Parameterizing surface wind speed over complex topography
Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical...
Saved in:
Published in: | Journal of geophysical research. Atmospheres Vol. 122; no. 2; pp. 651 - 667 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Washington
Blackwell Publishing Ltd
27-01-2017
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high‐resolution wind fields to investigate which terrain parameters most affect near‐surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse‐scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse‐scale wind speed compared well with domain‐averaged ARPS wind speed. To further statistically downscale coarse‐scale wind speed, we use local, fine‐scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine‐scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters.
Key Points
Subgrid parameterization for coarse‐scale wind speed using a subgrid parameterization for the sky view factor
Statistical downscaling using fine‐scale terrain parameters and the subgrid parameterization for coarse‐scale wind speed
Validation of downscaled wind speed with measurements showed overall improved performance compared to applying coarse‐scale wind speed |
---|---|
AbstractList | Subgrid parameterizations are used in coarse-scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high-resolution wind fields to investigate which terrain parameters most affect near-surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse-scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse-scale wind speed compared well with domain-averaged ARPS wind speed. To further statistically downscale coarse-scale wind speed, we use local, fine-scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine-scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters. Key Points * Subgrid parameterization for coarse-scale wind speed using a subgrid parameterization for the sky view factor * Statistical downscaling using fine-scale terrain parameters and the subgrid parameterization for coarse-scale wind speed * Validation of downscaled wind speed with measurements showed overall improved performance compared to applying coarse-scale wind speed Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high‐resolution wind fields to investigate which terrain parameters most affect near‐surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse‐scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse‐scale wind speed compared well with domain‐averaged ARPS wind speed. To further statistically downscale coarse‐scale wind speed, we use local, fine‐scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine‐scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters. Key Points Subgrid parameterization for coarse‐scale wind speed using a subgrid parameterization for the sky view factor Statistical downscaling using fine‐scale terrain parameters and the subgrid parameterization for coarse‐scale wind speed Validation of downscaled wind speed with measurements showed overall improved performance compared to applying coarse‐scale wind speed Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high‐resolution wind fields to investigate which terrain parameters most affect near‐surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse‐scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse‐scale wind speed compared well with domain‐averaged ARPS wind speed. To further statistically downscale coarse‐scale wind speed, we use local, fine‐scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine‐scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters. Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high‐resolution wind fields to investigate which terrain parameters most affect near‐surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse‐scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse‐scale wind speed compared well with domain‐averaged ARPS wind speed. To further statistically downscale coarse‐scale wind speed, we use local, fine‐scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine‐scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters. Subgrid parameterization for coarse‐scale wind speed using a subgrid parameterization for the sky view factor Statistical downscaling using fine‐scale terrain parameters and the subgrid parameterization for coarse‐scale wind speed Validation of downscaled wind speed with measurements showed overall improved performance compared to applying coarse‐scale wind speed |
Author | Helbig, N. Mott, R. Winstral, A. Jonas, T. Herwijnen, A. |
Author_xml | – sequence: 1 givenname: N. orcidid: 0000-0002-8663-7306 surname: Helbig fullname: Helbig, N. email: norahelbig@gmail.com organization: WSL Institute for Snow and Avalanche Research SLF – sequence: 2 givenname: R. surname: Mott fullname: Mott, R. organization: WSL Institute for Snow and Avalanche Research SLF – sequence: 3 givenname: A. surname: Herwijnen fullname: Herwijnen, A. organization: WSL Institute for Snow and Avalanche Research SLF – sequence: 4 givenname: A. orcidid: 0000-0003-2556-8359 surname: Winstral fullname: Winstral, A. organization: WSL Institute for Snow and Avalanche Research SLF – sequence: 5 givenname: T. surname: Jonas fullname: Jonas, T. organization: WSL Institute for Snow and Avalanche Research SLF |
BookMark | eNqNkUFLw0AQhRepYK29-QMCXjwYnc3uJrtHabVaCoooeAtrMqkpSTbuNtb6691SEfFQnMvM4ePNvHmHpNeYBgk5pnBOAaKLCGg8HUMkhGJ7pB_RWIVSqbj3MyfPB2To3AJ8SWBc8D5R99rqGpdoy8-ymQeus4XOMFiVTR64FjEPzDvaIDN1W-FHsDStmVvdvq6PyH6hK4fD7z4gT9dXj6ObcHY3uR1dzsJMcElDJjjPKJMxRqATSF4K1IxCEknKc0Ap_cWU0QgY6EJgUsS8yGUeg0IoODA2IKdb3daatw7dMq1Ll2FV6QZN51IqJafeDVf_QP1azhnfqJ78QRems403klLl5QREIHdSMpYiVok_cUDOtlRmjXMWi7S1Za3tOqWQbrJJf2fjcbbFV2WF651sOp08jIV_IWVfL5aNQw |
CitedBy_id | crossref_primary_10_3389_feart_2023_1228158 crossref_primary_10_1016_j_coldregions_2019_102910 crossref_primary_10_1002_ece3_9008 crossref_primary_10_1016_j_jag_2022_102992 crossref_primary_10_1016_j_scitotenv_2023_161644 crossref_primary_10_3389_feart_2018_00197 crossref_primary_10_1016_j_jtbi_2018_05_039 crossref_primary_10_1029_2018EA000475 crossref_primary_10_1016_j_physa_2019_02_048 crossref_primary_10_1029_2022JB025380 crossref_primary_10_5194_gmd_17_1297_2024 crossref_primary_10_5194_tc_14_4699_2020 crossref_primary_10_1007_s40808_022_01504_5 crossref_primary_10_1016_j_energy_2017_07_127 crossref_primary_10_1017_jog_2021_61 crossref_primary_10_3389_feart_2020_599388 crossref_primary_10_1002_qj_4265 crossref_primary_10_1029_2020JD033534 crossref_primary_10_1038_sdata_2018_302 crossref_primary_10_1016_j_dynatmoce_2022_101280 crossref_primary_10_3390_en12163048 crossref_primary_10_5194_tc_16_559_2022 crossref_primary_10_5194_tc_18_2765_2024 crossref_primary_10_5194_wes_6_1015_2021 crossref_primary_10_1029_2023JD038806 crossref_primary_10_1016_j_coldregions_2017_12_006 crossref_primary_10_3389_feart_2023_1308269 crossref_primary_10_1002_2016WR019872 crossref_primary_10_1109_JSTARS_2022_3218016 crossref_primary_10_1007_s00382_023_06931_3 crossref_primary_10_1007_s00704_017_2346_8 crossref_primary_10_1016_j_ress_2023_109731 crossref_primary_10_5194_nhess_20_2873_2020 crossref_primary_10_1016_j_uclim_2022_101272 crossref_primary_10_3389_fenrg_2018_00102 crossref_primary_10_5194_npg_31_75_2024 crossref_primary_10_1007_s42865_019_00001_5 |
Cites_doi | 10.5194/tc-4-545-2010 10.1175/2010JHM1216.1 10.1175/2009JAS2940.1 10.1002/qj.49711850403 10.1007/BF00865510 10.1002/qj.49711951402 10.1029/2012JD018181 10.1029/2007WR006544 10.1002/2013JD020892 10.1175/JAMC-D-11-084.1 10.1007/BF00123062 10.1029/2010JD014086 10.1175/1520-0450(1977)016<0571:AMMFDA>2.0.CO;2 10.1002/met.294 10.1007/s10546-004-8659-z 10.1002/hyp.7141 10.3389/feart.2015.00076 10.1029/2009WR008198 10.1175/MWR-D-11-00311.1 10.1029/2011JD016061 10.1029/2011JD016465 10.1023/A:1019251128414 10.1002/qj.49711649107 10.1175/JHM486.1 10.1111/j.1600-0870.2006.00162.x 10.1002/qj.49712757303 10.1007/s007030170027 10.1175/JAM2322.1 10.1002/qj.49710143015 10.1175/2011JAS3693.1 10.5194/gmd-7-387-2014 10.1017/S0022143000002021 10.1029/2010WR009426 10.1016/S0168-1923(99)00015-5 10.1007/s10546-006-9112-2 10.1256/qj.03.73 10.1175/JHM-D-16-0054.1 |
ContentType | Journal Article |
Copyright | 2016. American Geophysical Union. All Rights Reserved. 2017. American Geophysical Union. All Rights Reserved. |
Copyright_xml | – notice: 2016. American Geophysical Union. All Rights Reserved. – notice: 2017. American Geophysical Union. All Rights Reserved. |
DBID | AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M |
DOI | 10.1002/2016JD025593 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aerospace Database Aerospace Database Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Statistics |
EISSN | 2169-8996 |
EndPage | 667 |
ExternalDocumentID | 4314279111 10_1002_2016JD025593 JGRD53541 |
Genre | article |
GeographicLocations | Switzerland |
GeographicLocations_xml | – name: Switzerland |
GroupedDBID | 05W 0R~ 1OC 24P 33P 50Y 52M 5VS 702 8-1 A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI DPXWK DRFUL DRSTM EBS EJD G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- P-X P2W R.K RNS ROL SUPJJ WBKPD WIN WXSBR WYJ ~OA AAMNL AAYXX CITATION 7TG 7UA 8FD C1K F1W FR3 H8D H96 KL. KR7 L.G L7M |
ID | FETCH-LOGICAL-c5481-3544c1386e20a707bfea31072814d0e880251312030af5e7f64fd8d609e0f4033 |
IEDL.DBID | 33P |
ISSN | 2169-897X |
IngestDate | Wed Jul 24 19:05:00 EDT 2024 Wed Jul 24 12:33:12 EDT 2024 Tue Nov 19 05:27:44 EST 2024 Tue Nov 19 05:05:30 EST 2024 Fri Nov 22 00:22:42 EST 2024 Sat Aug 24 00:51:52 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5481-3544c1386e20a707bfea31072814d0e880251312030af5e7f64fd8d609e0f4033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8663-7306 0000-0003-2556-8359 |
OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016JD025593 |
PQID | 1868569740 |
PQPubID | 54657 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_1884103449 proquest_miscellaneous_1872844343 proquest_journals_1910350208 proquest_journals_1868569740 crossref_primary_10_1002_2016JD025593 wiley_primary_10_1002_2016JD025593_JGRD53541 |
PublicationCentury | 2000 |
PublicationDate | 27 January 2017 |
PublicationDateYYYYMMDD | 2017-01-27 |
PublicationDate_xml | – month: 01 year: 2017 text: 27 January 2017 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Washington |
PublicationPlace_xml | – name: Washington |
PublicationTitle | Journal of geophysical research. Atmospheres |
PublicationYear | 2017 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2011; 116 2009; 23 2014; 119 2009; 66 1995; 52 2012; 140 2010; 11 2001; 101 2015; 3 2011 2007; 122 2006; 58 2013; 20 1995 2009; Report 2003; 17 1989; 48 1998; 44 2012; 51 2001; 127 2006a; 7 1990; 116 2004; 113 2012; 1 2010; 46 1993; 119 2006; 45 1977; 16 2004; 130 2010; 115 2010b 1985 1992; 118 2016 1972; 98 2011; 68 1975; 101 2015 2008; 44 1981 2011; 47 1999; 94 2014; 7 2012; 117 2010; 4 2001; 76 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_29_1 Kim Y. J. (e_1_2_7_21_1) 2003; 17 Adler R. J. (e_1_2_7_2_1) 1981 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 Fiedler F. (e_1_2_7_14_1) 1972; 98 R Core Team (e_1_2_7_32_1) 2015 |
References_xml | – year: 2011 – volume: 101 start-page: 929 year: 1975 end-page: 955 article-title: Turbulent wind flow over a low hill publication-title: Q. J. R. Meteorol. Soc. – volume: 52 start-page: 95 year: 1995 end-page: 118 article-title: A subgrid parameterization of orographic precipitation publication-title: Theor. Appl. Climatol. – year: 1985 – volume: 119 start-page: 1233 issue: 514 year: 1993 end-page: 1267 article-title: The pressure force induced by neutral, turbulent flow over hills publication-title: Q. J. R. Meteorol. Soc. – volume: 23 start-page: 2526 year: 2009 end-page: 2535 article-title: An efficient method for distributing wind speeds over heterogeneous terrain publication-title: Hydrol. Process. – volume: 116 year: 2011 article-title: Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model publication-title: J. Geophys. Res. – volume: 116 start-page: 159 year: 1990 end-page: 186 article-title: Observations of boundary‐layer structure over complex terrain publication-title: Q. J. R. Meteorol. Soc. – volume: 47 year: 2011 article-title: Persistence in intra‐annual snow depth distribution: 1. Measurements and topographic control publication-title: Water Resour. Res. – year: 1981 – volume: 51 start-page: 300 year: 2012 end-page: 316 article-title: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model publication-title: J. Appl. Meteorol. Climatol. – volume: 20 start-page: 32 year: 2013 end-page: 40 article-title: Reducing errors of wind speed forecasts by an optimal combination of post‐processing methods publication-title: Meteorol. Appl. – year: 2010b – volume: 66 start-page: 2900 year: 2009 end-page: 2912 article-title: Radiosity approach for the surface radiation balance in complex terrain publication-title: J. Atmos. Sci. – volume: 113 start-page: 347 issue: 3 year: 2004 end-page: 368 article-title: Field measurements of snow‐drift threshold and mass fluxes, and related model simulations publication-title: Boundary Layer Meteorol. – volume: 7 start-page: 217 year: 2006a end-page: 234 article-title: A meteorological distribution system for high‐resolution terrestrial modeling (micromet) publication-title: J. Hydrometeorol. – volume: 115 year: 2010 article-title: Evaluation of snow cover and depth simulated by a land surface model using detailed regional snow observations from Austria publication-title: J. Geophys. Res. – volume: 118 start-page: 191 year: 1992 end-page: 225 article-title: Temperature and humidity fields and fluxes over low hills publication-title: Q. J. R. Meteorol. Soc. – volume: 17 start-page: 65 year: 2003 end-page: 98 article-title: An overview of the past, present and future of gravity wave drag parametrization for numerical climate and weather prediction models publication-title: Atmos. Ocean – volume: 16 start-page: 571 issue: 6 year: 1977 end-page: 584 article-title: A mathematical model for diagnosis and prediction of surface winds in mountainous terrain publication-title: J. Appl. Meteorol. – volume: 98 start-page: 213 year: 1972 end-page: 220 article-title: The geostrophic drag coefficient and the ‘effective’ roughness length publication-title: Q. J. R. Meteorol. Soc. – volume: 76 start-page: 143 year: 2001 end-page: 165 article-title: The Advanced Regional Prediction System (ARPS)—A multi‐scale, non‐hydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications publication-title: Meteorol. Atmos. Phys. – volume: 94 start-page: 233 year: 1999 end-page: 242 article-title: Spatial extrapolation of agrometeorological variables publication-title: Agric. For. Meteorol. – year: 2016 article-title: Statistical downscaling of gridded wind speed data using local topography publication-title: J. Hydrometeorol. – year: 2016 – volume: 119 start-page: 4616 year: 2014 end-page: 4625 article-title: Parameterization of the spatially averaged sky view factor in complex topography publication-title: J. Geophys. Res. Atmos. – volume: 3 start-page: 76 year: 2015 article-title: On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain publication-title: Front. Earth Sci. – volume: 4 start-page: 545 year: 2010 end-page: 559 article-title: Understanding snow‐transport processes shaping the mountain snow‐cover publication-title: Cryosphere – volume: 46 year: 2010 article-title: Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover publication-title: Water Resour. Res. – volume: 130 start-page: 1327 year: 2004 end-page: 1347 article-title: A new parametrization of turbulent orographic form drag publication-title: Q. J. R. Meteorol. Soc. – volume: 101 start-page: 229 year: 2001 end-page: 241 article-title: Turbulent form drag on anisotropic three‐dimensional orography publication-title: Boundary Layer Meteorol. – volume: 117 year: 2012 article-title: Shortwave radiation parameterization scheme for subgrid topography publication-title: J. Geophys. Res. – volume: 140 start-page: 3936 year: 2012 end-page: 3955 article-title: An immersed boundary method enabling large‐eddy simulations of flow over complex terrain in the WRF model publication-title: Mon. Weather Rev. – volume: 48 start-page: 409 year: 1989 end-page: 422 article-title: On the parameterization of drag over small‐scale topography in neutrally‐stratified boundary‐layer flow publication-title: Boundary Layer Meteorol. – volume: 1 year: 2012 article-title: Quasi‐analytical treatment of spatially averaged radiation transfer in complex topography publication-title: J. Geophys. Res. – volume: 44 start-page: 498 issue: 148 year: 1998 end-page: 516 article-title: A snow‐transport model for complex terrain publication-title: J. Glaciol. – volume: 11 start-page: 934 year: 2010 end-page: 949 article-title: Meteorological modeling of very‐high resolution wind fields and snow deposition for mountains publication-title: J. Hydrometeorol. – volume: 122 start-page: 439 year: 2007 end-page: 455 article-title: Nonstationarity of turbulent heat fluxes at Summit, Greenland publication-title: Boundary Layer Meteorol. – volume: 45 start-page: 63 year: 2006 end-page: 86 article-title: High‐resolution large‐eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments publication-title: J. Appl. Meteorol. Climatol. – volume: 7 start-page: 387 year: 2014 end-page: 405 article-title: TopoSCALE v.1.0: Downscaling gridded climate data in complex terrain publication-title: Geosci. Model Dev. – year: 1995 – volume: 44 year: 2008 article-title: Fine‐scale modeling of the boundary layer wind field over steep topography publication-title: Water Resour. Res. – volume: Report year: 2009 – volume: 58 start-page: 69 year: 2006 end-page: 81 article-title: A study on parametrization of orography‐related momentum fluxes in a synoptic‐scale NWP model publication-title: Tellus A – volume: 68 start-page: 2142 year: 2011 end-page: 2155 article-title: Large‐eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling publication-title: J. Atmos. Sci. – volume: 127 start-page: 759 year: 2001 end-page: 777 article-title: Parametrizing the effects of orography on the boundary layer: An alternative to effective roughness lengths publication-title: Q. J. R. Meteorol. Soc. – year: 2015 – ident: e_1_2_7_30_1 doi: 10.5194/tc-4-545-2010 – ident: e_1_2_7_29_1 doi: 10.1175/2010JHM1216.1 – ident: e_1_2_7_37_1 – ident: e_1_2_7_18_1 doi: 10.1175/2009JAS2940.1 – ident: e_1_2_7_34_1 doi: 10.1002/qj.49711850403 – ident: e_1_2_7_22_1 doi: 10.1007/BF00865510 – ident: e_1_2_7_45_1 doi: 10.1002/qj.49711951402 – ident: e_1_2_7_25_1 doi: 10.1029/2012JD018181 – ident: e_1_2_7_33_1 doi: 10.1029/2007WR006544 – volume-title: The Geometry of Random Fields year: 1981 ident: e_1_2_7_2_1 contributor: fullname: Adler R. J. – ident: e_1_2_7_17_1 doi: 10.1002/2013JD020892 – ident: e_1_2_7_20_1 doi: 10.1175/JAMC-D-11-084.1 – ident: e_1_2_7_28_1 – ident: e_1_2_7_42_1 doi: 10.1007/BF00123062 – ident: e_1_2_7_31_1 doi: 10.1029/2010JD014086 – ident: e_1_2_7_38_1 doi: 10.1175/1520-0450(1977)016<0571:AMMFDA>2.0.CO;2 – ident: e_1_2_7_41_1 doi: 10.1002/met.294 – ident: e_1_2_7_11_1 doi: 10.1007/s10546-004-8659-z – ident: e_1_2_7_4_1 – ident: e_1_2_7_7_1 – volume-title: R: A Language and Environment for Statistical Computing year: 2015 ident: e_1_2_7_32_1 contributor: fullname: R Core Team – ident: e_1_2_7_43_1 doi: 10.1002/hyp.7141 – ident: e_1_2_7_10_1 – ident: e_1_2_7_36_1 doi: 10.3389/feart.2015.00076 – ident: e_1_2_7_40_1 doi: 10.1029/2009WR008198 – ident: e_1_2_7_27_1 doi: 10.1175/MWR-D-11-00311.1 – ident: e_1_2_7_12_1 doi: 10.1029/2011JD016061 – ident: e_1_2_7_16_1 doi: 10.1029/2011JD016465 – ident: e_1_2_7_5_1 doi: 10.1023/A:1019251128414 – ident: e_1_2_7_15_1 doi: 10.1002/qj.49711649107 – ident: e_1_2_7_23_1 doi: 10.1175/JHM486.1 – ident: e_1_2_7_35_1 doi: 10.1111/j.1600-0870.2006.00162.x – ident: e_1_2_7_46_1 doi: 10.1002/qj.49712757303 – ident: e_1_2_7_48_1 doi: 10.1007/s007030170027 – ident: e_1_2_7_6_1 doi: 10.1175/JAM2322.1 – ident: e_1_2_7_19_1 doi: 10.1002/qj.49710143015 – ident: e_1_2_7_49_1 doi: 10.1175/2011JAS3693.1 – ident: e_1_2_7_13_1 doi: 10.5194/gmd-7-387-2014 – volume: 98 start-page: 213 year: 1972 ident: e_1_2_7_14_1 article-title: The geostrophic drag coefficient and the ‘effective’ roughness length publication-title: Q. J. R. Meteorol. Soc. contributor: fullname: Fiedler F. – volume: 17 start-page: 65 year: 2003 ident: e_1_2_7_21_1 article-title: An overview of the past, present and future of gravity wave drag parametrization for numerical climate and weather prediction models publication-title: Atmos. Ocean contributor: fullname: Kim Y. J. – ident: e_1_2_7_24_1 doi: 10.1017/S0022143000002021 – ident: e_1_2_7_39_1 doi: 10.1029/2010WR009426 – ident: e_1_2_7_47_1 doi: 10.1016/S0168-1923(99)00015-5 – ident: e_1_2_7_8_1 doi: 10.1007/s10546-006-9112-2 – ident: e_1_2_7_3_1 doi: 10.1256/qj.03.73 – ident: e_1_2_7_9_1 – ident: e_1_2_7_26_1 – ident: e_1_2_7_44_1 doi: 10.1175/JHM-D-16-0054.1 |
SSID | ssj0000803454 |
Score | 2.445693 |
Snippet | Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed.... Subgrid parameterizations are used in coarse-scale meteorological and land surface models to account for the impact of unresolved topography on wind speed.... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
StartPage | 651 |
SubjectTerms | ARPS Atmospheric models Banks (topography) Climatology coarse‐scale wind speed Computer simulation Correlation Fields Fields (mathematics) Frameworks Gaussian random fields Geographical distribution Geophysics High resolution Length Mathematical models Mean square values Parameterization Parameters Parametrization Physiographic features Scale (ratio) Sky sky view factor Slope Slopes Spatial distribution statistical downscaling Statistical methods Statistics subgrid parameterization Surface wind Terrain Topography Topography (geology) Weather Weather forecasting Wind fields Wind speed |
Title | Parameterizing surface wind speed over complex topography |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JD025593 https://www.proquest.com/docview/1868569740 https://www.proquest.com/docview/1910350208 https://search.proquest.com/docview/1872844343 https://search.proquest.com/docview/1884103449 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qyYtvsb6IoJ4M5tUmvQiyqy4LyuIDvJW0TUCQ3WW7i-Kvd5LtPgRZEI8laUinmZlvkpkvCJ1SUeYQc1mik1QSX7pIcis5yVMmrcpl6sJRTOtJPbzq5o2nybma1MKM-SGmG25eM4K99gpu8upyRhoKnitpNwMk9mSfECiECg7RmW6xABgSMtyDxlmSEp2q1zr1HUa4nH__p1OaIc15vBoczu36f6e6gdZqqImvx2tjEy3Z7haK7gEl9wZhMx2f48b7G0DW8LSN0o7xqVqevfkLPBquRgNnCos_IG7HVR_8HPYJnzikodtPPOz1a8LrHfRye_PcaJH6agVSQIjCiIilLJjQieXUKKpyZw0APcU1kyW1oNSAewTjYAKMi61yiXSlLhOaWuokFWIXrXR7XbuHMBVFrEyhDC9yaSzAFZZrpw0rwTgUjkfobCLbrD9m0MjGXMk8mxdMhA4ngs9qPaoyT-YfJxDz0N-bAeyI2N8zGqGTaTMoiD_1MF3bG_kh4KukX4WL-mjJPPlhGqGL8CcXTjVr3z02Y5Ah2_9b9wO0yj0soIxwdYhWhoORPULLVTk6Dkv3G2ZU6Og |
link.rule.ids | 315,782,786,1408,27934,27935,46065,46489 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC58HPSyPlaxV10j7HoymFd30icRRx1dFfEB3pp0dwILy8ww47CLv95KpmecBRHEY5MQ0pWq1FeVyheAH0zWJcZcjposVzRcXaSlU4KWOVdOlyr38SimfaevH03rJNDkHI7vwoz4ISYJt2AZcb8OBh4S0gevrKHourKLVsTEchbmVaZMUGspbyZJFoRDUsWX0ATPcmpy_dgUv-MQB9MD_O-WXrHmNGKNLud06dOTXYYvDdokRyP1WIEZ11mF5AqBcrcf8-lkjxz_-Y2oNX59hfzGhmqtQOD8jE6NDIZ9bytH_mLoTgY9dHUk1HySWInu_pGnbq_hvF6Dh9OT--M2bV5XoBVGKZzKVKmKS5M5waxmuvTOItbTwnBVM4d2jdBHcoG7gPWp0z5TvjZ1xnLHvGJSrsNcp9txG0CYrFJtK21FVSrrELHw0nhjeY37Q-VFAj_Hwi16IxKNYkSXLIppwSSwNZZ80ZjSoAh8_mmGYQ97uxnxjkzDU6MJ7E6a0UbCwYftuO4wDIF_pYIivtfHKB74D_ME9uNSvjvV4uLstpWiDPm3j3XfgYX2_dVlcXl-_WsTFkVACYxTobdg7qk_dNswO6iH36MevwA91-0R |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSyQxEC7UhcUXdQ-xPdYIu_u0wVzdSb8I4jgeuyvDquBbk-5OQJCZYQ4Uf72VTM84wiKIj01CSFdSVV8lla8AvjNZlxhzOWqyXNHwdJGWTgla5lw5Xarcx6uY00t9cWNax4Em52D6FmbCDzE7cAuaEe11UPB-7fefSUPRc2XnrQiJ5SJ8UIjEQ0qflJ3ZGQuiIaliITTBs5yaXN80ue84xP78AC-90jPUnAes0eO0V9871zVYabAmOZxsjk-w4LqfIfmLMLk3iKfp5Cc5urtFzBq_vkDesSFXK9A3P6JLI8PxwNvKkXsM3Mmwj46OhIxPEvPQ3QMZ9foN4_VXuG4fXx2d0qa2Aq0wRuFUpkpVXJrMCWY106V3FpGeFoarmjnUagQ-kgu0AdanTvtM-drUGcsd84pJuQ5L3V7XbQBhskq1rbQVVamsQ7zCS-ON5TVah8qLBH5MZVv0JxQaxYQsWRTzgklgeyr4olGkYRHY_NMMgx72_2ZEOzINhUYT2Js1o4aEaw_bdb1xGAL_SoVt-Fofo3hgP8wT-BVX8tWpFucn_1opypBvvq37LnzstNrFn7OL31uwLAJEYJwKvQ1Lo8HY7cDisB5_i7v4CVfa67c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterizing+surface+wind+speed+over+complex+topography&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Helbig%2C+N.&rft.au=Mott%2C+R.&rft.au=Herwijnen%2C+A.&rft.au=Winstral%2C+A.&rft.date=2017-01-27&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=122&rft.issue=2&rft.spage=651&rft.epage=667&rft_id=info:doi/10.1002%2F2016JD025593&rft.externalDBID=10.1002%252F2016JD025593&rft.externalDocID=JGRD53541 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon |