Bacterial RNAs activate innate immunity in Arabidopsis

The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre‐infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist Vol. 209; no. 2; pp. 785 - 797
Main Authors: Lee, Boyoung, Park, Yong‐Soon, Lee, Soohyun, Song, Geun Cheol, Ryu, Choong‐Min
Format: Journal Article
Language:English
Published: England Academic Press 01-01-2016
New Phytologist Trust
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre‐infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre‐infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen‐activated protein kinases and defense‐related genes observed in bacterial RNA‐pre‐treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor‐Tu (EF‐Tu). Plant defense‐related mutant analyses further revealed that bacterial RNA‐elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe‐associated molecular pattern in plants.
AbstractList The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre-infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre-infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen-activated protein kinases and defense-related genes observed in bacterial RNA-pre-treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor-Tu (EF-Tu). Plant defense-related mutant analyses further revealed that bacterial RNA-elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe-associated molecular pattern in plants.
* The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. * We pre-infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. * Total Pto DC3000 RNAs pre-infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen-activated protein kinases and defense-related genes observed in bacterial RNA-pre-treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor-Tu (EF-Tu). Plant defense-related mutant analyses further revealed that bacterial RNA-elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. * Our findings provide evidence that bacterial RNA serves as a microbe-associated molecular pattern in plants. See also the Commentary by Panstruga
The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre-infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre-infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen-activated protein kinases and defense-related genes observed in bacterial RNA-pre-treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor-Tu (EFTu). Plant defense-related mutant analyses further revealed that bacterial RNA-elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe-associated molecular pattern in plants.
The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre‐infiltrated Arabidopsis leaves with total RNA s from Pseudomonas syringae pv. tomato DC 3000 ( Pto DC 3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC 3000 RNA s pre‐infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC 3000. However, sheared RNA s and RN ase A application failed to induce immunity, suggesting that intact bacterial RNA s function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen‐activated protein kinases and defense‐related genes observed in bacterial RNA ‐pre‐treated leaves. Intriguingly, the Pto DC 3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor‐Tu ( EF ‐Tu). Plant defense‐related mutant analyses further revealed that bacterial RNA ‐elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNA s, the abundant bacterial RNA species 16S and 23S ribosomal RNA s were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe‐associated molecular pattern in plants. See also the Commentary by Panstruga
Summary The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre‐infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre‐infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen‐activated protein kinases and defense‐related genes observed in bacterial RNA‐pre‐treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor‐Tu (EF‐Tu). Plant defense‐related mutant analyses further revealed that bacterial RNA‐elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe‐associated molecular pattern in plants. See also the Commentary by Panstruga
Author Park, Yong‐Soon
Lee, Soohyun
Lee, Boyoung
Song, Geun Cheol
Ryu, Choong‐Min
Author_xml – sequence: 1
  fullname: Lee, Boyoung
– sequence: 2
  fullname: Park, Yong‐Soon
– sequence: 3
  fullname: Lee, Soohyun
– sequence: 4
  fullname: Song, Geun Cheol
– sequence: 5
  fullname: Ryu, Choong‐Min
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26499893$$D View this record in MEDLINE/PubMed
BookMark eNqNkEFv1DAQhS1URLeFA38AVuJSDmltxx7bx6UCilQVBFTiZnmzk9arxE7thGr_fU3T9oCExFxGT_rm6c07IHshBiTkNaPHrMxJGK6PWa2YekYWTICpdFF7ZEEp1xUI-LVPDnLeUkqNBP6C7HMQxmhTLwh8cM2Iybtu-f1ilZdF-d9uxKUP4X71_RT8uCt6uUpu7TdxyD6_JM9b12V89bAPyeWnjz9Pz6rzr5-_nK7Oq0YKoyoGG2Vaw1vUomRqeUtFwyVtgHGxds4JwQ0zoqHSALZAa8U1dxuJNSoUWB-So9l3SPFmwjza3ucGu84FjFO2TCkAybSq_wMFqkFJBQV99xe6jVMK5RHLJatLVM51od7PVJNizglbOyTfu7SzjNo_vdvSu73vvbBvHhyndY-bJ_Kx6AKczMCt73D3byd78e3s0bKaL7Z5jOnpIuDtcL0bYxevfAnOqbHcKi0L_3bmWxetu0o-28sfnDKglFGjGNR3JsGktQ
CitedBy_id crossref_primary_10_1007_s13562_022_00767_4
crossref_primary_10_3390_plants11060715
crossref_primary_10_1016_j_coviro_2020_04_003
crossref_primary_10_1094_MPMI_07_18_0205_FI
crossref_primary_10_3390_ijms23147915
crossref_primary_10_1093_jxb_erac512
crossref_primary_10_1007_s00253_020_10355_y
crossref_primary_10_3389_fpls_2020_589837
crossref_primary_10_3390_plants12193380
crossref_primary_10_1080_15592324_2016_1198866
crossref_primary_10_1111_nph_19582
crossref_primary_10_1111_nph_13726
crossref_primary_10_3390_v13071239
crossref_primary_10_3390_plants9040434
crossref_primary_10_3390_ijms23105325
crossref_primary_10_3389_fpls_2020_00946
crossref_primary_10_1111_nph_13944
crossref_primary_10_1134_S0003683818020072
crossref_primary_10_3389_fimmu_2023_1175786
crossref_primary_10_1186_s12985_021_01664_3
crossref_primary_10_1111_mpp_12857
crossref_primary_10_1016_j_bbi_2017_10_010
crossref_primary_10_1111_mpp_12798
crossref_primary_10_3389_fevo_2018_00090
crossref_primary_10_3390_ijms19041146
crossref_primary_10_1016_j_pbi_2017_04_011
crossref_primary_10_1093_aob_mcaa061
crossref_primary_10_3390_ijms20071585
crossref_primary_10_3390_ijms20092282
Cites_doi 10.1146/annurev.immunol.21.120601.141126
10.1105/tpc.104.026609
10.1073/pnas.1112862108
10.1038/nature02485
10.1016/j.immuni.2005.08.003
10.1104/pp.106.2.529
10.1007/s10327-009-0162-4
10.1016/j.cell.2006.03.037
10.1046/j.1365-313X.1999.00265.x
10.1038/nature04734
10.1093/mp/ssq035
10.1016/S0966-842X(98)01325-0
10.1371/journal.pone.0007803
10.1016/j.pbi.2009.06.008
10.1038/ni1253
10.1146/annurev-phyto-082712-102314
10.1111/j.0105-2896.2004.0119.x
10.1007/978-3-540-72167-3_4
10.1111/j.1399-3054.2007.00977.x
10.1094/MPMI-07-10-0149
10.1126/science.1126088
10.1016/S1369-5266(02)00265-0
10.1146/annurev.phyto.45.062806.094427
10.1093/mp/ssq083
10.1016/j.chom.2012.01.015
10.1105/tpc.112.097253
10.1111/j.1364-3703.2009.00537.x
10.1093/mp/ssn019
10.1111/j.1365-294X.2006.03102.x
10.1016/j.mib.2010.12.005
10.1002/eji.200838978
10.1093/nar/gkm855
10.5423/PPJ.2005.21.3.283
10.1111/j.1469-8137.2009.03005.x
10.1073/pnas.0603082103
10.1126/science.1093616
10.1038/nrg2303
10.4049/jimmunol.172.7.3989
10.1016/j.bbrc.2013.11.105
10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U
10.1038/415977a
10.1146/annurev.arplant.55.031903.141701
10.1681/ASN.2006030263
10.1111/j.1365-313X.2008.03404.x
10.1016/j.cub.2008.06.061
10.1016/j.immuni.2005.06.008
10.1016/S0092-8674(00)00213-0
ContentType Journal Article
Copyright 2016 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust
2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Copyright © 2015 New Phytologist Trust
Copyright_xml – notice: 2016 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust
– notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
– notice: Copyright © 2015 New Phytologist Trust
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7QL
7TM
DOI 10.1111/nph.13717
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Ecology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Ecology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Nucleic Acids Abstracts
DatabaseTitleList MEDLINE
Bacteriology Abstracts (Microbiology B)

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1469-8137
EndPage 797
ExternalDocumentID 10_1111_nph_13717
26499893
NPH13717
newphytologist.209.2.785
US201600109716
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Science, ICT, and Future Planning of Korea
  funderid: H‐GUARD_2013M3A6B2078953; PJ0109304
– fundername: BioNano Health‐Guard Research Center
– fundername: Rural Development Administration (RDA)
– fundername: KRIBB Initiative Program, South Korea
GroupedDBID ---
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
24P
29N
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AAONW
AASGY
AASVR
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABHUG
ABLJU
ABPLY
ABPTK
ABPVW
ABTLG
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACQPF
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFMIJ
AFPWT
AFVGU
AFZJQ
AGJLS
AGUYK
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AS~
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BAWUL
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DIK
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
E3Z
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FIJ
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HQ2
HTVGU
HZI
HZ~
IHE
IPNFZ
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LPU
LUTES
LW6
LW7
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OK1
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RCA
RIG
ROL
RX1
SA0
SUPJJ
TN5
TR2
UB1
W8V
W99
WBKPD
WHG
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XOL
YNT
YQT
YXE
ZCG
ZZTAW
~02
~IA
~KM
~WT
79B
ABXSQ
AHBTC
AQVQM
AAHBH
ADACV
AITYG
HGLYW
IPSME
OIG
AHXOZ
AILXY
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QO
7SN
8FD
C1K
F1W
FR3
H95
L.G
M7N
P64
RC3
7X8
7QL
7TM
ID FETCH-LOGICAL-c5497-16d79f92fe84813f2f04c250c6124baaa4429194c0596ef6037282ad5e3e7e4e3
IEDL.DBID 33P
ISSN 0028-646X
IngestDate Fri Oct 25 07:32:10 EDT 2024
Thu Oct 24 23:29:24 EDT 2024
Mon Nov 25 20:13:05 EST 2024
Thu Nov 21 23:39:15 EST 2024
Tue Oct 15 23:56:18 EDT 2024
Sat Aug 24 00:54:42 EDT 2024
Fri Feb 02 08:05:52 EST 2024
Wed Dec 27 19:32:26 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords salicylic acid (SA)
jasmonic acid (JA)
Pseudomonas syringae
plant innate immunity
bacterial RNAs
microbe-associated molecular pattern (MAMP)
Language English
License 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5497-16d79f92fe84813f2f04c250c6124baaa4429194c0596ef6037282ad5e3e7e4e3
Notes http://dx.doi.org/10.1111/nph.13717
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.13717
PMID 26499893
PQID 2513481228
PQPubID 2026848
PageCount 13
ParticipantIDs proquest_miscellaneous_1776651873
proquest_miscellaneous_1760867576
proquest_journals_2513481228
crossref_primary_10_1111_nph_13717
pubmed_primary_26499893
wiley_primary_10_1111_nph_13717_NPH13717
jstor_primary_newphytologist_209_2_785
fao_agris_US201600109716
PublicationCentury 2000
PublicationDate January 2016
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: January 2016
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Lancaster
PublicationTitle The New phytologist
PublicationTitleAlternate New Phytol
PublicationYear 2016
Publisher Academic Press
New Phytologist Trust
Wiley Subscription Services, Inc
Publisher_xml – name: Academic Press
– name: New Phytologist Trust
– name: Wiley Subscription Services, Inc
References 2004; 303
2008; 18
2002; 5
2006; 17
2002; 32
2008; 9
2008; 36
2002; 415
2005; 21
2008; 54
2011; 14
2008; 1
2011; 4
2004; 428
2011; 6
2012; 11
2005; 23
2008; 183
2006; 312
2009; 12
2004; 55
2004; 198
1994; 106
2009; 10
2009; 75
2000; 103
2004; 16
1999; 18
2013; 51
2004; 172
2007; 131
2005; 6
2011; 24
2009; 184
2009; 4
2010; 3
1998; 95
2012; 24
1998; 6
2007; 45
2006; 441
2003; 21
2006; 103
2006; 125
2009; 39
2014; 443
26763679 - New Phytol. 2016 Jan;209(2):458-60
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 12
  start-page: 421
  year: 2009
  end-page: 426
  article-title: MAPK cascade signalling networks in plant defence
  publication-title: Current Opinion in Plant Biology
– volume: 18
  start-page: 1078
  year: 2008
  end-page: 1083
  article-title: Bacterial polysaccharides suppress induced innate immunity by calcium chelation
  publication-title: Current Biology
– volume: 95
  start-page: 14863
  year: 1998
  end-page: 14868
  article-title: Cluster analysis and display of genome‐wide expression patterns
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 23
  start-page: 111
  year: 2005
  end-page: 113
  article-title: TLR ignores methylated RNA?
  publication-title: Immunity
– volume: 6
  start-page: 342
  year: 1998
  end-page: 345
  article-title: Endosymbioses: cyclical and permanent in evolution
  publication-title: Trends in Microbiology
– volume: 303
  start-page: 1529
  year: 2004
  end-page: 1531
  article-title: Innate antiviral responses by means of TLR7‐mediated recognition of single‐stranded RNA
  publication-title: Science
– volume: 312
  start-page: 436
  year: 2006
  end-page: 439
  article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling
  publication-title: Science
– volume: 183
  start-page: 71
  year: 2008
  end-page: 86
  article-title: RNA recognition via TLR7 and TLR8
  publication-title: Handbook of Experimental Pharmacology
– volume: 3
  start-page: 783
  year: 2010
  end-page: 793
  article-title: Plant immunity triggered by microbial molecular signatures
  publication-title: Molecular Plant
– volume: 18
  start-page: 265
  year: 1999
  end-page: 276
  article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin
  publication-title: Plant Journal
– volume: 17
  start-page: 3365
  year: 2006
  end-page: 3373
  article-title: Ligands to nucleic acid‐specific toll‐like receptors and the onset of lupus nephritis
  publication-title: Journal of the American Society of Nephrology
– volume: 103
  start-page: 1111
  year: 2000
  end-page: 1120
  article-title: Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance
  publication-title: Cell
– volume: 4
  start-page: e7803
  year: 2009
  article-title: The heterogeneous allelic repertoire of human toll‐like receptor (TLR) genes
  publication-title: PLoS ONE
– volume: 21
  start-page: 335
  year: 2003
  end-page: 376
  article-title: Toll‐like receptors
  publication-title: Annual Review of Immunology
– volume: 75
  start-page: 227
  year: 2009
  end-page: 234
  article-title: Bacterial DNA activates immunity in
  publication-title: Journal of General Plant Pathology
– volume: 39
  start-page: 2537
  year: 2009
  end-page: 2547
  article-title: Bacterial RNA is recognized by different sets of immunoreceptors
  publication-title: European Journal of Immunology
– volume: 443
  start-page: 272
  year: 2014
  end-page: 277
  article-title: Understanding cross‐communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly‐infested pepper plants
  publication-title: Biochemical and Biophysical Research Communications
– volume: 14
  start-page: 54
  year: 2011
  end-page: 61
  article-title: Activation of plant pattern‐recognition receptors by bacteria
  publication-title: Current Opinion in Microbiology
– volume: 24
  start-page: 183
  year: 2011
  end-page: 193
  article-title: Callose deposition: a multifaceted plant defense response
  publication-title: Molecular Plant–Microbe Interactions
– volume: 184
  start-page: 885
  year: 2009
  end-page: 897
  article-title: The NADPH‐oxidase AtrbohB plays a role in Arabidopsis seed after‐ripening
  publication-title: New Phytologist
– volume: 103
  start-page: 8459
  year: 2006
  end-page: 8464
  article-title: Essential role of mda‐5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 106
  start-page: 529
  year: 1994
  end-page: 535
  article-title: The apparent turnover of 1‐aminocyclopropane‐1‐carboxylate synthase in tomato cells is regulated by protein‐phosphorylation and dephosphorylation
  publication-title: Plant Physiology
– volume: 32
  start-page: 1958
  year: 2002
  end-page: 1968
  article-title: Bacterial CpG‐DNA and lipopolysaccharides activate Toll‐like receptors at distinct cellular compartments
  publication-title: European Journal of Immunology
– volume: 1
  start-page: 423
  year: 2008
  end-page: 445
  article-title: Activation of defense response pathways by OGs and flg22 elicitors in Arabidopsis seedlings
  publication-title: Molecular Plant
– volume: 6
  start-page: 973
  year: 2005
  end-page: 979
  article-title: Are innate immune signaling pathways in plants and animals conserved?
  publication-title: Nature Immunology
– volume: 5
  start-page: 318
  year: 2002
  end-page: 324
  article-title: Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen‐associated molecular patterns
  publication-title: Current Opinion in Plant Biology
– volume: 24
  start-page: 2225
  year: 2012
  end-page: 2236
  article-title: The MEKK1‐MKK1/MKK2‐MPK4 kinase cascade negatively regulates immunity mediated by a mitogen‐activated protein kinase kinase kinase in Arabidopsis
  publication-title: Plant Cell
– volume: 11
  start-page: 253
  year: 2012
  end-page: 260
  article-title: Disruption of PAMP‐induced MAP kinase cascade by a effector activates plant immunity mediated by the NB‐LRR protein SUMM2
  publication-title: Cell Host & Microbe
– volume: 172
  start-page: 3989
  year: 2004
  end-page: 3993
  article-title: Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high‐level IL‐12 secretion by dendritic cells
  publication-title: Journal of Immunology
– volume: 6
  start-page: 19824
  year: 2011
  end-page: 19829
  article-title: Arabidopsis lysin‐motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 198
  start-page: 249
  year: 2004
  end-page: 266
  article-title: Innate immunity in plants and animals: striking similarities and obvious differences
  publication-title: Immunological Reviews
– volume: 9
  start-page: 165
  year: 2008
  end-page: 178
  article-title: Toll‐like receptors – taking an evolutionary approach
  publication-title: Nature Reviews Genetics
– volume: 36
  start-page: 178
  year: 2008
  end-page: 183
  article-title: The 3D rRNA modification maps database: with interactive tools for ribosome analysis
  publication-title: Nucleic Acids Research
– volume: 45
  start-page: 399
  year: 2007
  end-page: 436
  article-title: Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions
  publication-title: Annual Review of Phytopathology
– volume: 54
  start-page: 129
  year: 2008
  end-page: 140
  article-title: MAPK phosphorylation‐induced stabilization of ACS6 protein is mediated by the non‐catalytic C‐terminal domain, which also contains the cis‐determinant for rapid degradation by the 26S proteasome pathway
  publication-title: Plant Journal
– volume: 131
  start-page: 448
  year: 2007
  end-page: 461
  article-title: Bacterial non‐host resistance: interations of Arabidopsis with non‐adapted strains
  publication-title: Physiologia Plantarum
– volume: 51
  start-page: 245
  year: 2013
  end-page: 266
  article-title: MAPK cascades in plant disease resistance signaling
  publication-title: Annual Review of Phytopathology
– volume: 23
  start-page: 165
  year: 2005
  end-page: 175
  article-title: Suppression of RNA recognition by Toll‐like receptors: the impact of nucleoside modification and the evolutionary origin of RNA
  publication-title: Immunity
– volume: 16
  start-page: 3386
  year: 2004
  end-page: 3399
  article-title: Phosphorylation of 1‐aminocyclopropane‐1‐carboxylic acid synthase by MPK6, a stress‐responsive mitogen‐activated protein kinase, induces ethylene biosynthesis in Arabidopsis
  publication-title: Plant Cell
– volume: 55
  start-page: 373
  year: 2004
  end-page: 399
  article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction
  publication-title: Annual Review of Plant Biology
– volume: 441
  start-page: 101
  year: 2006
  end-page: 105
  article-title: Differential roles of MDA5 and RIG‐I helicases in the recognition of RNA viruses
  publication-title: Nature
– volume: 4
  start-page: 416
  year: 2011
  end-page: 427
  article-title: The role of the plasma membrane H ‐ATPase in plant–microbe interactions
  publication-title: Molecular Plant
– volume: 10
  start-page: 375
  year: 2009
  end-page: 387
  article-title: Microbe‐associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses
  publication-title: Molecular Plant Pathology
– volume: 415
  start-page: 977
  year: 2002
  end-page: 983
  article-title: MAP kinase signalling cascade in Arabidopsis innate immunity
  publication-title: Nature
– volume: 125
  start-page: 749
  year: 2006
  end-page: 760
  article-title: Perception of the bacterial PAMP EF‐Tu by the receptor EFR restricts Agrobacterium‐mediated transformation
  publication-title: Cell
– volume: 21
  start-page: 283
  year: 2005
  end-page: 287
  article-title: Convenient assay of O generated on potato tuber tissue slices treated with fungal elicitor by electron spin resonance—no secondary oxidative burst induction by H O treatment
  publication-title: Plant Pathology Journal
– volume: 428
  start-page: 764
  year: 2004
  end-page: 767
  article-title: Bacterial disease resistance in Arabidopsis through flagellin perception
  publication-title: Nature
– ident: e_1_2_7_42_1
  doi: 10.1146/annurev.immunol.21.120601.141126
– ident: e_1_2_7_25_1
  doi: 10.1105/tpc.104.026609
– ident: e_1_2_7_43_1
  doi: 10.1073/pnas.1112862108
– ident: e_1_2_7_48_1
  doi: 10.1038/nature02485
– ident: e_1_2_7_18_1
  doi: 10.1016/j.immuni.2005.08.003
– ident: e_1_2_7_41_1
  doi: 10.1104/pp.106.2.529
– ident: e_1_2_7_44_1
  doi: 10.1007/s10327-009-0162-4
– ident: e_1_2_7_47_1
  doi: 10.1016/j.cell.2006.03.037
– ident: e_1_2_7_14_1
  doi: 10.1046/j.1365-313X.1999.00265.x
– ident: e_1_2_7_21_1
  doi: 10.1038/nature04734
– ident: e_1_2_7_45_1
  doi: 10.1093/mp/ssq035
– ident: e_1_2_7_27_1
  doi: 10.1016/S0966-842X(98)01325-0
– ident: e_1_2_7_15_1
  doi: 10.1371/journal.pone.0007803
– ident: e_1_2_7_39_1
  doi: 10.1016/j.pbi.2009.06.008
– ident: e_1_2_7_7_1
  doi: 10.1038/ni1253
– ident: e_1_2_7_28_1
  doi: 10.1146/annurev-phyto-082712-102314
– ident: e_1_2_7_33_1
  doi: 10.1111/j.0105-2896.2004.0119.x
– ident: e_1_2_7_17_1
  doi: 10.1007/978-3-540-72167-3_4
– ident: e_1_2_7_29_1
  doi: 10.1111/j.1399-3054.2007.00977.x
– ident: e_1_2_7_26_1
  doi: 10.1094/MPMI-07-10-0149
– ident: e_1_2_7_31_1
  doi: 10.1126/science.1126088
– ident: e_1_2_7_32_1
  doi: 10.1016/S1369-5266(02)00265-0
– ident: e_1_2_7_8_1
  doi: 10.1146/annurev.phyto.45.062806.094427
– ident: e_1_2_7_13_1
  doi: 10.1093/mp/ssq083
– ident: e_1_2_7_46_1
  doi: 10.1016/j.chom.2012.01.015
– ident: e_1_2_7_22_1
  doi: 10.1105/tpc.112.097253
– ident: e_1_2_7_5_1
  doi: 10.1111/j.1364-3703.2009.00537.x
– ident: e_1_2_7_9_1
  doi: 10.1093/mp/ssn019
– ident: e_1_2_7_12_1
  doi: 10.1111/j.1365-294X.2006.03102.x
– ident: e_1_2_7_40_1
  doi: 10.1016/j.mib.2010.12.005
– ident: e_1_2_7_11_1
  doi: 10.1002/eji.200838978
– ident: e_1_2_7_38_1
  doi: 10.1093/nar/gkm855
– ident: e_1_2_7_34_1
  doi: 10.5423/PPJ.2005.21.3.283
– ident: e_1_2_7_30_1
  doi: 10.1111/j.1469-8137.2009.03005.x
– ident: e_1_2_7_16_1
  doi: 10.1073/pnas.0603082103
– ident: e_1_2_7_10_1
  doi: 10.1126/science.1093616
– ident: e_1_2_7_24_1
  doi: 10.1038/nrg2303
– ident: e_1_2_7_23_1
  doi: 10.4049/jimmunol.172.7.3989
– ident: e_1_2_7_35_1
  doi: 10.1016/j.bbrc.2013.11.105
– ident: e_1_2_7_2_1
  doi: 10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U
– ident: e_1_2_7_4_1
  doi: 10.1038/415977a
– ident: e_1_2_7_3_1
  doi: 10.1146/annurev.arplant.55.031903.141701
– ident: e_1_2_7_36_1
  doi: 10.1681/ASN.2006030263
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1365-313X.2008.03404.x
– ident: e_1_2_7_6_1
  doi: 10.1016/j.cub.2008.06.061
– ident: e_1_2_7_20_1
  doi: 10.1016/j.immuni.2005.06.008
– ident: e_1_2_7_37_1
  doi: 10.1016/S0092-8674(00)00213-0
SSID ssj0009562
Score 2.3853626
Snippet The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic...
Summary The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of...
* The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic...
SourceID proquest
crossref
pubmed
wiley
jstor
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 785
SubjectTerms Anions
Arabidopsis
Arabidopsis - genetics
Arabidopsis - immunology
Arabidopsis - microbiology
Arabidopsis Proteins - genetics
Bacteria
bacterial RNAs
callose
Chitin
Cyclopentanes - metabolism
Electron Spin Resonance Spectroscopy
Elongation
Flagellin
Gene Expression Regulation, Plant
Genes
Immune response
Immunity
Immunity, Innate - genetics
Innate immunity
Inoculation
Jasmonic acid
jasmonic acid (JA)
Kinases
Leaves
Lycopersicon esculentum
microbe‐associated molecular pattern (MAMP)
Microorganisms
mitogen-activated protein kinase
Mitogen-Activated Protein Kinase Kinases - genetics
Mitogen-Activated Protein Kinases - genetics
Mutants
Nucleic acids
Oxylipins - metabolism
Pathogen-Associated Molecular Pattern Molecules - immunology
Pattern recognition
Pattern recognition receptors
Plant immunity
plant innate immunity
Plant Leaves - immunology
Plants
Pseudomonas syringae
Pseudomonas syringae - genetics
Pseudomonas syringae - pathogenicity
Pseudomonas syringae pv. tomato
ribonucleases
Ribonucleic acid
ribosomal RNA
RNA
RNA, Bacterial
RNA, Ribosomal, 16S
RNA, Ribosomal, 23S
salicylic acid
salicylic acid (SA)
Salicylic Acid - metabolism
superoxide anion
Superoxide anions
Tomatoes
SummonAdditionalLinks – databaseName: JSTOR Life Sciences Collection
  dbid: JLS
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-iiAMXBoNB-Ji6CSEuqRLHsZ1jy0A9VdMAqTfLduytEkqqhSLx3_PsNIVKbJp2SiLbif2zHf-e_T4AzlOuFStFEnPqbEyFdrE2Qsepd91eZFaX2m8NjG_5ZCq-XXs3OXlnC-PVKoNeYDjFR4KkH6yPpYHfDPFcse0o1BUDMuAi70FPJKLV43vjaZeRzvUyo2y6dCfk1Xeq-a9BmvEQnOx1Eeo5VXfaiO_xzHXaGtadmw__WeNd2FkSzf6wHRl7sGGrj7A1qpEMPu8DG7VemjHHj8mw6Xvzhieknf1ZVYVLMBt5fMZnfIXSs7KeN7PmAO5vru-uxvEyhEJsUPDjccpKXriCOOuxzxxxCTXIegwSG6qVUhTXo7SgxkfhsY4lGUcZTJW5zSy31GafYLOqK3sE_aywmhHjksKltORGU0V4ya3FgrkxSQRfO0zlvPWUITsJA4GXAfgIjhBtqX7iH0ze3xLv384fzqHUFsFFgHFVeB1DiRhKIhHDCE67PpLLCddIpGnepJgQEcGXVTJOFX_-oSpbLxqZcoYCHEcJ6295OGN5KngWwWHb_6sKIXdE4bTAlMswIP7cTDn5Pg43x__aqBPY9mC0mzunsPn4e2HPoNeUi89heL8AmY770A
  priority: 102
  providerName: JSTOR
Title Bacterial RNAs activate innate immunity in Arabidopsis
URI https://www.jstor.org/stable/newphytologist.209.2.785
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13717
https://www.ncbi.nlm.nih.gov/pubmed/26499893
https://www.proquest.com/docview/2513481228
https://search.proquest.com/docview/1760867576
https://search.proquest.com/docview/1776651873
Volume 209
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4CxIELsI1BBqvKNCEuQYnt2ol2oltRT1UFq9SbZTs29JJUhCLx3-_ZaaIibRMSl_xQ7Ci237O_z_H7DPA9FVrxIktiwZyNWaZdrE2m49RLt-fU6kL7qYHxnZjMs18jL5Pzo42FafQhugk37xmhv_YOrnS94eTl8uEqpchGsP9FlhDCN-h0Q3CXk1aBmTM-X6sK-VU8Xc5XY9G2U1W7KPFvcPM1eg3Dz83Buz78EPbXqLN_3ZjJB9iy5UfYHVaIDF8-AR82ks2Y4nZyXfd9rMMzYtD-oizDKcSQPL3gPb5C6UVRLetFfQSzm9Hvn-N4vZ9CbJAFijjlhchdTpz1DUEdcQkzCIEMohymlVIMB6c0Z8ZvyWMdT6hAQqaKgaVWWGbpZ9gpq9KeQJ_mVnNiXJK7lBXCaKaIKIS1mHFgTBLBt7Zm5bKRzZAt3cDyy1D-CE6wzqW6x-5Mzu6IF7vzf-qQwkVwERqiy4wcA80ubOmL5i9JkksiRTaI4KxtKbn2vloiZvPxxYRkEZx3j9Fv_M8QVdpqVctUcGRzAunW_9IIzgdpJmgEx40VdB-EQBKZao5PLkNj_7uYcjIdh4svb096Cnu-Opq5njPYeXpc2a-wXRerXjDzXgjS8cfRsBfWsf4BPR792w
link.rule.ids 315,782,786,808,814,843,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2xUIleWmihGz6XClW9BCW2106kXqCAFgErVEDiZtmO3e4lWTVsJf59x84mAolWSJySKHbkjxn7PcfzDLCfCq14kSWxYM7GLNMu1ibTceql23NqdaH90sDoWozvsuMTL5PzrY2FafQhugU37xlhvPYO7hekH3l5Of11kFKkIz1YYhwN0Qdw0KtHkructBrMnPG7ua6Q38fTZX0yG_Wcqtptic8Bzqf4NUxAp-9fV_QVeDcHnoPDxlJWYcGWH-DNUYXg8OEj8KNGtRlT_Bgf1gMf7vAHYehgUpbhEsJI7h_wGT-h9KSopvWkXoPb05Ob76N4fqRCbJAIijjlhchdTpz1fUEdcQkziIIMAh2mlVIM56c0Z8afymMdT6hATqaKoaVWWGbpOiyWVWn7MKC51ZwYl-QuZYUwmikiCmEtZhwak0TwuW1aOW2UM2TLOLD-MtQ_gj42ulQ_cUSTt9fE6935n3XI4iL4Enqiy4w0Ay0vnOqLHiBJkksiRTaMYKvtKjl3wFoibPMhxoRkEex1r9F1_P8QVdpqVstUcCR0AhnX_9IIzodpJmgEnxoz6AqEWBLJao5vvobe_nc15fhqFG42Xp50F5ZHN5cX8uJsfL4Jb33TNEs_W7B4_3tmt6FXF7OdYPN_AWDS_wc
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFH5kklJyadItcZuk01JKLy62pJFscso2TEgZhqaB3ITWdi72UGcK-fd9kscmgTQUerKNJKPlPen7tHwC-JgLrbgtslQw71JWaJ9qU-g0D9LtJXXa6jA1MLkU0-vi9CzI5Bx2Z2FafYh-wi14Ruyvg4MvrL_j5NXi55ecIhsZwAZDGB6E8ymd3VHc5aSTYOaMX69khcI2nj7pvcFo4FXd7Up8CG_eh69x_Blv_VfOt-HZCnYOj1o7eQ5rrnoBT45rhIa3L4Eft5rNGOPb9KgZhsMOvxGEDudVFR_xEMnNLX7jL5Se23rRzJtXcDU--34ySVcXKqQGaaBIc25F6UviXWgJ6onPmEEMZBDmMK2UYjg65SUz4U4e53lGBTIyZUeOOuGYo69hvaortwtDWjrNifFZ6XNmhdFMEWGFc5hwZEyWwIeuZuWi1c2QHd_A8stY_gR2sc6l-oH9mby6JEHtLizVIYdL4FNsiD4xkgy0u3inL9q_JFkpiRTFKIG9rqXkyv0aiaAtHDAmpEjgfR-MjhNWQ1Tl6mUjc8GRzgnkW4_FEZyP8kLQBHZaK-gzhEgSqWqJIZ9jY_-9mHI6m8SXN_8e9R08nZ2O5dfz6cVb2Aw108777MH6za-l24dBY5cH0eL_AD-e_a0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+RNAs+activate+innate+immunity+in+Arabidopsis&rft.jtitle=The+New+phytologist&rft.au=Lee%2C+Boyoung&rft.au=Park%2C+Yong%E2%80%90Soon&rft.au=Lee%2C+Soohyun&rft.au=Song%2C+Geun+Cheol&rft.date=2016-01-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=209&rft.issue=2&rft.spage=785&rft.epage=797&rft_id=info:doi/10.1111%2Fnph.13717&rft.externalDBID=10.1111%252Fnph.13717&rft.externalDocID=NPH13717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon