New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase
Summary Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one‐carbon compounds that are found in high concentrations in marine environments. Genome, physiology and diversity studies have been greatly facilitated by the numerous model organisms brought into cultu...
Saved in:
Published in: | Environmental microbiology Vol. 18; no. 12; pp. 4523 - 4536 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Blackwell Publishing Ltd
01-12-2016
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Summary
Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one‐carbon compounds that are found in high concentrations in marine environments. Genome, physiology and diversity studies have been greatly facilitated by the numerous model organisms brought into culture. However, the availability of marine representatives remains poor. Here, we report the isolation of four novel species from North Sea sediment enrichments closely related to the Alphaproteobacterium Methyloceanibacter caenitepidi. Each of the newly isolated Methyloceanibacter species exhibited a clear genome sequence divergence which was reflected in physiological differences. Notably one strain R‐67174 was capable of oxidizing methane as sole source of carbon and energy using solely a soluble methane monooxygenase and represents the first marine Alphaproteobacterial methanotroph brought into culture. Differences in maximum cell density of >1.5 orders of magnitude were observed. Furthermore, three strains were capable of producing nitrous oxide from nitrate. Together, these findings highlight the metabolic and physiologic variability within closely related Methyloceanibacter species and provide a new understanding of the physiological basis of marine methylotrophy. |
---|---|
AbstractList | Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one-carbon compounds that are found in high concentrations in marine environments. Genome, physiology and diversity studies have been greatly facilitated by the numerous model organisms brought into culture. However, the availability of marine representatives remains poor. Here, we report the isolation of four novel species from North Sea sediment enrichments closely related to the Alphaproteobacterium Methyloceanibacter caenitepidi. Each of the newly isolated Methyloceanibacter species exhibited a clear genome sequence divergence which was reflected in physiological differences. Notably one strain R-67174 was capable of oxidizing methane as sole source of carbon and energy using solely a soluble methane monooxygenase and represents the first marine Alphaproteobacterial methanotroph brought into culture. Differences in maximum cell density of >1.5 orders of magnitude were observed. Furthermore, three strains were capable of producing nitrous oxide from nitrate. Together, these findings highlight the metabolic and physiologic variability within closely related Methyloceanibacter species and provide a new understanding of the physiological basis of marine methylotrophy. Summary Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one‐carbon compounds that are found in high concentrations in marine environments. Genome, physiology and diversity studies have been greatly facilitated by the numerous model organisms brought into culture. However, the availability of marine representatives remains poor. Here, we report the isolation of four novel species from North Sea sediment enrichments closely related to the Alphaproteobacterium Methyloceanibacter caenitepidi. Each of the newly isolated Methyloceanibacter species exhibited a clear genome sequence divergence which was reflected in physiological differences. Notably one strain R‐67174 was capable of oxidizing methane as sole source of carbon and energy using solely a soluble methane monooxygenase and represents the first marine Alphaproteobacterial methanotroph brought into culture. Differences in maximum cell density of >1.5 orders of magnitude were observed. Furthermore, three strains were capable of producing nitrous oxide from nitrate. Together, these findings highlight the metabolic and physiologic variability within closely related Methyloceanibacter species and provide a new understanding of the physiological basis of marine methylotrophy. Summary Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one-carbon compounds that are found in high concentrations in marine environments. Genome, physiology and diversity studies have been greatly facilitated by the numerous model organisms brought into culture. However, the availability of marine representatives remains poor. Here, we report the isolation of four novel species from North Sea sediment enrichments closely related to the Alphaproteobacterium Methyloceanibacter caenitepidi. Each of the newly isolated Methyloceanibacter species exhibited a clear genome sequence divergence which was reflected in physiological differences. Notably one strain R-67174 was capable of oxidizing methane as sole source of carbon and energy using solely a soluble methane monooxygenase and represents the first marine Alphaproteobacterial methanotroph brought into culture. Differences in maximum cell density of >1.5 orders of magnitude were observed. Furthermore, three strains were capable of producing nitrous oxide from nitrate. Together, these findings highlight the metabolic and physiologic variability within closely related Methyloceanibacter species and provide a new understanding of the physiological basis of marine methylotrophy. Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one‐carbon compounds that are found in high concentrations in marine environments. Genome, physiology and diversity studies have been greatly facilitated by the numerous model organisms brought into culture. However, the availability of marine representatives remains poor. Here, we report the isolation of four novel species from North Sea sediment enrichments closely related to the Alphaproteobacterium Methyloceanibacter caenitepidi . Each of the newly isolated Methyloceanibacter species exhibited a clear genome sequence divergence which was reflected in physiological differences. Notably one strain R‐67174 was capable of oxidizing methane as sole source of carbon and energy using solely a soluble methane monooxygenase and represents the first marine Alphaproteobacterial methanotroph brought into culture. Differences in maximum cell density of >1.5 orders of magnitude were observed. Furthermore, three strains were capable of producing nitrous oxide from nitrate. Together, these findings highlight the metabolic and physiologic variability within closely related Methyloceanibacter species and provide a new understanding of the physiological basis of marine methylotrophy. |
Author | de Vos, Paul Kerckhof, Frederiek-Maarten Op den Camp, Huub J.M. Vekeman, Bram Vandamme, Peter Heylen, Kim Cremers, Geert Boon, Nico |
Author_xml | – sequence: 1 givenname: Bram surname: Vekeman fullname: Vekeman, Bram email: bram.vekeman@ugent.be, bram.vekeman@ugent.be organization: Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Gent, Belgium – sequence: 2 givenname: Frederiek-Maarten surname: Kerckhof fullname: Kerckhof, Frederiek-Maarten organization: Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium – sequence: 3 givenname: Geert surname: Cremers fullname: Cremers, Geert organization: Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands – sequence: 4 givenname: Paul surname: de Vos fullname: de Vos, Paul organization: Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Gent, Belgium – sequence: 5 givenname: Peter surname: Vandamme fullname: Vandamme, Peter organization: Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Gent, Belgium – sequence: 6 givenname: Nico surname: Boon fullname: Boon, Nico organization: Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Gent, Belgium – sequence: 7 givenname: Huub J.M. surname: Op den Camp fullname: Op den Camp, Huub J.M. organization: Department of Microbiology, IWWR, Radboud University Nijmegen, Heyendaalseweg 135, 6525, AJ Nijmegen, The Netherlands – sequence: 8 givenname: Kim surname: Heylen fullname: Heylen, Kim organization: Department of Biochemistry and Microbiology, Laboratory of Microbiology (LM-UGent), Ghent University, Karel Lodewijck Ledeganckstraat 35, 9000, Gent, Belgium |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27501305$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkr1vFDEQxS0URD6gpkOWaGiO2F571y5RFI6g3FEkgERjeb2zOYdd-2LvkmzNP44vd7mCBtzMePR7Tx49H6MDHzwg9JqS9zSfU8pLNmOK5WvBpXiGjvaTg31P2SE6TumWEFoVFXmBDlklCC2IOEK_l3CPFzCspi5YMN7Vxg4QceN-QUxumHAbQ4-XIQ4rfAUGJ2hcD35I2HnbjQ0k3Ge58WGIYb3CNvjBOO_8DU6hg27Cwwo27Vh3sENzDT6Eh-kGvEnwEj1vTZfg1a6eoK8fz6_PPs0uv8wvzj5czqzgSswMaypbCyZk0YAUpSxaMApoKxWxlaGyptwqbpgABUVTVq1tSEG4IqZRLWuLE_Ru67uO4W6ENOjeJQtdl18UxqSpFIrLUnD5PygtFWEFz-jbv9DbMEafF3mkCBecskydbikbQ0oRWr2Orjdx0pToTZR6E5beBKcfo8yKNzvfse6h2fNP2WVAbIF718H0Lz99vrh4Mp5tdS4N8LDXmfhTl_l_CP19OdfXC_L5h5xf6W_FHyjJu4g |
CitedBy_id | crossref_primary_10_1016_j_watres_2021_117150 crossref_primary_10_31857_S0026365623600323 crossref_primary_10_3389_fmicb_2020_00468 crossref_primary_10_3389_fmicb_2024_1298154 crossref_primary_10_1099_mic_0_000977 crossref_primary_10_1093_femsec_fiz125 crossref_primary_10_1007_s11274_024_03884_5 crossref_primary_10_1016_j_jhazmat_2021_127760 crossref_primary_10_1186_s40168_018_0500_x crossref_primary_10_3389_fmicb_2021_581124 crossref_primary_10_1073_pnas_2114799119 crossref_primary_10_3390_microorganisms10061140 crossref_primary_10_3390_genes10060424 crossref_primary_10_1016_j_ibiod_2023_105619 crossref_primary_10_1016_j_psep_2024_05_089 crossref_primary_10_1111_1758_2229_13137 crossref_primary_10_1016_j_jes_2023_12_010 crossref_primary_10_1016_j_bcab_2021_102005 crossref_primary_10_1186_s40168_019_0741_3 crossref_primary_10_3389_fmicb_2018_03066 crossref_primary_10_1134_S002626172360194X crossref_primary_10_1016_j_seares_2023_102361 crossref_primary_10_3390_microorganisms10050955 crossref_primary_10_1128_MRA_00771_20 crossref_primary_10_1016_j_watres_2020_116288 crossref_primary_10_2139_ssrn_4161727 crossref_primary_10_3389_fmicb_2022_1076610 crossref_primary_10_1128_Spectrum_00820_21 crossref_primary_10_3389_fmicb_2021_631621 crossref_primary_10_3389_feart_2023_1290882 crossref_primary_10_3389_fenvs_2022_857358 crossref_primary_10_1186_s40168_021_01112_y crossref_primary_10_1111_gcb_16444 crossref_primary_10_1038_s41396_019_0584_8 crossref_primary_10_3389_fmicb_2021_640848 crossref_primary_10_1007_s00248_020_01570_1 crossref_primary_10_1186_s13568_017_0466_2 crossref_primary_10_1111_1758_2229_13156 crossref_primary_10_3390_microorganisms10071327 crossref_primary_10_3390_microorganisms8040538 crossref_primary_10_3354_ame01845 crossref_primary_10_3390_microorganisms9112362 crossref_primary_10_1016_j_synbio_2020_06_007 crossref_primary_10_1128_mSystems_00517_20 crossref_primary_10_1128_aem_00929_22 crossref_primary_10_1007_s42995_023_00192_z crossref_primary_10_1098_rspb_2022_0079 crossref_primary_10_1099_ijsem_0_003071 crossref_primary_10_3389_feart_2024_1287226 crossref_primary_10_1016_j_scitotenv_2023_166145 |
Cites_doi | 10.1128/MMBR.00025-13 10.1186/1471-2180-11-221 10.4319/lo.1997.42.4.0705 10.1099/ijs.0.02805-0 10.1111/j.1574-6968.2007.00970.x 10.1099/ijs.0.053397-0 10.1093/nar/25.17.3389 10.1038/ismej.2013.228 10.1111/j.1574-6941.1995.tb00133.x 10.1186/1471-2180-14-83 10.7717/peerj.115 10.1128/aem.45.5.1545-1547.1983 10.1111/j.1462-2920.2008.01598.x 10.1002/bimj.200810425 10.1074/jbc.M708019200 10.1128/AEM.05834-11 10.1093/molbev/mst197 10.1099/00207713-50-3-955 10.1007/BF00245336 10.1128/AEM.00271-10 10.1099/ijs.0.02796-0 10.1099/ijs.0.028118-0 10.1099/ijs.0.02481-0 10.1126/science.1118052 10.1099/ijs.0.058172-0 10.1038/ismej.2014.129 10.1128/AEM.72.4.2637-2643.2006 10.1271/bbb.62.1925 10.1023/A:1020684815474 10.1111/j.1462-2920.2011.02605.x 10.1038/ismej.2007.65 10.18637/jss.v064.i09 10.1111/1462-2920.12896 10.1029/2002GB001895 10.1111/1462-2920.12249 10.1128/AEM.02852-15 10.4319/lo.1969.14.2.0297 10.1002/lom3.10005 10.1128/JB.120.2.955-964.1974 10.1111/j.1462-2920.2011.02464.x 10.1016/S0168-6445(03)00023-8 10.1007/BF01568138 10.1128/aem.57.12.3476-3481.1991 10.1042/BST20110712 10.1128/JB.06267-11 10.1093/molbev/msn067 10.1093/nar/gkt1226 10.1128/AEM.56.6.1875-1881.1990 10.1111/j.1574-6968.1982.tb08632.x 10.1128/AEM.70.12.7445-7455.2004 10.1099/ijs.0.062927-0 10.1111/j.1574-6941.2006.00122.x 10.1089/cmb.2012.0021 10.1128/MMBR.60.2.439-471.1996 10.1111/1462-2920.12487 10.1007/s00253-014-5766-8 10.1099/00207713-26-2-226 10.5194/acp-7-739-2007 10.1029/2010GL045534 10.1099/ijs.0.040568-0 10.1099/13500872-141-8-1947 10.4056/sigs.2305090 10.1016/j.bej.2010.01.003 10.1371/journal.pone.0023973 10.1016/j.femsle.2005.07.016 10.1029/2004GB002294 10.1038/ismej.2010.168 10.1099/ijs.0.63493-0 10.1186/1471-2164-9-75 10.1126/science.1157890 10.1111/j.1462-2920.2004.00672.x 10.1099/ijs.0.063503-0 10.1099/ijs.0.63358-0 10.1111/1462-2920.12935 10.3389/fmicb.2014.00487 10.1007/s10533-007-9132-0 10.1038/ismej.2010.190 10.1029/2003GL017933 10.1016/S0065-2164(07)00005-6 10.1099/ijs.0.005157-0 10.1074/jbc.M303282200 10.1038/ismej.2010.169 10.1016/j.mimet.2013.05.007 10.1081/ESE-120022886 10.1007/BF00443577 10.1111/j.1574-6968.2009.01674.x 10.1128/AEM.70.10.6210-6219.2004 10.1038/nature05227 10.1111/j.1472-765X.1989.tb00262.x 10.7717/peerj.23 10.18637/jss.v033.i07 10.1371/journal.pone.0102458 |
ContentType | Journal Article |
Copyright | 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. 2016 Society for Applied Microbiology and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. – notice: 2016 Society for Applied Microbiology and John Wiley & Sons Ltd |
DBID | BSCLL 24P WIN CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 |
DOI | 10.1111/1462-2920.13485 |
DatabaseName | Istex Open Access: Wiley-Blackwell Open Access Journals Wiley Free Archive Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Oceanic Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Environment Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Oceanic Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Industrial and Applied Microbiology Abstracts (Microbiology A) Environment Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1462-2920 |
EndPage | 4536 |
ExternalDocumentID | 4284490591 10_1111_1462_2920_13485 27501305 EMI13485 ark_67375_WNG_TM0JZ8GS_V |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | ANE, North Sea |
GeographicLocations_xml | – name: ANE, North Sea |
GrantInformation_xml | – fundername: HJM Op den Camp gratefully acknowledges funding by ERC grant funderid: 669371 – fundername: Ghent University funderid: BOF09/GOA/005 – fundername: Scientific Research Flanders funderid: FWO11/PDO/084 and FWO15/PDOH1/084 – fundername: Innovation by Science and Technology funderid: IWT/111108 – fundername: Inter‐University Attraction Pole (IUAP) funderid: 24002002 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OBS OIG OVD P2P P2W P2X P4D Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH YUY ZZTAW ~02 ~IA ~KM ~WT 24P WIN CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QH 7QL 7ST 7T7 7TN 7U9 7UA 8FD C1K F1W FR3 H94 H95 H97 L.G M7N P64 SOI 7X8 |
ID | FETCH-LOGICAL-c5495-a2d7cb52583de85683fea9e1f890c7a18b14c94a25e9e3d67fcd030490ad9f2f3 |
IEDL.DBID | 33P |
ISSN | 1462-2912 |
IngestDate | Fri Aug 16 01:30:26 EDT 2024 Sat Aug 17 01:20:24 EDT 2024 Tue Nov 19 04:30:12 EST 2024 Thu Nov 21 22:15:55 EST 2024 Sat Sep 28 08:47:42 EDT 2024 Sat Aug 24 00:51:58 EDT 2024 Wed Oct 30 09:54:54 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Attribution-NonCommercial-NoDerivs 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5495-a2d7cb52583de85683fea9e1f890c7a18b14c94a25e9e3d67fcd030490ad9f2f3 |
Notes | ark:/67375/WNG-TM0JZ8GS-V ArticleID:EMI13485 HJM Op den Camp gratefully acknowledges funding by ERC grant - No. 669371 Ghent University - No. BOF09/GOA/005 istex:D3FFD90FAB5917EAF23B7AEBDA1B4D382619B2B4 Scientific Research Flanders - No. FWO11/PDO/084 and FWO15/PDOH1/084 Innovation by Science and Technology - No. IWT/111108 Inter-University Attraction Pole (IUAP) - No. 24002002 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13485 |
PMID | 27501305 |
PQID | 1851045412 |
PQPubID | 1066360 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1859486548 proquest_miscellaneous_1851690234 proquest_journals_1851045412 crossref_primary_10_1111_1462_2920_13485 pubmed_primary_27501305 wiley_primary_10_1111_1462_2920_13485_EMI13485 istex_primary_ark_67375_WNG_TM0JZ8GS_V |
PublicationCentury | 2000 |
PublicationDate | December 2016 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December 2016 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Environmental microbiology |
PublicationTitleAlternate | Environ Microbiol |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Altschul, S. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402. Beck, D.A.C., Kalyuzhnaya, M.G., Malfatti, S., Tringe, S.G., Glavina del Rio, T., et al. (2013) A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 1e23 Inagaki, F., Tsunogai, U., Suzuki, M., Kosaka, A., Machiyama, H., et al. (2004) Characterization of C1-metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing pmoA, mmoX, mxaF, mcrA, and 16S rRNA genes. Appl Environ Microbiol 70: 7445-7455. Hoefman, S., van der Ha, D., Boon, N., Vandamme, P., De Vos, P., et al. (2014) Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiol 14: 83. Abdallah, R.Z., Adel, M., Ouf, A., Sayed, A., Ghazy, M.A., et al. (2014) Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol 5: 487. Heikes, B.G., Chang, W., Pilson, M.E.Q., Swift, E., Singh, H.B., et al. (2002) Atmospheric methanol budget and ocean implication. Global Biogeochem Cycles 16: 80-1-80-13. Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., et al. (2008) The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9: 75. Patt, T.E., Cole, G.C., Hanson, R.S., Patt, T.O.M.E., and Bland, J. (1974) Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. J Bacteriol 120: 955-964. Dedysh, S.N., Berestovskaya, Y.Y., Vasylieva, L.V., Belova, S.E., Khmelenina, V.N., et al. (2004b) Methylocella tundrae sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands. Int J Syst Evol Microbiol 54: 151-156. McDonald, I.R., Smith, K., and Lidstrom, M.E. (2005) Methanotrophic populations in estuarine sediment from Newport Bay, California. FEMS Microbiol Lett 250: 287-293. Williams, P.M. (1969) The determination of dissolved organic carbon in sea-water: A comparison of two methods. Limnol Oceanogr 14: 297-298. Rockne, K.J., and Strand, S.E. (2003) Amplification of marine methanotrophic enrichment DNA with 16S rDNA PCR primers for type II alpha proteobacteria methanotrophs. J Environ Sci Health a Tox Hazard Subst Environ Eng 38: 1877-1887. Fuse, H., Ohta, M., Takimura, O., Murakami, K., Inoue, H., et al. (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci Biotechnol Biochem 62: 1925-1931. Le, S.Q., and Gascuel, O. (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25: 1307-1320. Van Aken, B., Peres, C.M., Doty, S.L., Yoon, J.M., and Schnoor, J.L. (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34). Int J Syst Evol Microbiol 54: 1191-1196. Zwietering, M.H., Jongenburger, I., Rombouts, F.M., and van 'T Riet, K. (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56: 1875-1881. Gilberthorpe, N.J., and Poole, R.K. (2008) Nitric oxide homeostasis in Salmonella typhimurium. J Biol Chem 283: 11146-11154. Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., et al. (2014) The SEED and the rapid annotation of microbial genomes using Subsystems technology (RAST). Nucleic Acids Res 42: D206-D214. Beale, R., Liss, P.S., and Nightingale, P.D. (2010) First oceanic measurements of ethanol and propanol. Geophys Res Lett 37: 1-5. Corker, H., and Poole, R.K. (2003) Nitric oxide formation by Escherichia coli. Dependence on nitrite reductase, the NO-sensing regulator Fnr, and flavohemoglobin Hmp. J Biol Chem 278: 31584-31592. Nercessian, O., Bienvenu, N., Moreira, D., Prieur, D., and Jeanthon, C. (2005) Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments. Environ Microbiol 7: 118-132. Neufeld, J.D., Schäfer, H., Cox, M.J., Boden, R., McDonald, I.R., et al. (2007) Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine Metabolism. isme J 1: 480-491. Sinha, V., Williams, J., Meyerhöfer, M., Riebesell, U., Paulino, A.I., et al. (2007) Air-sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment. Atmos Chem Phys 7: 739-755. Sun, J., Steindler, L., Thrash, J.C., Halsey, K.H., Smith, D.P., et al. (2011) One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 6: e23973. Pol, A., Barends, T.R.M., Dietl, A., Khadem, A.F., Eygensteyn, J., et al. (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16: 255-264. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725-2729. Nyerges, G., and Stein, L.Y. (2009) Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett 297: 131-136. Smith, M.S. (1983) Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity. Appl Environ Microbiol 45: 1545-1547. Dunfield, P.F., Khmelenina, V.N., Suzina, N.E., Trotsenko, Y. A., and Dedysh, S.N. (2003) Methylocella silvestris sp. nov., a novel methonotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol 53: 1231-1239. Keltjens, J.T., Pol, A., Reimann, J., and Op Den Camp, H.J.M. (2014) PQQ-dependent methanol dehydrogenases: Rare-earth elements make a difference. Appl Microbiol Biotechnol 98: 6163-6183. Heylen, K., Vanparys, B., Wittebolle, L., Boon, N., De, V.P., et al. (2006) Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study cultivation of denitrifying bacteria. Appl Environ Microbiol 72: 2637-2643. Beck, D.A.C., McTaggart, T.L., Setboonsarng, U., Vorobev, A., Kalyuzhnaya, M.G., et al. (2014) The expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. PLoS One 9: e102458. Dedysh, S.N., Dunfield, P.F., and Trotsenko, Y. A. (2004a) Methane utilization by Methylobacterium species: New edivence but still no proof for an old controversy [3]. Int J Syst Evol Microbiol 54: 1919-1920. Salter, I., Galand, P.E., Fagervold, S.K., Lebaron, P., Obernosterer, I., et al. (2015) Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. isme J 9: 347-360. Håvelsrud, O., Haverkamp, T.H., Kristensen, T., Jakobsen, K.S., and Rike, A. (2011) A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments. BMC Microbiol 11: 1221. Cleveland, C.C., and Liptzin, D. (2007) C:N:P stoichiometry in soil: Is there a "Redfield ratio" for the microbial biomass? Biogeochemistry 85: 235-252. Chistoserdova, L. (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13: 2603-2622. Dixon, J.L., Beale, R., and Nightingale, P.D. (2011) Microbial methanol uptake in northeast Atlantic Waters. isme J 5: 704-716. King, G.M. (1991) Measurement of acetate concentrations in marine pore waters by using an enzymatic approach. Appl Environ Microbiol 57: 3476-3481. Rahman, M.T., Crombie, A., Chen, Y., Stralis-Pavese, N., Bodrossy, L., et al. (2011) Environmental distribution and abundance of the facultative methanotroph Methylocella. isme J 5: 1061-1066. Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., et al. (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19: 455-477. Klotz, M.G., and Stein, L.Y. (2008) Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol Lett 278: 146-156. van Heeswijk, W.C., Westerhoff, H.V., and Boogerd, F.C. (2013) Nitrogen assimilation in Escherichia coli: Putting molecular data into a systems perspective. Microbiol Mol Biol Rev 77: 628-695. Brusseau, G.A., Tsien, H.C., Hanson, R.S., and Wackett, L.P. (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity. Biodegradation 1: 19-29. Singh, H.B. (2003) Oxygenated volatile organic chemicals in the oceans: Inferences and implications based on atmospheric observations and air-sea exchange models. Geophys Res Lett 30: 1862. Hothorn, T., Bretz, F., and Westfall, P. (2008) Simultaneous inference in general parametric models. Biometrical J 50: 346-363. Kahm, M., Hasenbrink, G., Lichtenberg-Fraté, H., Ludwig, J., and Kschischo, M. (2010) grofit: Fitting biological growth curves with R. J Stat Softw 33: 1-21. Sowell, S.M., Abraham, P.E., Shah, M., Verberkmoes, N.C., Smith, D.P., et al. (2011) Environmental proteomics of microbial plankton in a highly productive coastal upwelling System. isme J 5: 856-865. Galbally, I.E., and Kirstine, W. (2002) The production of methanol by flowering plants and the global cycle of methanol. J Atmos Chem 43: 195-229. Hirayama, H., Abe, M., Miyazaki, M., Nunoura, T., Furushima, Y., et al. (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int J Syst Evol Microbiol 64: 989-999. Takeuchi, M., Kamagata, Y., Oshima, K., Hanada, S., Tamaki, H., et al. (2014b) Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int J Syst Evol Microbiol 64: 3240-3246. Vorobev, A.V., Baani, M., Doronina, N.V., Brady, A.L., Liesack, W., et al. (2011) Methyloferula stellata gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxyge 2002; 16 1991; 157 2005; 250 1990; 56 2006; 72 2013; 1 2014b; 64 1991; 57 1997; 42 2013; 63 2011; 61 2008; 9 2000; 50 2011; 11 2012; 19 2011; 13 2012; 14 2003; 278 2011; 193 1976; 26 2003; 53 2014; 64 2014; 5 2004; 70 2013; 94 2002; 43 2008; 25 2014; 16 1996; 60 2014; 14 2007; 7 2016; 82 2014a; 64 2008; 63 2008; 278 2014; 9 2007; 1 2014; 8 2009; 59 2014; 98 2006; 443 2015; 13 2010; 33 1987; 14 2010; 76 2015; 17 2010; 37 1995; 17 2011 2006; 57 1997; 25 1989; 8 1988; 54 2009; 297 2011; 77 1969; 14 2003; 38 2008; 10 2008; 50 1974; 120 2011; 39 1998; 62 2008; 320 2015; 9 2011; 6 2011; 5 2003; 30 2008; 283 2006; 311 2014; 42 2004; 54 1990; 1 2010; 49 2004; 18 2013; 77 2004a; 54 2015; 64 2013; 30 2015; 65 2005; 7 2003; 27 2013 2007; 85 2012; 6 2004b; 54 1995; 141 2005; 55 1983; 45 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_15_1 e_1_2_6_38_1 King G.M. (e_1_2_6_46_1) 1991; 57 e_1_2_6_57_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Valentine D.L. (e_1_2_6_84_1) 2011 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_68_1 e_1_2_6_52_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_94_1 e_1_2_6_50_1 e_1_2_6_71_1 e_1_2_6_92_1 e_1_2_6_90_1 Smith M.S. (e_1_2_6_74_1) 1983; 45 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_58_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_80_1 e_1_2_6_40_1 e_1_2_6_61_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_69_1 |
References_xml | – volume: 157 start-page: 60 year: 1991 end-page: 65 article-title: Nitrogen metabolism in marine methanotrophs publication-title: Arch Microbiol – volume: 9 start-page: 347 year: 2015 end-page: 360 article-title: Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea publication-title: isme J – volume: 27 start-page: 449 year: 2003 end-page: 479 article-title: Evolution of the soluble diiron monooxygenases publication-title: FEMS Microbiol Rev – volume: 5 start-page: 704 year: 2011 end-page: 716 article-title: Microbial methanol uptake in northeast Atlantic Waters publication-title: isme J – volume: 9 start-page: e102458 year: 2014 article-title: The expanded diversity of from Lake Washington through cultivation and genomic sequencing of novel ecotypes publication-title: PLoS One – volume: 13 start-page: 40 year: 2015 end-page: 52 article-title: Toxic effects of lab‐grade butyl rubber stoppers on aerobic methane oxidation publication-title: Limnol Oceanogr Methods – volume: 19 start-page: 455 year: 2012 end-page: 477 article-title: SPAdes: A new genome assembly algorithm and its applications to single‐cell sequencing publication-title: J Comput Biol – volume: 37 start-page: 1 year: 2010 end-page: 5 article-title: First oceanic measurements of ethanol and propanol publication-title: Geophys Res Lett – volume: 54 start-page: 151 year: 2004b end-page: 156 article-title: sp. nov., a novel methanotrophic bacterium from acidic tundra peatlands publication-title: Int J Syst Evol Microbiol – volume: 54 start-page: 189 year: 1988 end-page: 199 article-title: Isolation and characterization of marine methanotrophs publication-title: Antonie Van Leeuwenhoek – volume: 55 start-page: 1457 year: 2005 end-page: 1464 article-title: Six novel species isolated from deteriorated mural paintings publication-title: Int J Syst Evol Microbiol – volume: 1 start-page: 19 year: 1990 end-page: 29 article-title: Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect soluble methane monooxygenase activity publication-title: Biodegradation – volume: 16 start-page: 255 year: 2014 end-page: 264 article-title: Rare earth metals are essential for methanotrophic life in volcanic mudpots publication-title: Environ Microbiol – volume: 72 start-page: 2637 year: 2006 end-page: 2643 article-title: Cultivation of denitrifying bacteria: Optimization of isolation conditions and diversity study cultivation of denitrifying bacteria publication-title: Appl Environ Microbiol – volume: 77 start-page: 8509 year: 2011 end-page: 8515 article-title: Stimulation of methanotrophic growth in cocultures by cobalamin excreted by publication-title: Appl Environ Microbiol – volume: 64 start-page: 462 year: 2014a end-page: 468 article-title: gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent publication-title: Int J Syst Evol Microbiol – volume: 54 start-page: 1191 year: 2004 end-page: 1196 article-title: sp. nov., a novel aerobic, pink‐pigmented, facultatively methylotrophic, methane‐utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34) publication-title: Int J Syst Evol Microbiol – volume: 141 start-page: 1947 year: 1995 end-page: 1955 article-title: Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment publication-title: Microbiology – volume: 13 start-page: 2603 year: 2011 end-page: 2622 article-title: Modularity of methylotrophy, revisited publication-title: Environ Microbiol – volume: 49 start-page: 277 year: 2010 end-page: 288 article-title: Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering publication-title: Biochem Eng J – volume: 62 start-page: 1925 year: 1998 end-page: 1931 article-title: Oxidation of trichloroethylene and dimethyl sulfide by a marine strain containing soluble methane monooxygenase publication-title: Biosci Biotechnol Biochem – volume: 38 start-page: 1877 year: 2003 end-page: 1887 article-title: Amplification of marine methanotrophic enrichment DNA with 16S rDNA PCR primers for type II alpha proteobacteria methanotrophs publication-title: J Environ Sci Health a Tox Hazard Subst Environ Eng – volume: 7 start-page: 739 year: 2007 end-page: 755 article-title: Air‐sea fluxes of methanol, acetone, acetaldehyde, isoprene and DMS from a Norwegian fjord following a phytoplankton bloom in a mesocosm experiment publication-title: Atmos Chem Phys – volume: 64 start-page: 1 year: 2015 end-page: 17 article-title: nparcomp: An R software package for nonparametric multiple comparisons and simultaneous confidence intervals publication-title: J Stat Softw – volume: 278 start-page: 146 year: 2008 end-page: 156 article-title: Nitrifier genomics and evolution of the nitrogen cycle publication-title: FEMS Microbiol Lett – volume: 65 start-page: 251 year: 2015 end-page: 259 article-title: gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the “deep sea‐1” clade of marine methanotrophs publication-title: Int J Syst Evol Microbiol – volume: 63 start-page: 1073 year: 2013 end-page: 1082 article-title: gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments publication-title: Int J Syst Evol Microbiol – volume: 33 start-page: 1 year: 2010 end-page: 21 article-title: grofit: Fitting biological growth curves with R publication-title: J Stat Softw – volume: 6 start-page: 11 year: 2012 end-page: 20 article-title: Genome sequence of strain HIMB624, a cultured representative from the OM43 clade of marine publication-title: Stand Genomic Sci – volume: 85 start-page: 235 year: 2007 end-page: 252 article-title: C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? publication-title: Biogeochemistry – volume: 54 start-page: 1919 year: 2004a end-page: 1920 article-title: Methane utilization by species: New edivence but still no proof for an old controversy [3] publication-title: Int J Syst Evol Microbiol – volume: 6 start-page: e23973 year: 2011 article-title: One carbon metabolism in SAR11 pelagic marine bacteria publication-title: PLoS One – volume: 45 start-page: 1545 year: 1983 end-page: 1547 article-title: Nitrous oxide production by is correlated with nitrate reductase activity publication-title: Appl Environ Microbiol – volume: 14 start-page: 83 year: 2014 article-title: Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit publication-title: BMC Microbiol – volume: 42 start-page: D206 year: 2014 end-page: D214 article-title: The SEED and the rapid annotation of microbial genomes using Subsystems technology (RAST) publication-title: Nucleic Acids Res – volume: 56 start-page: 1875 year: 1990 end-page: 1881 article-title: Modeling of the bacterial growth curve publication-title: Appl Environ Microbiol – volume: 283 start-page: 11146 year: 2008 end-page: 11154 article-title: Nitric oxide homeostasis in publication-title: J Biol Chem – volume: 11 start-page: 1221 year: 2011 article-title: A metagenomic study of methanotrophic microorganisms in Coal Oil Point seep sediments publication-title: BMC Microbiol – volume: 320 start-page: 1081 year: 2008 end-page: 1085 article-title: Resource partitioning and sympatric differentiation among closely related bacterioplankton publication-title: Science – volume: 5 start-page: 1061 year: 2011 end-page: 1066 article-title: Environmental distribution and abundance of the facultative methanotroph publication-title: isme J – volume: 311 start-page: 1737 year: 2006 end-page: 1740 article-title: Niche partitioning among ecotypes along ocean‐scale environmental gradients publication-title: Science – volume: 1 start-page: 480 year: 2007 end-page: 491 article-title: Stable‐isotope probing implicates spp and novel in marine methanol and methylamine Metabolism publication-title: isme J – volume: 77 start-page: 628 year: 2013 end-page: 695 article-title: Nitrogen assimilation in : Putting molecular data into a systems perspective publication-title: Microbiol Mol Biol Rev – volume: 63 start-page: 183 year: 2008 end-page: 229 article-title: Metabolic aspects of aerobic obligate methanotrophy publication-title: Adv Appl Microbiol – volume: 17 start-page: 3937 year: 2015 end-page: 3948 article-title: encoding an alternative methanol dehydrogenase is widespread in coastal marine environments publication-title: Environ Microbiol – volume: 59 start-page: 1771 year: 2009 end-page: 1786 article-title: Differentiation of species of the family by AFLP DNA fingerprinting: is a later heterotypic synonym of publication-title: Int J Syst Evol Microbiol – volume: 5 start-page: 487 year: 2014 article-title: Aerobic methanotrophic communities at the Red Sea brine‐seawater interface publication-title: Front Microbiol – volume: 8 start-page: 151 year: 1989 end-page: 156 article-title: Rapid extraction of bacterial genomic DNA with guanidium thiocyanate publication-title: Lett Appl Microbiol – volume: 70 start-page: 6210 year: 2004 end-page: 6219 article-title: Flow sorting of marine bacterioplankton after fluorescence hybridization publication-title: Appl Environ Microbiol – volume: 30 start-page: 1862 year: 2003 article-title: Oxygenated volatile organic chemicals in the oceans: Inferences and implications based on atmospheric observations and air‐sea exchange models publication-title: Geophys Res Lett – volume: 1 start-page: e115 year: 2013 article-title: Comparative transcriptomics in three species uncover different strategies for environmental adaptation publication-title: PeerJ – volume: 16 start-page: 3487 year: 2014 end-page: 3498 article-title: Interactions between anaerobic ammonium and sulfur‐oxidizing bacteria in a laboratory scale model system publication-title: Environ Microbiol – volume: 50 start-page: 346 year: 2008 end-page: 363 article-title: Simultaneous inference in general parametric models publication-title: Biometrical J – volume: 57 start-page: 3476 year: 1991 end-page: 3481 article-title: Measurement of acetate concentrations in marine pore waters by using an enzymatic approach publication-title: Appl Environ Microbiol – volume: 26 start-page: 226 year: 1976 end-page: 229 article-title: , a new genus of facultatively methylotrophic bacteria publication-title: Int J Syst Bacteriol – volume: 94 start-page: 73 year: 2013 end-page: 76 article-title: Routine bacterial analysis with automated flow cytometry publication-title: J Microbiol Methods – volume: 193 start-page: 7001 year: 2011 end-page: 7002 article-title: Complete genome sequence of the aerobic marine methanotroph MC09 publication-title: J Bacteriol – volume: 14 start-page: 297 year: 1969 end-page: 298 article-title: The determination of dissolved organic carbon in sea‐water: A comparison of two methods publication-title: Limnol Oceanogr – volume: 25 start-page: 3389 year: 1997 end-page: 3402 article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res – volume: 14 start-page: 285 year: 1987 end-page: 293 article-title: The first methane‐oxidizing bacterium from the upper mixing layer of the deep ocean: sp. nov publication-title: Curr Microbiol – volume: 120 start-page: 955 year: 1974 end-page: 964 article-title: Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy publication-title: J Bacteriol – volume: 61 start-page: 2456 year: 2011 end-page: 2463 article-title: gen. nov., sp. nov., an acidophilic, obligately methanotrophic bacterium that possesses only a soluble methane monooxygenase publication-title: Int J Syst Evol Microbiol – volume: 18 start-page: 1 year: 2004 end-page: 8 article-title: Uptake of methanol to the North Atlantic Ocean surface publication-title: Global Biogeochem Cycles – volume: 60 start-page: 439 year: 1996 end-page: 471 article-title: Methanotrophic bacteria publication-title: Microbiol Rev – volume: 16 start-page: 80–1 year: 2002 end-page: 80–13 article-title: Atmospheric methanol budget and ocean implication publication-title: Global Biogeochem Cycles – volume: 7 start-page: 118 year: 2005 end-page: 132 article-title: Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep‐sea hydrothermal environments publication-title: Environ Microbiol – volume: 278 start-page: 31584 year: 2003 end-page: 31592 article-title: Nitric oxide formation by . Dependence on nitrite reductase, the NO‐sensing regulator Fnr, and flavohemoglobin Hmp publication-title: J Biol Chem – volume: 9 start-page: 75 year: 2008 article-title: The RAST server: Rapid annotations using subsystems technology publication-title: BMC Genomics – volume: 82 start-page: 1215 year: 2016 end-page: 1226 article-title: Comprehensive genomic analyses of the OM43 clade, including a novel species from the Red Sea, indicate ecotype differentiation among marine methylotrophs publication-title: Appl Environ Microbiol – volume: 25 start-page: 1307 year: 2008 end-page: 1320 article-title: An improved general amino acid replacement matrix publication-title: Mol Biol Evol – volume: 50 start-page: 955 year: 2000 end-page: 969 article-title: gen. nov., sp. nov., a new methane‐oxidizing acidophilic bacterium from peat bogs, representing a novel subtype of serine‐ pathway methanotrophs publication-title: Int J Syst Evol Microbiol – volume: 5 start-page: 856 year: 2011 end-page: 865 article-title: Environmental proteomics of microbial plankton in a highly productive coastal upwelling System publication-title: isme J – volume: 53 start-page: 1231 year: 2003 end-page: 1239 article-title: sp. nov., a novel methonotroph isolated from an acidic forest cambisol publication-title: Int J Syst Evol Microbiol – volume: 17 start-page: 4007 year: 2015 end-page: 4018 article-title: Combining metagenomics with metaproteomics and stable isotope probing reveals metabolic pathways used by a naturally occurring marine methylotroph publication-title: Environ Microbiol – volume: 443 start-page: 854 year: 2006 end-page: 858 article-title: Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink publication-title: Nature – volume: 17 start-page: 85 year: 1995 end-page: 94 article-title: Acetate bioavailability and turnover in an estuarine sediment publication-title: FEMS Microbiol Ecol – volume: 57 start-page: 251 year: 2006 end-page: 259 article-title: Diversity of functional genes for methanotrophs in sediments associated with gas hydrates and hydrocarbon seeps in the Gulf of Mexico publication-title: FEMS Microbiol Ecol – volume: 14 start-page: 630 year: 2012 end-page: 640 article-title: Synergistic metabolism of a broad range of C1 compounds in the marine methylotrophic bacterium HTCC2181 publication-title: Environ Microbiol – start-page: 171 year: 2011 article-title: Emerging topics in marine methane biogeochemistry publication-title: Ann Rev Mar Sci 3147– – volume: 43 start-page: 195 year: 2002 end-page: 229 article-title: The production of methanol by flowering plants and the global cycle of methanol publication-title: J Atmos Chem – volume: 64 start-page: 989 year: 2014 end-page: 999 article-title: gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family fam. nov publication-title: Int J Syst Evol Microbiol – volume: 76 start-page: 6412 year: 2010 end-page: 6422 article-title: Identification of novel methane‐, ethane‐, and propane‐oxidizing bacteria at marine hydrocarbon seeps by stable isotope probing publication-title: Appl Environ Microbiol – year: 2013 article-title: A metagenomic insight into freshwater methane‐utilizing communities and evidence for cooperation between the and the publication-title: PeerJ 1e23 – volume: 8 start-page: 1221 year: 2014 end-page: 1236 article-title: Connecting thermal physiology and latitudinal niche partitioning in marine publication-title: isme J – volume: 30 start-page: 2725 year: 2013 end-page: 2729 article-title: MEGA6: Molecular evolutionary genetics analysis version 6.0 publication-title: Mol Biol Evol – volume: 250 start-page: 287 year: 2005 end-page: 293 article-title: Methanotrophic populations in estuarine sediment from Newport Bay, California publication-title: FEMS Microbiol Lett – volume: 297 start-page: 131 year: 2009 end-page: 136 article-title: Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria publication-title: FEMS Microbiol Lett – volume: 39 start-page: 1826 year: 2011 end-page: 1831 article-title: Nitrifying and denitrifying pathways of methanotrophic bacteria publication-title: Biochem Soc Trans – volume: 98 start-page: 6163 year: 2014 end-page: 6183 article-title: PQQ‐dependent methanol dehydrogenases: Rare‐earth elements make a difference publication-title: Appl Microbiol Biotechnol – volume: 42 start-page: 705 year: 1997 end-page: 713 article-title: Acetate cycling in the water column and surface sediment of Long Island Sound following a bloom publication-title: Limnol Oceanogr – volume: 10 start-page: 1771 year: 2008 end-page: 1782 article-title: The small genome of an abundant coastal ocean methylotroph publication-title: Environ Microbiol – volume: 70 start-page: 7445 year: 2004 end-page: 7455 article-title: Characterization of C1‐metabolizing prokaryotic communities in methane seep habitats at the Kuroshima Knoll, Southern Ryukyu Arc, by analyzing , , , , and 16S rRNA genes publication-title: Appl Environ Microbiol – volume: 64 start-page: 3240 year: 2014b end-page: 3246 article-title: sp. nov., a thermotolerant, methane‐oxidizing bacterium isolated from marine sediments, and emended description of the genus publication-title: Int J Syst Evol Microbiol – ident: e_1_2_6_86_1 doi: 10.1128/MMBR.00025-13 – ident: e_1_2_6_28_1 doi: 10.1186/1471-2180-11-221 – ident: e_1_2_6_92_1 doi: 10.4319/lo.1997.42.4.0705 – ident: e_1_2_6_18_1 doi: 10.1099/ijs.0.02805-0 – ident: e_1_2_6_47_1 doi: 10.1111/j.1574-6968.2007.00970.x – ident: e_1_2_6_78_1 doi: 10.1099/ijs.0.053397-0 – ident: e_1_2_6_3_1 doi: 10.1093/nar/25.17.3389 – ident: e_1_2_6_63_1 doi: 10.1038/ismej.2013.228 – ident: e_1_2_6_90_1 doi: 10.1111/j.1574-6941.1995.tb00133.x – ident: e_1_2_6_34_1 doi: 10.1186/1471-2180-14-83 – ident: e_1_2_6_89_1 doi: 10.7717/peerj.115 – volume: 45 start-page: 1545 year: 1983 ident: e_1_2_6_74_1 article-title: Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity publication-title: Appl Environ Microbiol doi: 10.1128/aem.45.5.1545-1547.1983 contributor: fullname: Smith M.S. – ident: e_1_2_6_24_1 doi: 10.1111/j.1462-2920.2008.01598.x – ident: e_1_2_6_36_1 doi: 10.1002/bimj.200810425 – ident: e_1_2_6_23_1 doi: 10.1074/jbc.M708019200 – ident: e_1_2_6_39_1 doi: 10.1128/AEM.05834-11 – ident: e_1_2_6_80_1 doi: 10.1093/molbev/mst197 – ident: e_1_2_6_16_1 doi: 10.1099/00207713-50-3-955 – ident: e_1_2_6_51_1 doi: 10.1007/BF00245336 – ident: e_1_2_6_66_1 doi: 10.1128/AEM.00271-10 – ident: e_1_2_6_85_1 doi: 10.1099/ijs.0.02796-0 – ident: e_1_2_6_88_1 doi: 10.1099/ijs.0.028118-0 – ident: e_1_2_6_20_1 doi: 10.1099/ijs.0.02481-0 – ident: e_1_2_6_43_1 doi: 10.1126/science.1118052 – ident: e_1_2_6_33_1 doi: 10.1099/ijs.0.058172-0 – ident: e_1_2_6_69_1 doi: 10.1038/ismej.2014.129 – ident: e_1_2_6_30_1 doi: 10.1128/AEM.72.4.2637-2643.2006 – ident: e_1_2_6_21_1 doi: 10.1271/bbb.62.1925 – ident: e_1_2_6_22_1 doi: 10.1023/A:1020684815474 – ident: e_1_2_6_26_1 doi: 10.1111/j.1462-2920.2011.02605.x – ident: e_1_2_6_55_1 doi: 10.1038/ismej.2007.65 – ident: e_1_2_6_48_1 doi: 10.18637/jss.v064.i09 – ident: e_1_2_6_81_1 doi: 10.1111/1462-2920.12896 – ident: e_1_2_6_29_1 doi: 10.1029/2002GB001895 – ident: e_1_2_6_64_1 doi: 10.1111/1462-2920.12249 – ident: e_1_2_6_42_1 doi: 10.1128/AEM.02852-15 – ident: e_1_2_6_91_1 doi: 10.4319/lo.1969.14.2.0297 – ident: e_1_2_6_57_1 doi: 10.1002/lom3.10005 – ident: e_1_2_6_60_1 doi: 10.1128/JB.120.2.955-964.1974 – ident: e_1_2_6_12_1 doi: 10.1111/j.1462-2920.2011.02464.x – ident: e_1_2_6_50_1 doi: 10.1016/S0168-6445(03)00023-8 – ident: e_1_2_6_71_1 doi: 10.1007/BF01568138 – volume: 57 start-page: 3476 year: 1991 ident: e_1_2_6_46_1 article-title: Measurement of acetate concentrations in marine pore waters by using an enzymatic approach publication-title: Appl Environ Microbiol doi: 10.1128/aem.57.12.3476-3481.1991 contributor: fullname: King G.M. – ident: e_1_2_6_76_1 doi: 10.1042/BST20110712 – ident: e_1_2_6_9_1 doi: 10.1128/JB.06267-11 – ident: e_1_2_6_49_1 doi: 10.1093/molbev/msn067 – ident: e_1_2_6_59_1 doi: 10.1093/nar/gkt1226 – ident: e_1_2_6_94_1 doi: 10.1128/AEM.56.6.1875-1881.1990 – ident: e_1_2_6_10_1 doi: 10.1111/j.1574-6968.1982.tb08632.x – ident: e_1_2_6_40_1 doi: 10.1128/AEM.70.12.7445-7455.2004 – ident: e_1_2_6_82_1 doi: 10.1099/ijs.0.062927-0 – ident: e_1_2_6_93_1 doi: 10.1111/j.1574-6941.2006.00122.x – ident: e_1_2_6_5_1 doi: 10.1089/cmb.2012.0021 – ident: e_1_2_6_27_1 doi: 10.1128/MMBR.60.2.439-471.1996 – ident: e_1_2_6_68_1 doi: 10.1111/1462-2920.12487 – ident: e_1_2_6_45_1 doi: 10.1007/s00253-014-5766-8 – ident: e_1_2_6_61_1 doi: 10.1099/00207713-26-2-226 – ident: e_1_2_6_73_1 doi: 10.5194/acp-7-739-2007 – ident: e_1_2_6_6_1 doi: 10.1029/2010GL045534 – ident: e_1_2_6_32_1 doi: 10.1099/ijs.0.040568-0 – ident: e_1_2_6_35_1 doi: 10.1099/13500872-141-8-1947 – ident: e_1_2_6_37_1 doi: 10.4056/sigs.2305090 – ident: e_1_2_6_41_1 doi: 10.1016/j.bej.2010.01.003 – ident: e_1_2_6_77_1 doi: 10.1371/journal.pone.0023973 – ident: e_1_2_6_53_1 doi: 10.1016/j.femsle.2005.07.016 – ident: e_1_2_6_11_1 doi: 10.1029/2004GB002294 – ident: e_1_2_6_75_1 doi: 10.1038/ismej.2010.168 – ident: e_1_2_6_17_1 doi: 10.1099/ijs.0.63493-0 – ident: e_1_2_6_4_1 doi: 10.1186/1471-2164-9-75 – ident: e_1_2_6_38_1 doi: 10.1126/science.1157890 – ident: e_1_2_6_54_1 doi: 10.1111/j.1462-2920.2004.00672.x – ident: e_1_2_6_79_1 doi: 10.1099/ijs.0.063503-0 – ident: e_1_2_6_31_1 doi: 10.1099/ijs.0.63358-0 – ident: e_1_2_6_25_1 doi: 10.1111/1462-2920.12935 – ident: e_1_2_6_2_1 doi: 10.3389/fmicb.2014.00487 – ident: e_1_2_6_14_1 doi: 10.1007/s10533-007-9132-0 – ident: e_1_2_6_65_1 doi: 10.1038/ismej.2010.190 – ident: e_1_2_6_72_1 doi: 10.1029/2003GL017933 – ident: e_1_2_6_83_1 doi: 10.1016/S0065-2164(07)00005-6 – ident: e_1_2_6_13_1 doi: 10.1099/ijs.0.005157-0 – ident: e_1_2_6_15_1 doi: 10.1074/jbc.M303282200 – ident: e_1_2_6_19_1 doi: 10.1038/ismej.2010.169 – ident: e_1_2_6_87_1 doi: 10.1016/j.mimet.2013.05.007 – ident: e_1_2_6_67_1 doi: 10.1081/ESE-120022886 – ident: e_1_2_6_52_1 doi: 10.1007/BF00443577 – ident: e_1_2_6_58_1 doi: 10.1111/j.1574-6968.2009.01674.x – ident: e_1_2_6_70_1 doi: 10.1128/AEM.70.10.6210-6219.2004 – ident: e_1_2_6_56_1 doi: 10.1038/nature05227 – ident: e_1_2_6_62_1 doi: 10.1111/j.1472-765X.1989.tb00262.x – ident: e_1_2_6_7_1 doi: 10.7717/peerj.23 – ident: e_1_2_6_44_1 doi: 10.18637/jss.v033.i07 – start-page: 171 year: 2011 ident: e_1_2_6_84_1 article-title: Emerging topics in marine methane biogeochemistry publication-title: Ann Rev Mar Sci 3147– contributor: fullname: Valentine D.L. – ident: e_1_2_6_8_1 doi: 10.1371/journal.pone.0102458 |
SSID | ssj0017370 |
Score | 2.493607 |
Snippet | Summary
Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one‐carbon compounds that are found in high concentrations in... Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one-carbon compounds that are found in high concentrations in marine... Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one‐carbon compounds that are found in high concentrations in marine... Summary Marine methylotrophs play a key role in the global carbon cycle by metabolizing reduced one-carbon compounds that are found in high concentrations in... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 4523 |
SubjectTerms | Alphaproteobacteria - enzymology Alphaproteobacteria - genetics Alphaproteobacteria - isolation & purification Carbon Gene Expression Regulation, Bacterial Gene Expression Regulation, Enzymologic Genomes Methane Methane - metabolism Molecular Sequence Data North Sea Oxygenases - genetics Oxygenases - metabolism Phylogeny Physiology RNA, Bacterial - genetics RNA, Ribosomal, 16S - genetics Sequence Analysis, DNA Species Specificity |
Title | New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase |
URI | https://api.istex.fr/ark:/67375/WNG-TM0JZ8GS-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1462-2920.13485 https://www.ncbi.nlm.nih.gov/pubmed/27501305 https://www.proquest.com/docview/1851045412 https://search.proquest.com/docview/1851690234 https://search.proquest.com/docview/1859486548 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB50RfBlvWt1lQgivlROmrZJHxfdC8Iuwlkv-BLSJMXFQ7ucbmHP8_5xZ5K2uCKK4FMLnZZ0Zr7OTDMXgJeiRCOPdim10tg0lx4x15g89Ubw0i1yW9VU73y4lMdf1Ls9apOzO9XCxP4Q8w83Qkb4XhPATd3_BHKEeJbSrKU3XOSKyswxVghFHOLDvI8gRRgXN9LybGzuQ7k8v9x_xS7dIBZf_M7pvOrDBiO0f_s_LP8ObI8eKNuNKnMXrvn2HtyMMyk39-ESP3vsyKP80Mx5057WoZ8zc1MCB6OKFBb2e9jSG9aj-Qt1cuy0tavB-Z7RWGrTdufr7uwbo2T4OIaCoZ771Yahz0mnQ73yIykeu7brLjaozmhWH8DH_b2Tt4fpOKkhtRhfFqnJnLR1kRVKOK-KUonGm8rzRlULVAKuao5Sz01W-MoLV8rGOtqTrRbGVU3WiIew1XatfwyMy9rWCsM6SVWvHh8gLC-NMAaDp8KJBF5PctJnsSGHngIZ4qkmnurA0wReBTnOdGb9nfLYZKE_Hx_ok6PF-6_qYKk_JbAzCVqPEO41OjKc-hPyLIEX82UEH-2oIGO6IdKUFbo9-R9pqlzhy6gEHkUlmhdEzfXRicCVRl352xtpxGY4efKvNzyFW-jqlTERZwe2zteDfwbXezc8D4j5AW29Evo |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEB-8O0Rf_NarnhpBxJcem6Yf6aPo3a16uwi7fuBLSJMUj1vaY_cKt8_-484k3eKJKIJPLXQampn5ZSbNfAA8FzkaebRLsSm0idPCIeZqncZOC57bUWrKivKdx7Ni-kW-OaAyOUMuTKgPMfxwI2T49ZoATj-kf0I5YjyJqdnSPhepzLZgJ81RHSmNQ3wYThIK4RvG9cQ86cv7UDTPLwNcskw7xOSL37mdl71Yb4YOb_6PCdyCG70Tyl4FrbkNV1xzB66GtpTru_AdVz42cShCtHRONyeVL-nM7CaGg1FSCvNHPmzmNFuhBfSpcuykMYvOuhWjztS6ac-X7dk3RvHwoRMFQ1V3izVDt5Nuu2rhelK8tk3bXqxRo9Gy3oOPhwfz1-O4b9YQG9xiZrFObGGqLMmksE5muRS106XjtSxHqAdcVhwFn-okc6UTNi9qY-lYthxpW9ZJLe7DdtM2bhcYLypTSdzZFZT46nAAYXiuhda4f8qsiODlRlDqLNTkUJu9DPFUEU-V52kEL7wgBzq9PKVQtiJTn6dHaj4Zvfsqj2bqUwR7G0mrHsUrhb4MpxKFPIng2fAY8UeHKsiYtgs0eYmeT_pHmjKVOBkZwYOgRcMHUX199CPwS4Oy_G1GCuHpbx7-6wtP4dp4PjlWx2-n7x_BdfT88hCXswfb58vOPYatle2eePj8AM7SFyI |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB6ahJZe-m7jNmlVKKUXh5VlW_IxNNmkjyyBTR_0ImRLpiGLvezGkD3nj2dGftCE0lLoaQ07a-SZ-TyfVvMAeCNSDPIYl8JCmiKMpUPMlSYOnRE8taO4yHKqdz6cysl3tbdPbXJ2-1qYtj_E8IcbIcO_rwngc1v-AnKEeBTSrKUdLmKVrMFGjGSc2ucLcTwcJEjh58V1wjzquvtQMs-NG1wLTBuk44vfsc7rJNZHofH9_7D-B3Cvo6Bst_WZh3DLVY_gdjuUcvUYLvG9x44cGhDjnDPVae4bOjPbZ3AwKklh_sCHTZ1hS4x_vlCOnVbFrLFuyWgutanq80U9_8koG76dQ8HQ0d1sxZB00mWTz1wnip91VdcXK_RnjKtP4Mt4_-T9YdiNaggL3GAmoYmsLPIkSpSwTiWpEqUzmeOlykboBVzlHM0emyhxmRM2lWVh6VA2GxmblVEpnsJ6VVduExiXeZEr3NdJKnt1eANR8NQIY3D3lFgRwLveTnreduTQ_U6GdKpJp9rrNIC33o6DnFmcUSKbTPS3yYE-ORp9_KEOpvprAFu9oXWH4aVGJsOpQSGPAng9fI3ooyMVVEzdtDJphrwn_qNMFit8GBXAs9aJhgVRd31kEbjS1lf-9kQawekvnv_rD17BneO9sf78YfLpBdxF2pe2STlbsH6-aNw2rC1t89KD5wpJfhXI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Methyloceanibacter+diversity+from+North+Sea+sediments+includes+methanotroph+containing+solely+the+soluble+methane+monooxygenase&rft.jtitle=Environmental+microbiology&rft.au=Vekeman%2C+Bram&rft.au=Kerckhof%2C+Frederiek%E2%80%90Maarten&rft.au=Cremers%2C+Geert&rft.au=de+Vos%2C+Paul&rft.date=2016-12-01&rft.issn=1462-2912&rft.eissn=1462-2920&rft.volume=18&rft.issue=12&rft.spage=4523&rft.epage=4536&rft_id=info:doi/10.1111%2F1462-2920.13485&rft.externalDBID=10.1111%252F1462-2920.13485&rft.externalDocID=EMI13485 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-2912&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-2912&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-2912&client=summon |