx4DvETkxoo6Di3F1jATiQq5ocS1rGVSqBSJRbtE8ehjefyFHxy6MjnTUV9etK_qxaw9bWbt4qvXVq4aFY06sejkwz6Rbseko5W20RZcpzEb42aijkUuCvFrAcqVVSduP0EzR-7OhZwib-5klnzIRL71grsk9sfrIZGQkIJuPsjm6VnRaedKFiXFjAjDLuykTsuPbovL5dh2hbBe1V3-tvjqY9r81n_0xm24ORBZ9qY3uQPXTHsXbnhBqeruwfd-LmUXi85t2-w3e7KlZUQ4mdexE1tn5mJAvmuxpjlfdi5B14w4vTkLF60m5GnWrc-sVIb1xW5doRCmf7SyoTe5GxtDGUR3Hz7PDz_tH4XD8Q6hou4-DxFtYlBjWii0IstopqVLVcdSck1MSBamEHUuVJ7oXCqb5SpVsSHLGGVtMX0A2-2yNY-A6URYREXpEeeZNFzkZR1bg5mqqUkVAbwaHVOt-ioelV99T3lFvqycLyvyZQB7o9eqYSx3VcKF259GXCmAF1MzjUK3tCJbs1x7m5Sma8r4_25DQKLQk-Ul2TzsgTB9zIigAMoNiEwGrgr4ZgvBwVcDH9wfwOsRTJc-_Q__-PifX_Ecdk4O5tX7t8fvnsAuOn7jxXh7sE3uN09hq9PrZ34c_gR5mTMj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+visualization+of+the+complete+evolution+of+femtosecond+laser-induced+surface+structural+dynamics+of+metals&rft.jtitle=Light%2C+science+%26+applications&rft.au=Fang%2C+Ranran&rft.au=Vorobyev%2C+Anatoliy&rft.au=Guo%2C+Chunlei&rft.date=2017-03-01&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2047-7538&rft.volume=6&rft.issue=3&rft.spage=e16256&rft.epage=e16256&rft_id=info:doi/10.1038%2Flsa.2016.256&rft.externalDocID=10_1038_lsa_2016_256 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |