Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient

Pathfinding of growing neurites depends on turning of the growth cone in response to extracellular cues. Motile filopodia of the growth cone are known to be critical for mediating contact-dependent guidance of the growth cone. However, whether filopodia also play an essential role in growth cone tur...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience Vol. 16; no. 3; pp. 1140 - 1149
Main Authors: Zheng, JQ, Wan, JJ, Poo, MM
Format: Journal Article
Language:English
Published: United States Soc Neuroscience 01-02-1996
Society for Neuroscience
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pathfinding of growing neurites depends on turning of the growth cone in response to extracellular cues. Motile filopodia of the growth cone are known to be critical for mediating contact-dependent guidance of the growth cone. However, whether filopodia also play an essential role in growth cone turning response induced by a diffusible chemotropic substance is unclear. Growth cones of cultured Xenopus spinal neurons exhibited chemotropic turning responses in a gradient of glutamate within a limited range of concentrations. This turning response depends on the activation of the NMDA subtype of glutamate receptors and requires the presence of extracellular Ca2+. Time-lapse differential interference contrast microscopy with quantitative analysis of filopodia dynamics showed a close correlation between an increased number of filopodia on the side of the growth cone facing the glutamate source and the turning. Such filopodia asymmetry was observed within minutes after the onset of the glutamate gradient, before any detectable turning of the growth cone. In Ca(2+)-free medium, no filopodia asymmetry was induced by the glutamate gradient, and no growth cone turning was observed. Furthermore, elimination of filopodia with a low concentration of cytochalasin B completely abolished the turning response without substantially affecting neurite extension. Thus, filopodia may be required for chemotropic guidance of the growth cone, and an asymmetry in filopodia distribution may be an early cellular event responsible for determining the direction the growth cone advances.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0270-6474
1529-2401
DOI:10.1523/jneurosci.16-03-01140.1996