Bacterial RNAs activate innate immunity in Arabidopsis
The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre‐infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000...
Saved in:
Published in: | The New phytologist Vol. 209; no. 2; pp. 785 - 797 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Academic Press
01-01-2016
New Phytologist Trust Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre‐infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre‐infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen‐activated protein kinases and defense‐related genes observed in bacterial RNA‐pre‐treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor‐Tu (EF‐Tu). Plant defense‐related mutant analyses further revealed that bacterial RNA‐elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe‐associated molecular pattern in plants. |
---|---|
AbstractList | The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre-infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre-infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen-activated protein kinases and defense-related genes observed in bacterial RNA-pre-treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor-Tu (EF-Tu). Plant defense-related mutant analyses further revealed that bacterial RNA-elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe-associated molecular pattern in plants. * The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. * We pre-infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. * Total Pto DC3000 RNAs pre-infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen-activated protein kinases and defense-related genes observed in bacterial RNA-pre-treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor-Tu (EF-Tu). Plant defense-related mutant analyses further revealed that bacterial RNA-elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. * Our findings provide evidence that bacterial RNA serves as a microbe-associated molecular pattern in plants. See also the Commentary by Panstruga The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre-infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre-infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen-activated protein kinases and defense-related genes observed in bacterial RNA-pre-treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor-Tu (EFTu). Plant defense-related mutant analyses further revealed that bacterial RNA-elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe-associated molecular pattern in plants. The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre‐infiltrated Arabidopsis leaves with total RNA s from Pseudomonas syringae pv. tomato DC 3000 ( Pto DC 3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC 3000 RNA s pre‐infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC 3000. However, sheared RNA s and RN ase A application failed to induce immunity, suggesting that intact bacterial RNA s function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen‐activated protein kinases and defense‐related genes observed in bacterial RNA ‐pre‐treated leaves. Intriguingly, the Pto DC 3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor‐Tu ( EF ‐Tu). Plant defense‐related mutant analyses further revealed that bacterial RNA ‐elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNA s, the abundant bacterial RNA species 16S and 23S ribosomal RNA s were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe‐associated molecular pattern in plants. See also the Commentary by Panstruga Summary The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic acids in this process in plants. We pre‐infiltrated Arabidopsis leaves with total RNAs from Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) and subsequently inoculated these plants with the same bacterial cells. Total Pto DC3000 RNAs pre‐infiltrated into Arabidopsis leaves elicited plant immune responses against Pto DC3000. However, sheared RNAs and RNase A application failed to induce immunity, suggesting that intact bacterial RNAs function in plant innate immunity. This notion was supported by the positive regulation of superoxide anion levels, callose deposition, two mitogen‐activated protein kinases and defense‐related genes observed in bacterial RNA‐pre‐treated leaves. Intriguingly, the Pto DC3000 population was not compromised in known pattern recognition receptor mutants for chitin, flagellin and elongation factor‐Tu (EF‐Tu). Plant defense‐related mutant analyses further revealed that bacterial RNA‐elicited innate immunity was normally required for salicylic and jasmonic acid signaling. Notably, among total RNAs, the abundant bacterial RNA species 16S and 23S ribosomal RNAs were the major determinants of this response. Our findings provide evidence that bacterial RNA serves as a microbe‐associated molecular pattern in plants. See also the Commentary by Panstruga |
Author | Park, Yong‐Soon Lee, Soohyun Lee, Boyoung Song, Geun Cheol Ryu, Choong‐Min |
Author_xml | – sequence: 1 fullname: Lee, Boyoung – sequence: 2 fullname: Park, Yong‐Soon – sequence: 3 fullname: Lee, Soohyun – sequence: 4 fullname: Song, Geun Cheol – sequence: 5 fullname: Ryu, Choong‐Min |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26499893$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkEFv1DAQhS1URLeFA38AVuJSDmltxx7bx6UCilQVBFTiZnmzk9arxE7thGr_fU3T9oCExFxGT_rm6c07IHshBiTkNaPHrMxJGK6PWa2YekYWTICpdFF7ZEEp1xUI-LVPDnLeUkqNBP6C7HMQxmhTLwh8cM2Iybtu-f1ilZdF-d9uxKUP4X71_RT8uCt6uUpu7TdxyD6_JM9b12V89bAPyeWnjz9Pz6rzr5-_nK7Oq0YKoyoGG2Vaw1vUomRqeUtFwyVtgHGxds4JwQ0zoqHSALZAa8U1dxuJNSoUWB-So9l3SPFmwjza3ucGu84FjFO2TCkAybSq_wMFqkFJBQV99xe6jVMK5RHLJatLVM51od7PVJNizglbOyTfu7SzjNo_vdvSu73vvbBvHhyndY-bJ_Kx6AKczMCt73D3byd78e3s0bKaL7Z5jOnpIuDtcL0bYxevfAnOqbHcKi0L_3bmWxetu0o-28sfnDKglFGjGNR3JsGktQ |
CitedBy_id | crossref_primary_10_1007_s13562_022_00767_4 crossref_primary_10_3390_plants11060715 crossref_primary_10_1016_j_coviro_2020_04_003 crossref_primary_10_1094_MPMI_07_18_0205_FI crossref_primary_10_3390_ijms23147915 crossref_primary_10_1093_jxb_erac512 crossref_primary_10_1007_s00253_020_10355_y crossref_primary_10_3389_fpls_2020_589837 crossref_primary_10_3390_plants12193380 crossref_primary_10_1080_15592324_2016_1198866 crossref_primary_10_1111_nph_19582 crossref_primary_10_1111_nph_13726 crossref_primary_10_3390_v13071239 crossref_primary_10_3390_plants9040434 crossref_primary_10_3390_ijms23105325 crossref_primary_10_3389_fpls_2020_00946 crossref_primary_10_1111_nph_13944 crossref_primary_10_1134_S0003683818020072 crossref_primary_10_3389_fimmu_2023_1175786 crossref_primary_10_1186_s12985_021_01664_3 crossref_primary_10_1111_mpp_12857 crossref_primary_10_1016_j_bbi_2017_10_010 crossref_primary_10_1111_mpp_12798 crossref_primary_10_3389_fevo_2018_00090 crossref_primary_10_3390_ijms19041146 crossref_primary_10_1016_j_pbi_2017_04_011 crossref_primary_10_1093_aob_mcaa061 crossref_primary_10_3390_ijms20071585 crossref_primary_10_3390_ijms20092282 |
Cites_doi | 10.1146/annurev.immunol.21.120601.141126 10.1105/tpc.104.026609 10.1073/pnas.1112862108 10.1038/nature02485 10.1016/j.immuni.2005.08.003 10.1104/pp.106.2.529 10.1007/s10327-009-0162-4 10.1016/j.cell.2006.03.037 10.1046/j.1365-313X.1999.00265.x 10.1038/nature04734 10.1093/mp/ssq035 10.1016/S0966-842X(98)01325-0 10.1371/journal.pone.0007803 10.1016/j.pbi.2009.06.008 10.1038/ni1253 10.1146/annurev-phyto-082712-102314 10.1111/j.0105-2896.2004.0119.x 10.1007/978-3-540-72167-3_4 10.1111/j.1399-3054.2007.00977.x 10.1094/MPMI-07-10-0149 10.1126/science.1126088 10.1016/S1369-5266(02)00265-0 10.1146/annurev.phyto.45.062806.094427 10.1093/mp/ssq083 10.1016/j.chom.2012.01.015 10.1105/tpc.112.097253 10.1111/j.1364-3703.2009.00537.x 10.1093/mp/ssn019 10.1111/j.1365-294X.2006.03102.x 10.1016/j.mib.2010.12.005 10.1002/eji.200838978 10.1093/nar/gkm855 10.5423/PPJ.2005.21.3.283 10.1111/j.1469-8137.2009.03005.x 10.1073/pnas.0603082103 10.1126/science.1093616 10.1038/nrg2303 10.4049/jimmunol.172.7.3989 10.1016/j.bbrc.2013.11.105 10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U 10.1038/415977a 10.1146/annurev.arplant.55.031903.141701 10.1681/ASN.2006030263 10.1111/j.1365-313X.2008.03404.x 10.1016/j.cub.2008.06.061 10.1016/j.immuni.2005.06.008 10.1016/S0092-8674(00)00213-0 |
ContentType | Journal Article |
Copyright | 2016 New Phytologist Trust 2015 The Authors. New Phytologist © 2015 New Phytologist Trust 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. Copyright © 2015 New Phytologist Trust |
Copyright_xml | – notice: 2016 New Phytologist Trust – notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust – notice: 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. – notice: Copyright © 2015 New Phytologist Trust |
DBID | FBQ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7QL 7TM |
DOI | 10.1111/nph.13717 |
DatabaseName | AGRIS Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Ecology Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Ecology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Nucleic Acids Abstracts |
DatabaseTitleList | MEDLINE Bacteriology Abstracts (Microbiology B) Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1469-8137 |
EndPage | 797 |
ExternalDocumentID | 10_1111_nph_13717 26499893 NPH13717 newphytologist.209.2.785 US201600109716 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Science, ICT, and Future Planning of Korea funderid: H‐GUARD_2013M3A6B2078953; PJ0109304 – fundername: BioNano Health‐Guard Research Center – fundername: Rural Development Administration (RDA) – fundername: KRIBB Initiative Program, South Korea |
GroupedDBID | --- -~X .3N .GA .Y3 05W 0R~ 10A 123 1OC 24P 29N 2WC 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AAONW AASGY AASVR AAXRX AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABHUG ABLJU ABPLY ABPTK ABPVW ABTLG ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFS ACNCT ACPOU ACQPF ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFMIJ AFPWT AFVGU AFZJQ AGJLS AGUYK AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AS~ ATUGU AUFTA AZBYB AZVAB BAFTC BAWUL BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DIK DOOOF DPXWK DR2 DRFUL DRSTM DWIUU E3Z EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FIJ G-S G.N GODZA GTFYD H.T H.X HF~ HGD HQ2 HTVGU HZI HZ~ IHE IPNFZ IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LPU LUTES LW6 LW7 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OK1 P2P P2W P2X P4D Q.N Q11 QB0 R.K RCA RIG ROL RX1 SA0 SUPJJ TN5 TR2 UB1 W8V W99 WBKPD WHG WIH WIK WIN WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XOL YNT YQT YXE ZCG ZZTAW ~02 ~IA ~KM ~WT 79B ABXSQ AHBTC AQVQM AAHBH ADACV AITYG HGLYW IPSME OIG AHXOZ AILXY CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QO 7SN 8FD C1K F1W FR3 H95 L.G M7N P64 RC3 7X8 7QL 7TM |
ID | FETCH-LOGICAL-c5497-16d79f92fe84813f2f04c250c6124baaa4429194c0596ef6037282ad5e3e7e4e3 |
IEDL.DBID | 33P |
ISSN | 0028-646X |
IngestDate | Fri Oct 25 07:32:10 EDT 2024 Thu Oct 24 23:29:24 EDT 2024 Mon Nov 25 20:13:05 EST 2024 Thu Nov 21 23:39:15 EST 2024 Tue Oct 15 23:56:18 EDT 2024 Sat Aug 24 00:54:42 EDT 2024 Fri Feb 02 08:05:52 EST 2024 Wed Dec 27 19:32:26 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | salicylic acid (SA) jasmonic acid (JA) Pseudomonas syringae plant innate immunity bacterial RNAs microbe-associated molecular pattern (MAMP) |
Language | English |
License | 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5497-16d79f92fe84813f2f04c250c6124baaa4429194c0596ef6037282ad5e3e7e4e3 |
Notes | http://dx.doi.org/10.1111/nph.13717 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/nph.13717 |
PMID | 26499893 |
PQID | 2513481228 |
PQPubID | 2026848 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1776651873 proquest_miscellaneous_1760867576 proquest_journals_2513481228 crossref_primary_10_1111_nph_13717 pubmed_primary_26499893 wiley_primary_10_1111_nph_13717_NPH13717 jstor_primary_newphytologist_209_2_785 fao_agris_US201600109716 |
PublicationCentury | 2000 |
PublicationDate | January 2016 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: January 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Lancaster |
PublicationTitle | The New phytologist |
PublicationTitleAlternate | New Phytol |
PublicationYear | 2016 |
Publisher | Academic Press New Phytologist Trust Wiley Subscription Services, Inc |
Publisher_xml | – name: Academic Press – name: New Phytologist Trust – name: Wiley Subscription Services, Inc |
References | 2004; 303 2008; 18 2002; 5 2006; 17 2002; 32 2008; 9 2008; 36 2002; 415 2005; 21 2008; 54 2011; 14 2008; 1 2011; 4 2004; 428 2011; 6 2012; 11 2005; 23 2008; 183 2006; 312 2009; 12 2004; 55 2004; 198 1994; 106 2009; 10 2009; 75 2000; 103 2004; 16 1999; 18 2013; 51 2004; 172 2007; 131 2005; 6 2011; 24 2009; 184 2009; 4 2010; 3 1998; 95 2012; 24 1998; 6 2007; 45 2006; 441 2003; 21 2006; 103 2006; 125 2009; 39 2014; 443 26763679 - New Phytol. 2016 Jan;209(2):458-60 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 12 start-page: 421 year: 2009 end-page: 426 article-title: MAPK cascade signalling networks in plant defence publication-title: Current Opinion in Plant Biology – volume: 18 start-page: 1078 year: 2008 end-page: 1083 article-title: Bacterial polysaccharides suppress induced innate immunity by calcium chelation publication-title: Current Biology – volume: 95 start-page: 14863 year: 1998 end-page: 14868 article-title: Cluster analysis and display of genome‐wide expression patterns publication-title: Proceedings of the National Academy of Sciences, USA – volume: 23 start-page: 111 year: 2005 end-page: 113 article-title: TLR ignores methylated RNA? publication-title: Immunity – volume: 6 start-page: 342 year: 1998 end-page: 345 article-title: Endosymbioses: cyclical and permanent in evolution publication-title: Trends in Microbiology – volume: 303 start-page: 1529 year: 2004 end-page: 1531 article-title: Innate antiviral responses by means of TLR7‐mediated recognition of single‐stranded RNA publication-title: Science – volume: 312 start-page: 436 year: 2006 end-page: 439 article-title: A plant miRNA contributes to antibacterial resistance by repressing auxin signaling publication-title: Science – volume: 183 start-page: 71 year: 2008 end-page: 86 article-title: RNA recognition via TLR7 and TLR8 publication-title: Handbook of Experimental Pharmacology – volume: 3 start-page: 783 year: 2010 end-page: 793 article-title: Plant immunity triggered by microbial molecular signatures publication-title: Molecular Plant – volume: 18 start-page: 265 year: 1999 end-page: 276 article-title: Plants have a sensitive perception system for the most conserved domain of bacterial flagellin publication-title: Plant Journal – volume: 17 start-page: 3365 year: 2006 end-page: 3373 article-title: Ligands to nucleic acid‐specific toll‐like receptors and the onset of lupus nephritis publication-title: Journal of the American Society of Nephrology – volume: 103 start-page: 1111 year: 2000 end-page: 1120 article-title: Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance publication-title: Cell – volume: 4 start-page: e7803 year: 2009 article-title: The heterogeneous allelic repertoire of human toll‐like receptor (TLR) genes publication-title: PLoS ONE – volume: 21 start-page: 335 year: 2003 end-page: 376 article-title: Toll‐like receptors publication-title: Annual Review of Immunology – volume: 75 start-page: 227 year: 2009 end-page: 234 article-title: Bacterial DNA activates immunity in publication-title: Journal of General Plant Pathology – volume: 39 start-page: 2537 year: 2009 end-page: 2547 article-title: Bacterial RNA is recognized by different sets of immunoreceptors publication-title: European Journal of Immunology – volume: 443 start-page: 272 year: 2014 end-page: 277 article-title: Understanding cross‐communication between aboveground and belowground tissues via transcriptome analysis of a sucking insect whitefly‐infested pepper plants publication-title: Biochemical and Biophysical Research Communications – volume: 14 start-page: 54 year: 2011 end-page: 61 article-title: Activation of plant pattern‐recognition receptors by bacteria publication-title: Current Opinion in Microbiology – volume: 24 start-page: 183 year: 2011 end-page: 193 article-title: Callose deposition: a multifaceted plant defense response publication-title: Molecular Plant–Microbe Interactions – volume: 184 start-page: 885 year: 2009 end-page: 897 article-title: The NADPH‐oxidase AtrbohB plays a role in Arabidopsis seed after‐ripening publication-title: New Phytologist – volume: 103 start-page: 8459 year: 2006 end-page: 8464 article-title: Essential role of mda‐5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus publication-title: Proceedings of the National Academy of Sciences, USA – volume: 106 start-page: 529 year: 1994 end-page: 535 article-title: The apparent turnover of 1‐aminocyclopropane‐1‐carboxylate synthase in tomato cells is regulated by protein‐phosphorylation and dephosphorylation publication-title: Plant Physiology – volume: 32 start-page: 1958 year: 2002 end-page: 1968 article-title: Bacterial CpG‐DNA and lipopolysaccharides activate Toll‐like receptors at distinct cellular compartments publication-title: European Journal of Immunology – volume: 1 start-page: 423 year: 2008 end-page: 445 article-title: Activation of defense response pathways by OGs and flg22 elicitors in Arabidopsis seedlings publication-title: Molecular Plant – volume: 6 start-page: 973 year: 2005 end-page: 979 article-title: Are innate immune signaling pathways in plants and animals conserved? publication-title: Nature Immunology – volume: 5 start-page: 318 year: 2002 end-page: 324 article-title: Innate immunity in plants and animals: emerging parallels between the recognition of general elicitors and pathogen‐associated molecular patterns publication-title: Current Opinion in Plant Biology – volume: 24 start-page: 2225 year: 2012 end-page: 2236 article-title: The MEKK1‐MKK1/MKK2‐MPK4 kinase cascade negatively regulates immunity mediated by a mitogen‐activated protein kinase kinase kinase in Arabidopsis publication-title: Plant Cell – volume: 11 start-page: 253 year: 2012 end-page: 260 article-title: Disruption of PAMP‐induced MAP kinase cascade by a effector activates plant immunity mediated by the NB‐LRR protein SUMM2 publication-title: Cell Host & Microbe – volume: 172 start-page: 3989 year: 2004 end-page: 3993 article-title: Cutting edge: innate immune system discriminates between RNA containing bacterial versus eukaryotic structural features that prime for high‐level IL‐12 secretion by dendritic cells publication-title: Journal of Immunology – volume: 6 start-page: 19824 year: 2011 end-page: 19829 article-title: Arabidopsis lysin‐motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection publication-title: Proceedings of the National Academy of Sciences, USA – volume: 198 start-page: 249 year: 2004 end-page: 266 article-title: Innate immunity in plants and animals: striking similarities and obvious differences publication-title: Immunological Reviews – volume: 9 start-page: 165 year: 2008 end-page: 178 article-title: Toll‐like receptors – taking an evolutionary approach publication-title: Nature Reviews Genetics – volume: 36 start-page: 178 year: 2008 end-page: 183 article-title: The 3D rRNA modification maps database: with interactive tools for ribosome analysis publication-title: Nucleic Acids Research – volume: 45 start-page: 399 year: 2007 end-page: 436 article-title: Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions publication-title: Annual Review of Phytopathology – volume: 54 start-page: 129 year: 2008 end-page: 140 article-title: MAPK phosphorylation‐induced stabilization of ACS6 protein is mediated by the non‐catalytic C‐terminal domain, which also contains the cis‐determinant for rapid degradation by the 26S proteasome pathway publication-title: Plant Journal – volume: 131 start-page: 448 year: 2007 end-page: 461 article-title: Bacterial non‐host resistance: interations of Arabidopsis with non‐adapted strains publication-title: Physiologia Plantarum – volume: 51 start-page: 245 year: 2013 end-page: 266 article-title: MAPK cascades in plant disease resistance signaling publication-title: Annual Review of Phytopathology – volume: 23 start-page: 165 year: 2005 end-page: 175 article-title: Suppression of RNA recognition by Toll‐like receptors: the impact of nucleoside modification and the evolutionary origin of RNA publication-title: Immunity – volume: 16 start-page: 3386 year: 2004 end-page: 3399 article-title: Phosphorylation of 1‐aminocyclopropane‐1‐carboxylic acid synthase by MPK6, a stress‐responsive mitogen‐activated protein kinase, induces ethylene biosynthesis in Arabidopsis publication-title: Plant Cell – volume: 55 start-page: 373 year: 2004 end-page: 399 article-title: Reactive oxygen species: metabolism, oxidative stress, and signal transduction publication-title: Annual Review of Plant Biology – volume: 441 start-page: 101 year: 2006 end-page: 105 article-title: Differential roles of MDA5 and RIG‐I helicases in the recognition of RNA viruses publication-title: Nature – volume: 4 start-page: 416 year: 2011 end-page: 427 article-title: The role of the plasma membrane H ‐ATPase in plant–microbe interactions publication-title: Molecular Plant – volume: 10 start-page: 375 year: 2009 end-page: 387 article-title: Microbe‐associated molecular pattern (MAMP) signatures, synergy, size and charge: influences on perception or mobility and host defence responses publication-title: Molecular Plant Pathology – volume: 415 start-page: 977 year: 2002 end-page: 983 article-title: MAP kinase signalling cascade in Arabidopsis innate immunity publication-title: Nature – volume: 125 start-page: 749 year: 2006 end-page: 760 article-title: Perception of the bacterial PAMP EF‐Tu by the receptor EFR restricts Agrobacterium‐mediated transformation publication-title: Cell – volume: 21 start-page: 283 year: 2005 end-page: 287 article-title: Convenient assay of O generated on potato tuber tissue slices treated with fungal elicitor by electron spin resonance—no secondary oxidative burst induction by H O treatment publication-title: Plant Pathology Journal – volume: 428 start-page: 764 year: 2004 end-page: 767 article-title: Bacterial disease resistance in Arabidopsis through flagellin perception publication-title: Nature – ident: e_1_2_7_42_1 doi: 10.1146/annurev.immunol.21.120601.141126 – ident: e_1_2_7_25_1 doi: 10.1105/tpc.104.026609 – ident: e_1_2_7_43_1 doi: 10.1073/pnas.1112862108 – ident: e_1_2_7_48_1 doi: 10.1038/nature02485 – ident: e_1_2_7_18_1 doi: 10.1016/j.immuni.2005.08.003 – ident: e_1_2_7_41_1 doi: 10.1104/pp.106.2.529 – ident: e_1_2_7_44_1 doi: 10.1007/s10327-009-0162-4 – ident: e_1_2_7_47_1 doi: 10.1016/j.cell.2006.03.037 – ident: e_1_2_7_14_1 doi: 10.1046/j.1365-313X.1999.00265.x – ident: e_1_2_7_21_1 doi: 10.1038/nature04734 – ident: e_1_2_7_45_1 doi: 10.1093/mp/ssq035 – ident: e_1_2_7_27_1 doi: 10.1016/S0966-842X(98)01325-0 – ident: e_1_2_7_15_1 doi: 10.1371/journal.pone.0007803 – ident: e_1_2_7_39_1 doi: 10.1016/j.pbi.2009.06.008 – ident: e_1_2_7_7_1 doi: 10.1038/ni1253 – ident: e_1_2_7_28_1 doi: 10.1146/annurev-phyto-082712-102314 – ident: e_1_2_7_33_1 doi: 10.1111/j.0105-2896.2004.0119.x – ident: e_1_2_7_17_1 doi: 10.1007/978-3-540-72167-3_4 – ident: e_1_2_7_29_1 doi: 10.1111/j.1399-3054.2007.00977.x – ident: e_1_2_7_26_1 doi: 10.1094/MPMI-07-10-0149 – ident: e_1_2_7_31_1 doi: 10.1126/science.1126088 – ident: e_1_2_7_32_1 doi: 10.1016/S1369-5266(02)00265-0 – ident: e_1_2_7_8_1 doi: 10.1146/annurev.phyto.45.062806.094427 – ident: e_1_2_7_13_1 doi: 10.1093/mp/ssq083 – ident: e_1_2_7_46_1 doi: 10.1016/j.chom.2012.01.015 – ident: e_1_2_7_22_1 doi: 10.1105/tpc.112.097253 – ident: e_1_2_7_5_1 doi: 10.1111/j.1364-3703.2009.00537.x – ident: e_1_2_7_9_1 doi: 10.1093/mp/ssn019 – ident: e_1_2_7_12_1 doi: 10.1111/j.1365-294X.2006.03102.x – ident: e_1_2_7_40_1 doi: 10.1016/j.mib.2010.12.005 – ident: e_1_2_7_11_1 doi: 10.1002/eji.200838978 – ident: e_1_2_7_38_1 doi: 10.1093/nar/gkm855 – ident: e_1_2_7_34_1 doi: 10.5423/PPJ.2005.21.3.283 – ident: e_1_2_7_30_1 doi: 10.1111/j.1469-8137.2009.03005.x – ident: e_1_2_7_16_1 doi: 10.1073/pnas.0603082103 – ident: e_1_2_7_10_1 doi: 10.1126/science.1093616 – ident: e_1_2_7_24_1 doi: 10.1038/nrg2303 – ident: e_1_2_7_23_1 doi: 10.4049/jimmunol.172.7.3989 – ident: e_1_2_7_35_1 doi: 10.1016/j.bbrc.2013.11.105 – ident: e_1_2_7_2_1 doi: 10.1002/1521-4141(200207)32:7<1958::AID-IMMU1958>3.0.CO;2-U – ident: e_1_2_7_4_1 doi: 10.1038/415977a – ident: e_1_2_7_3_1 doi: 10.1146/annurev.arplant.55.031903.141701 – ident: e_1_2_7_36_1 doi: 10.1681/ASN.2006030263 – ident: e_1_2_7_19_1 doi: 10.1111/j.1365-313X.2008.03404.x – ident: e_1_2_7_6_1 doi: 10.1016/j.cub.2008.06.061 – ident: e_1_2_7_20_1 doi: 10.1016/j.immuni.2005.06.008 – ident: e_1_2_7_37_1 doi: 10.1016/S0092-8674(00)00213-0 |
SSID | ssj0009562 |
Score | 2.3853626 |
Snippet | The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic... Summary The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of... * The common molecular patterns of microbes play a critical role in the regulation of plant innate immunity. However, little is known about the role of nucleic... |
SourceID | proquest crossref pubmed wiley jstor fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 785 |
SubjectTerms | Anions Arabidopsis Arabidopsis - genetics Arabidopsis - immunology Arabidopsis - microbiology Arabidopsis Proteins - genetics Bacteria bacterial RNAs callose Chitin Cyclopentanes - metabolism Electron Spin Resonance Spectroscopy Elongation Flagellin Gene Expression Regulation, Plant Genes Immune response Immunity Immunity, Innate - genetics Innate immunity Inoculation Jasmonic acid jasmonic acid (JA) Kinases Leaves Lycopersicon esculentum microbe‐associated molecular pattern (MAMP) Microorganisms mitogen-activated protein kinase Mitogen-Activated Protein Kinase Kinases - genetics Mitogen-Activated Protein Kinases - genetics Mutants Nucleic acids Oxylipins - metabolism Pathogen-Associated Molecular Pattern Molecules - immunology Pattern recognition Pattern recognition receptors Plant immunity plant innate immunity Plant Leaves - immunology Plants Pseudomonas syringae Pseudomonas syringae - genetics Pseudomonas syringae - pathogenicity Pseudomonas syringae pv. tomato ribonucleases Ribonucleic acid ribosomal RNA RNA RNA, Bacterial RNA, Ribosomal, 16S RNA, Ribosomal, 23S salicylic acid salicylic acid (SA) Salicylic Acid - metabolism superoxide anion Superoxide anions Tomatoes |
SummonAdditionalLinks | – databaseName: JSTOR Life Sciences Collection dbid: JLS link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFH-iiAMXBoNB-Ji6CSEuqRLHsZ1jy0A9VdMAqTfLduytEkqqhSLx3_PsNIVKbJp2SiLbif2zHf-e_T4AzlOuFStFEnPqbEyFdrE2Qsepd91eZFaX2m8NjG_5ZCq-XXs3OXlnC-PVKoNeYDjFR4KkH6yPpYHfDPFcse0o1BUDMuAi70FPJKLV43vjaZeRzvUyo2y6dCfk1Xeq-a9BmvEQnOx1Eeo5VXfaiO_xzHXaGtadmw__WeNd2FkSzf6wHRl7sGGrj7A1qpEMPu8DG7VemjHHj8mw6Xvzhieknf1ZVYVLMBt5fMZnfIXSs7KeN7PmAO5vru-uxvEyhEJsUPDjccpKXriCOOuxzxxxCTXIegwSG6qVUhTXo7SgxkfhsY4lGUcZTJW5zSy31GafYLOqK3sE_aywmhHjksKltORGU0V4ya3FgrkxSQRfO0zlvPWUITsJA4GXAfgIjhBtqX7iH0ze3xLv384fzqHUFsFFgHFVeB1DiRhKIhHDCE67PpLLCddIpGnepJgQEcGXVTJOFX_-oSpbLxqZcoYCHEcJ6295OGN5KngWwWHb_6sKIXdE4bTAlMswIP7cTDn5Pg43x__aqBPY9mC0mzunsPn4e2HPoNeUi89heL8AmY770A priority: 102 providerName: JSTOR |
Title | Bacterial RNAs activate innate immunity in Arabidopsis |
URI | https://www.jstor.org/stable/newphytologist.209.2.785 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fnph.13717 https://www.ncbi.nlm.nih.gov/pubmed/26499893 https://www.proquest.com/docview/2513481228 https://search.proquest.com/docview/1760867576 https://search.proquest.com/docview/1776651873 |
Volume | 209 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH4CxIELsI1BBqvKNCEuQYnt2ol2oltRT1UFq9SbZTs29JJUhCLx3-_ZaaIibRMSl_xQ7Ci237O_z_H7DPA9FVrxIktiwZyNWaZdrE2m49RLt-fU6kL7qYHxnZjMs18jL5Pzo42FafQhugk37xmhv_YOrnS94eTl8uEqpchGsP9FlhDCN-h0Q3CXk1aBmTM-X6sK-VU8Xc5XY9G2U1W7KPFvcPM1eg3Dz83Buz78EPbXqLN_3ZjJB9iy5UfYHVaIDF8-AR82ks2Y4nZyXfd9rMMzYtD-oizDKcSQPL3gPb5C6UVRLetFfQSzm9Hvn-N4vZ9CbJAFijjlhchdTpz1DUEdcQkzCIEMohymlVIMB6c0Z8ZvyWMdT6hAQqaKgaVWWGbpZ9gpq9KeQJ_mVnNiXJK7lBXCaKaIKIS1mHFgTBLBt7Zm5bKRzZAt3cDyy1D-CE6wzqW6x-5Mzu6IF7vzf-qQwkVwERqiy4wcA80ubOmL5i9JkksiRTaI4KxtKbn2vloiZvPxxYRkEZx3j9Fv_M8QVdpqVctUcGRzAunW_9IIzgdpJmgEx40VdB-EQBKZao5PLkNj_7uYcjIdh4svb096Cnu-Opq5njPYeXpc2a-wXRerXjDzXgjS8cfRsBfWsf4BPR792w |
link.rule.ids | 315,782,786,808,814,843,1408,27933,27934,46064,46488,58024,58034,58037,58257,58267,58270 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB2xUIleWmihGz6XClW9BCW2106kXqCAFgErVEDiZtmO3e4lWTVsJf59x84mAolWSJySKHbkjxn7PcfzDLCfCq14kSWxYM7GLNMu1ibTceql23NqdaH90sDoWozvsuMTL5PzrY2FafQhugU37xlhvPYO7hekH3l5Of11kFKkIz1YYhwN0Qdw0KtHkructBrMnPG7ua6Q38fTZX0yG_Wcqtptic8Bzqf4NUxAp-9fV_QVeDcHnoPDxlJWYcGWH-DNUYXg8OEj8KNGtRlT_Bgf1gMf7vAHYehgUpbhEsJI7h_wGT-h9KSopvWkXoPb05Ob76N4fqRCbJAIijjlhchdTpz1fUEdcQkziIIMAh2mlVIM56c0Z8afymMdT6hATqaKoaVWWGbpOiyWVWn7MKC51ZwYl-QuZYUwmikiCmEtZhwak0TwuW1aOW2UM2TLOLD-MtQ_gj42ulQ_cUSTt9fE6935n3XI4iL4Enqiy4w0Ay0vnOqLHiBJkksiRTaMYKvtKjl3wFoibPMhxoRkEex1r9F1_P8QVdpqVstUcCR0AhnX_9IIzodpJmgEnxoz6AqEWBLJao5vvobe_nc15fhqFG42Xp50F5ZHN5cX8uJsfL4Jb33TNEs_W7B4_3tmt6FXF7OdYPN_AWDS_wc |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ja9wwFH5kklJyadItcZuk01JKLy62pJFscso2TEgZhqaB3ITWdi72UGcK-fd9kscmgTQUerKNJKPlPen7tHwC-JgLrbgtslQw71JWaJ9qU-g0D9LtJXXa6jA1MLkU0-vi9CzI5Bx2Z2FafYh-wi14Ruyvg4MvrL_j5NXi55ecIhsZwAZDGB6E8ymd3VHc5aSTYOaMX69khcI2nj7pvcFo4FXd7Up8CG_eh69x_Blv_VfOt-HZCnYOj1o7eQ5rrnoBT45rhIa3L4Eft5rNGOPb9KgZhsMOvxGEDudVFR_xEMnNLX7jL5Se23rRzJtXcDU--34ySVcXKqQGaaBIc25F6UviXWgJ6onPmEEMZBDmMK2UYjg65SUz4U4e53lGBTIyZUeOOuGYo69hvaortwtDWjrNifFZ6XNmhdFMEWGFc5hwZEyWwIeuZuWi1c2QHd_A8stY_gR2sc6l-oH9mby6JEHtLizVIYdL4FNsiD4xkgy0u3inL9q_JFkpiRTFKIG9rqXkyv0aiaAtHDAmpEjgfR-MjhNWQ1Tl6mUjc8GRzgnkW4_FEZyP8kLQBHZaK-gzhEgSqWqJIZ9jY_-9mHI6m8SXN_8e9R08nZ2O5dfz6cVb2Aw108777MH6za-l24dBY5cH0eL_AD-e_a0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bacterial+RNAs+activate+innate+immunity+in+Arabidopsis&rft.jtitle=The+New+phytologist&rft.au=Lee%2C+Boyoung&rft.au=Park%2C+Yong%E2%80%90Soon&rft.au=Lee%2C+Soohyun&rft.au=Song%2C+Geun+Cheol&rft.date=2016-01-01&rft.issn=0028-646X&rft.eissn=1469-8137&rft.volume=209&rft.issue=2&rft.spage=785&rft.epage=797&rft_id=info:doi/10.1111%2Fnph.13717&rft.externalDBID=10.1111%252Fnph.13717&rft.externalDocID=NPH13717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-646X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-646X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-646X&client=summon |