Parameterizing surface wind speed over complex topography

Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Atmospheres Vol. 122; no. 2; pp. 651 - 667
Main Authors: Helbig, N., Mott, R., Herwijnen, A., Winstral, A., Jonas, T.
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 27-01-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high‐resolution wind fields to investigate which terrain parameters most affect near‐surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse‐scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse‐scale wind speed compared well with domain‐averaged ARPS wind speed. To further statistically downscale coarse‐scale wind speed, we use local, fine‐scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine‐scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters. Key Points Subgrid parameterization for coarse‐scale wind speed using a subgrid parameterization for the sky view factor Statistical downscaling using fine‐scale terrain parameters and the subgrid parameterization for coarse‐scale wind speed Validation of downscaled wind speed with measurements showed overall improved performance compared to applying coarse‐scale wind speed
AbstractList Subgrid parameterizations are used in coarse-scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high-resolution wind fields to investigate which terrain parameters most affect near-surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse-scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse-scale wind speed compared well with domain-averaged ARPS wind speed. To further statistically downscale coarse-scale wind speed, we use local, fine-scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine-scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters. Key Points * Subgrid parameterization for coarse-scale wind speed using a subgrid parameterization for the sky view factor * Statistical downscaling using fine-scale terrain parameters and the subgrid parameterization for coarse-scale wind speed * Validation of downscaled wind speed with measurements showed overall improved performance compared to applying coarse-scale wind speed
Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high‐resolution wind fields to investigate which terrain parameters most affect near‐surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse‐scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse‐scale wind speed compared well with domain‐averaged ARPS wind speed. To further statistically downscale coarse‐scale wind speed, we use local, fine‐scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine‐scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters. Key Points Subgrid parameterization for coarse‐scale wind speed using a subgrid parameterization for the sky view factor Statistical downscaling using fine‐scale terrain parameters and the subgrid parameterization for coarse‐scale wind speed Validation of downscaled wind speed with measurements showed overall improved performance compared to applying coarse‐scale wind speed
Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high‐resolution wind fields to investigate which terrain parameters most affect near‐surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse‐scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse‐scale wind speed compared well with domain‐averaged ARPS wind speed. To further statistically downscale coarse‐scale wind speed, we use local, fine‐scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine‐scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters.
Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed. While various parameterizations have been suggested, these were generally validated on a limited number of measurements in specific geographical areas. We used high‐resolution wind fields to investigate which terrain parameters most affect near‐surface wind speed over complex topography under neutral conditions. Wind fields were simulated using the Advanced Regional Prediction System (ARPS) on Gaussian random fields as model topographies to cover a wide range of terrain characteristics. We computed coarse‐scale wind speed, i.e., a spatial average over the large grid cell accounting for influence of unresolved topography, using a previously suggested subgrid parameterization for the sky view factor. We only require correlation length of subgrid topographic features and mean square slope in the coarse grid cell. Computed coarse‐scale wind speed compared well with domain‐averaged ARPS wind speed. To further statistically downscale coarse‐scale wind speed, we use local, fine‐scale topographic parameters, namely, the Laplacian of terrain elevations and mean square slope. Both parameters showed large correlations with fine‐scale ARPS wind speed. Comparing downscaled numerical weather prediction wind speed with measurements from a large number of stations throughout Switzerland resulted in overall improved correlations and distribution statistics. Since we used a large number of model topographies to derive the subgrid parameterization and the downscaling framework, both are not scale dependent nor bound to a specific geographic region. Both can readily be implemented since they are based on easy to derive terrain parameters. Subgrid parameterization for coarse‐scale wind speed using a subgrid parameterization for the sky view factor Statistical downscaling using fine‐scale terrain parameters and the subgrid parameterization for coarse‐scale wind speed Validation of downscaled wind speed with measurements showed overall improved performance compared to applying coarse‐scale wind speed
Author Helbig, N.
Mott, R.
Winstral, A.
Jonas, T.
Herwijnen, A.
Author_xml – sequence: 1
  givenname: N.
  orcidid: 0000-0002-8663-7306
  surname: Helbig
  fullname: Helbig, N.
  email: norahelbig@gmail.com
  organization: WSL Institute for Snow and Avalanche Research SLF
– sequence: 2
  givenname: R.
  surname: Mott
  fullname: Mott, R.
  organization: WSL Institute for Snow and Avalanche Research SLF
– sequence: 3
  givenname: A.
  surname: Herwijnen
  fullname: Herwijnen, A.
  organization: WSL Institute for Snow and Avalanche Research SLF
– sequence: 4
  givenname: A.
  orcidid: 0000-0003-2556-8359
  surname: Winstral
  fullname: Winstral, A.
  organization: WSL Institute for Snow and Avalanche Research SLF
– sequence: 5
  givenname: T.
  surname: Jonas
  fullname: Jonas, T.
  organization: WSL Institute for Snow and Avalanche Research SLF
BookMark eNqNkUFLw0AQhRepYK29-QMCXjwYnc3uJrtHabVaCoooeAtrMqkpSTbuNtb6691SEfFQnMvM4ePNvHmHpNeYBgk5pnBOAaKLCGg8HUMkhGJ7pB_RWIVSqbj3MyfPB2To3AJ8SWBc8D5R99rqGpdoy8-ymQeus4XOMFiVTR64FjEPzDvaIDN1W-FHsDStmVvdvq6PyH6hK4fD7z4gT9dXj6ObcHY3uR1dzsJMcElDJjjPKJMxRqATSF4K1IxCEknKc0Ap_cWU0QgY6EJgUsS8yGUeg0IoODA2IKdb3daatw7dMq1Ll2FV6QZN51IqJafeDVf_QP1azhnfqJ78QRems403klLl5QREIHdSMpYiVok_cUDOtlRmjXMWi7S1Za3tOqWQbrJJf2fjcbbFV2WF651sOp08jIV_IWVfL5aNQw
CitedBy_id crossref_primary_10_3389_feart_2023_1228158
crossref_primary_10_1016_j_coldregions_2019_102910
crossref_primary_10_1002_ece3_9008
crossref_primary_10_1016_j_jag_2022_102992
crossref_primary_10_1016_j_scitotenv_2023_161644
crossref_primary_10_3389_feart_2018_00197
crossref_primary_10_1016_j_jtbi_2018_05_039
crossref_primary_10_1029_2018EA000475
crossref_primary_10_1016_j_physa_2019_02_048
crossref_primary_10_1029_2022JB025380
crossref_primary_10_5194_gmd_17_1297_2024
crossref_primary_10_5194_tc_14_4699_2020
crossref_primary_10_1007_s40808_022_01504_5
crossref_primary_10_1016_j_energy_2017_07_127
crossref_primary_10_1017_jog_2021_61
crossref_primary_10_3389_feart_2020_599388
crossref_primary_10_1002_qj_4265
crossref_primary_10_1029_2020JD033534
crossref_primary_10_1038_sdata_2018_302
crossref_primary_10_1016_j_dynatmoce_2022_101280
crossref_primary_10_3390_en12163048
crossref_primary_10_5194_tc_16_559_2022
crossref_primary_10_5194_tc_18_2765_2024
crossref_primary_10_5194_wes_6_1015_2021
crossref_primary_10_1029_2023JD038806
crossref_primary_10_1016_j_coldregions_2017_12_006
crossref_primary_10_3389_feart_2023_1308269
crossref_primary_10_1002_2016WR019872
crossref_primary_10_1109_JSTARS_2022_3218016
crossref_primary_10_1007_s00382_023_06931_3
crossref_primary_10_1007_s00704_017_2346_8
crossref_primary_10_1016_j_ress_2023_109731
crossref_primary_10_5194_nhess_20_2873_2020
crossref_primary_10_1016_j_uclim_2022_101272
crossref_primary_10_3389_fenrg_2018_00102
crossref_primary_10_5194_npg_31_75_2024
crossref_primary_10_1007_s42865_019_00001_5
Cites_doi 10.5194/tc-4-545-2010
10.1175/2010JHM1216.1
10.1175/2009JAS2940.1
10.1002/qj.49711850403
10.1007/BF00865510
10.1002/qj.49711951402
10.1029/2012JD018181
10.1029/2007WR006544
10.1002/2013JD020892
10.1175/JAMC-D-11-084.1
10.1007/BF00123062
10.1029/2010JD014086
10.1175/1520-0450(1977)016<0571:AMMFDA>2.0.CO;2
10.1002/met.294
10.1007/s10546-004-8659-z
10.1002/hyp.7141
10.3389/feart.2015.00076
10.1029/2009WR008198
10.1175/MWR-D-11-00311.1
10.1029/2011JD016061
10.1029/2011JD016465
10.1023/A:1019251128414
10.1002/qj.49711649107
10.1175/JHM486.1
10.1111/j.1600-0870.2006.00162.x
10.1002/qj.49712757303
10.1007/s007030170027
10.1175/JAM2322.1
10.1002/qj.49710143015
10.1175/2011JAS3693.1
10.5194/gmd-7-387-2014
10.1017/S0022143000002021
10.1029/2010WR009426
10.1016/S0168-1923(99)00015-5
10.1007/s10546-006-9112-2
10.1256/qj.03.73
10.1175/JHM-D-16-0054.1
ContentType Journal Article
Copyright 2016. American Geophysical Union. All Rights Reserved.
2017. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2016. American Geophysical Union. All Rights Reserved.
– notice: 2017. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOI 10.1002/2016JD025593
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Aerospace Database
Aerospace Database
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Statistics
EISSN 2169-8996
EndPage 667
ExternalDocumentID 4314279111
10_1002_2016JD025593
JGRD53541
Genre article
GeographicLocations Switzerland
GeographicLocations_xml – name: Switzerland
GroupedDBID 05W
0R~
1OC
24P
33P
50Y
52M
5VS
702
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
DPXWK
DRFUL
DRSTM
EBS
EJD
G-S
HGLYW
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
R.K
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
WYJ
~OA
AAMNL
AAYXX
CITATION
7TG
7UA
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-c5481-3544c1386e20a707bfea31072814d0e880251312030af5e7f64fd8d609e0f4033
IEDL.DBID 33P
ISSN 2169-897X
IngestDate Wed Jul 24 19:05:00 EDT 2024
Wed Jul 24 12:33:12 EDT 2024
Tue Nov 19 05:27:44 EST 2024
Tue Nov 19 05:05:30 EST 2024
Fri Nov 22 00:22:42 EST 2024
Sat Aug 24 00:51:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5481-3544c1386e20a707bfea31072814d0e880251312030af5e7f64fd8d609e0f4033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8663-7306
0000-0003-2556-8359
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2016JD025593
PQID 1868569740
PQPubID 54657
PageCount 17
ParticipantIDs proquest_miscellaneous_1884103449
proquest_miscellaneous_1872844343
proquest_journals_1910350208
proquest_journals_1868569740
crossref_primary_10_1002_2016JD025593
wiley_primary_10_1002_2016JD025593_JGRD53541
PublicationCentury 2000
PublicationDate 27 January 2017
PublicationDateYYYYMMDD 2017-01-27
PublicationDate_xml – month: 01
  year: 2017
  text: 27 January 2017
  day: 27
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Atmospheres
PublicationYear 2017
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2011; 116
2009; 23
2014; 119
2009; 66
1995; 52
2012; 140
2010; 11
2001; 101
2015; 3
2011
2007; 122
2006; 58
2013; 20
1995
2009; Report
2003; 17
1989; 48
1998; 44
2012; 51
2001; 127
2006a; 7
1990; 116
2004; 113
2012; 1
2010; 46
1993; 119
2006; 45
1977; 16
2004; 130
2010; 115
2010b
1985
1992; 118
2016
1972; 98
2011; 68
1975; 101
2015
2008; 44
1981
2011; 47
1999; 94
2014; 7
2012; 117
2010; 4
2001; 76
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_29_1
Kim Y. J. (e_1_2_7_21_1) 2003; 17
Adler R. J. (e_1_2_7_2_1) 1981
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
Fiedler F. (e_1_2_7_14_1) 1972; 98
R Core Team (e_1_2_7_32_1) 2015
References_xml – year: 2011
– volume: 101
  start-page: 929
  year: 1975
  end-page: 955
  article-title: Turbulent wind flow over a low hill
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 52
  start-page: 95
  year: 1995
  end-page: 118
  article-title: A subgrid parameterization of orographic precipitation
  publication-title: Theor. Appl. Climatol.
– year: 1985
– volume: 119
  start-page: 1233
  issue: 514
  year: 1993
  end-page: 1267
  article-title: The pressure force induced by neutral, turbulent flow over hills
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 23
  start-page: 2526
  year: 2009
  end-page: 2535
  article-title: An efficient method for distributing wind speeds over heterogeneous terrain
  publication-title: Hydrol. Process.
– volume: 116
  year: 2011
  article-title: Snow cover sensitivity to horizontal resolution, parameterizations, and atmospheric forcing in a land surface model
  publication-title: J. Geophys. Res.
– volume: 116
  start-page: 159
  year: 1990
  end-page: 186
  article-title: Observations of boundary‐layer structure over complex terrain
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 47
  year: 2011
  article-title: Persistence in intra‐annual snow depth distribution: 1. Measurements and topographic control
  publication-title: Water Resour. Res.
– year: 1981
– volume: 51
  start-page: 300
  year: 2012
  end-page: 316
  article-title: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 20
  start-page: 32
  year: 2013
  end-page: 40
  article-title: Reducing errors of wind speed forecasts by an optimal combination of post‐processing methods
  publication-title: Meteorol. Appl.
– year: 2010b
– volume: 66
  start-page: 2900
  year: 2009
  end-page: 2912
  article-title: Radiosity approach for the surface radiation balance in complex terrain
  publication-title: J. Atmos. Sci.
– volume: 113
  start-page: 347
  issue: 3
  year: 2004
  end-page: 368
  article-title: Field measurements of snow‐drift threshold and mass fluxes, and related model simulations
  publication-title: Boundary Layer Meteorol.
– volume: 7
  start-page: 217
  year: 2006a
  end-page: 234
  article-title: A meteorological distribution system for high‐resolution terrestrial modeling (micromet)
  publication-title: J. Hydrometeorol.
– volume: 115
  year: 2010
  article-title: Evaluation of snow cover and depth simulated by a land surface model using detailed regional snow observations from Austria
  publication-title: J. Geophys. Res.
– volume: 118
  start-page: 191
  year: 1992
  end-page: 225
  article-title: Temperature and humidity fields and fluxes over low hills
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 17
  start-page: 65
  year: 2003
  end-page: 98
  article-title: An overview of the past, present and future of gravity wave drag parametrization for numerical climate and weather prediction models
  publication-title: Atmos. Ocean
– volume: 16
  start-page: 571
  issue: 6
  year: 1977
  end-page: 584
  article-title: A mathematical model for diagnosis and prediction of surface winds in mountainous terrain
  publication-title: J. Appl. Meteorol.
– volume: 98
  start-page: 213
  year: 1972
  end-page: 220
  article-title: The geostrophic drag coefficient and the ‘effective’ roughness length
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 76
  start-page: 143
  year: 2001
  end-page: 165
  article-title: The Advanced Regional Prediction System (ARPS)—A multi‐scale, non‐hydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications
  publication-title: Meteorol. Atmos. Phys.
– volume: 94
  start-page: 233
  year: 1999
  end-page: 242
  article-title: Spatial extrapolation of agrometeorological variables
  publication-title: Agric. For. Meteorol.
– year: 2016
  article-title: Statistical downscaling of gridded wind speed data using local topography
  publication-title: J. Hydrometeorol.
– year: 2016
– volume: 119
  start-page: 4616
  year: 2014
  end-page: 4625
  article-title: Parameterization of the spatially averaged sky view factor in complex topography
  publication-title: J. Geophys. Res. Atmos.
– volume: 3
  start-page: 76
  year: 2015
  article-title: On the vertical exchange of heat, mass, and momentum over complex, mountainous terrain
  publication-title: Front. Earth Sci.
– volume: 4
  start-page: 545
  year: 2010
  end-page: 559
  article-title: Understanding snow‐transport processes shaping the mountain snow‐cover
  publication-title: Cryosphere
– volume: 46
  year: 2010
  article-title: Micrometeorological and morphological observations of surface hoar dynamics on a mountain snow cover
  publication-title: Water Resour. Res.
– volume: 130
  start-page: 1327
  year: 2004
  end-page: 1347
  article-title: A new parametrization of turbulent orographic form drag
  publication-title: Q. J. R. Meteorol. Soc.
– volume: 101
  start-page: 229
  year: 2001
  end-page: 241
  article-title: Turbulent form drag on anisotropic three‐dimensional orography
  publication-title: Boundary Layer Meteorol.
– volume: 117
  year: 2012
  article-title: Shortwave radiation parameterization scheme for subgrid topography
  publication-title: J. Geophys. Res.
– volume: 140
  start-page: 3936
  year: 2012
  end-page: 3955
  article-title: An immersed boundary method enabling large‐eddy simulations of flow over complex terrain in the WRF model
  publication-title: Mon. Weather Rev.
– volume: 48
  start-page: 409
  year: 1989
  end-page: 422
  article-title: On the parameterization of drag over small‐scale topography in neutrally‐stratified boundary‐layer flow
  publication-title: Boundary Layer Meteorol.
– volume: 1
  year: 2012
  article-title: Quasi‐analytical treatment of spatially averaged radiation transfer in complex topography
  publication-title: J. Geophys. Res.
– volume: 44
  start-page: 498
  issue: 148
  year: 1998
  end-page: 516
  article-title: A snow‐transport model for complex terrain
  publication-title: J. Glaciol.
– volume: 11
  start-page: 934
  year: 2010
  end-page: 949
  article-title: Meteorological modeling of very‐high resolution wind fields and snow deposition for mountains
  publication-title: J. Hydrometeorol.
– volume: 122
  start-page: 439
  year: 2007
  end-page: 455
  article-title: Nonstationarity of turbulent heat fluxes at Summit, Greenland
  publication-title: Boundary Layer Meteorol.
– volume: 45
  start-page: 63
  year: 2006
  end-page: 86
  article-title: High‐resolution large‐eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments
  publication-title: J. Appl. Meteorol. Climatol.
– volume: 7
  start-page: 387
  year: 2014
  end-page: 405
  article-title: TopoSCALE v.1.0: Downscaling gridded climate data in complex terrain
  publication-title: Geosci. Model Dev.
– year: 1995
– volume: 44
  year: 2008
  article-title: Fine‐scale modeling of the boundary layer wind field over steep topography
  publication-title: Water Resour. Res.
– volume: Report
  year: 2009
– volume: 58
  start-page: 69
  year: 2006
  end-page: 81
  article-title: A study on parametrization of orography‐related momentum fluxes in a synoptic‐scale NWP model
  publication-title: Tellus A
– volume: 68
  start-page: 2142
  year: 2011
  end-page: 2155
  article-title: Large‐eddy simulation of the stable boundary layer with explicit filtering and reconstruction turbulence modeling
  publication-title: J. Atmos. Sci.
– volume: 127
  start-page: 759
  year: 2001
  end-page: 777
  article-title: Parametrizing the effects of orography on the boundary layer: An alternative to effective roughness lengths
  publication-title: Q. J. R. Meteorol. Soc.
– year: 2015
– ident: e_1_2_7_30_1
  doi: 10.5194/tc-4-545-2010
– ident: e_1_2_7_29_1
  doi: 10.1175/2010JHM1216.1
– ident: e_1_2_7_37_1
– ident: e_1_2_7_18_1
  doi: 10.1175/2009JAS2940.1
– ident: e_1_2_7_34_1
  doi: 10.1002/qj.49711850403
– ident: e_1_2_7_22_1
  doi: 10.1007/BF00865510
– ident: e_1_2_7_45_1
  doi: 10.1002/qj.49711951402
– ident: e_1_2_7_25_1
  doi: 10.1029/2012JD018181
– ident: e_1_2_7_33_1
  doi: 10.1029/2007WR006544
– volume-title: The Geometry of Random Fields
  year: 1981
  ident: e_1_2_7_2_1
  contributor:
    fullname: Adler R. J.
– ident: e_1_2_7_17_1
  doi: 10.1002/2013JD020892
– ident: e_1_2_7_20_1
  doi: 10.1175/JAMC-D-11-084.1
– ident: e_1_2_7_28_1
– ident: e_1_2_7_42_1
  doi: 10.1007/BF00123062
– ident: e_1_2_7_31_1
  doi: 10.1029/2010JD014086
– ident: e_1_2_7_38_1
  doi: 10.1175/1520-0450(1977)016<0571:AMMFDA>2.0.CO;2
– ident: e_1_2_7_41_1
  doi: 10.1002/met.294
– ident: e_1_2_7_11_1
  doi: 10.1007/s10546-004-8659-z
– ident: e_1_2_7_4_1
– ident: e_1_2_7_7_1
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2015
  ident: e_1_2_7_32_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_7_43_1
  doi: 10.1002/hyp.7141
– ident: e_1_2_7_10_1
– ident: e_1_2_7_36_1
  doi: 10.3389/feart.2015.00076
– ident: e_1_2_7_40_1
  doi: 10.1029/2009WR008198
– ident: e_1_2_7_27_1
  doi: 10.1175/MWR-D-11-00311.1
– ident: e_1_2_7_12_1
  doi: 10.1029/2011JD016061
– ident: e_1_2_7_16_1
  doi: 10.1029/2011JD016465
– ident: e_1_2_7_5_1
  doi: 10.1023/A:1019251128414
– ident: e_1_2_7_15_1
  doi: 10.1002/qj.49711649107
– ident: e_1_2_7_23_1
  doi: 10.1175/JHM486.1
– ident: e_1_2_7_35_1
  doi: 10.1111/j.1600-0870.2006.00162.x
– ident: e_1_2_7_46_1
  doi: 10.1002/qj.49712757303
– ident: e_1_2_7_48_1
  doi: 10.1007/s007030170027
– ident: e_1_2_7_6_1
  doi: 10.1175/JAM2322.1
– ident: e_1_2_7_19_1
  doi: 10.1002/qj.49710143015
– ident: e_1_2_7_49_1
  doi: 10.1175/2011JAS3693.1
– ident: e_1_2_7_13_1
  doi: 10.5194/gmd-7-387-2014
– volume: 98
  start-page: 213
  year: 1972
  ident: e_1_2_7_14_1
  article-title: The geostrophic drag coefficient and the ‘effective’ roughness length
  publication-title: Q. J. R. Meteorol. Soc.
  contributor:
    fullname: Fiedler F.
– volume: 17
  start-page: 65
  year: 2003
  ident: e_1_2_7_21_1
  article-title: An overview of the past, present and future of gravity wave drag parametrization for numerical climate and weather prediction models
  publication-title: Atmos. Ocean
  contributor:
    fullname: Kim Y. J.
– ident: e_1_2_7_24_1
  doi: 10.1017/S0022143000002021
– ident: e_1_2_7_39_1
  doi: 10.1029/2010WR009426
– ident: e_1_2_7_47_1
  doi: 10.1016/S0168-1923(99)00015-5
– ident: e_1_2_7_8_1
  doi: 10.1007/s10546-006-9112-2
– ident: e_1_2_7_3_1
  doi: 10.1256/qj.03.73
– ident: e_1_2_7_9_1
– ident: e_1_2_7_26_1
– ident: e_1_2_7_44_1
  doi: 10.1175/JHM-D-16-0054.1
SSID ssj0000803454
Score 2.445693
Snippet Subgrid parameterizations are used in coarse‐scale meteorological and land surface models to account for the impact of unresolved topography on wind speed....
Subgrid parameterizations are used in coarse-scale meteorological and land surface models to account for the impact of unresolved topography on wind speed....
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 651
SubjectTerms ARPS
Atmospheric models
Banks (topography)
Climatology
coarse‐scale wind speed
Computer simulation
Correlation
Fields
Fields (mathematics)
Frameworks
Gaussian random fields
Geographical distribution
Geophysics
High resolution
Length
Mathematical models
Mean square values
Parameterization
Parameters
Parametrization
Physiographic features
Scale (ratio)
Sky
sky view factor
Slope
Slopes
Spatial distribution
statistical downscaling
Statistical methods
Statistics
subgrid parameterization
Surface wind
Terrain
Topography
Topography (geology)
Weather
Weather forecasting
Wind fields
Wind speed
Title Parameterizing surface wind speed over complex topography
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2016JD025593
https://www.proquest.com/docview/1868569740
https://www.proquest.com/docview/1910350208
https://search.proquest.com/docview/1872844343
https://search.proquest.com/docview/1884103449
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qyYtvsb6IoJ4M5tUmvQiyqy4LyuIDvJW0TUCQ3WW7i-Kvd5LtPgRZEI8laUinmZlvkpkvCJ1SUeYQc1mik1QSX7pIcis5yVMmrcpl6sJRTOtJPbzq5o2nybma1MKM-SGmG25eM4K99gpu8upyRhoKnitpNwMk9mSfECiECg7RmW6xABgSMtyDxlmSEp2q1zr1HUa4nH__p1OaIc15vBoczu36f6e6gdZqqImvx2tjEy3Z7haK7gEl9wZhMx2f48b7G0DW8LSN0o7xqVqevfkLPBquRgNnCos_IG7HVR_8HPYJnzikodtPPOz1a8LrHfRye_PcaJH6agVSQIjCiIilLJjQieXUKKpyZw0APcU1kyW1oNSAewTjYAKMi61yiXSlLhOaWuokFWIXrXR7XbuHMBVFrEyhDC9yaSzAFZZrpw0rwTgUjkfobCLbrD9m0MjGXMk8mxdMhA4ngs9qPaoyT-YfJxDz0N-bAeyI2N8zGqGTaTMoiD_1MF3bG_kh4KukX4WL-mjJPPlhGqGL8CcXTjVr3z02Y5Ah2_9b9wO0yj0soIxwdYhWhoORPULLVTk6Dkv3G2ZU6Og
link.rule.ids 315,782,786,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSyQxEC58HPSyPlaxV10j7HoymFd30icRRx1dFfEB3pp0dwILy8ww47CLv95KpmecBRHEY5MQ0pWq1FeVyheAH0zWJcZcjposVzRcXaSlU4KWOVdOlyr38SimfaevH03rJNDkHI7vwoz4ISYJt2AZcb8OBh4S0gevrKHourKLVsTEchbmVaZMUGspbyZJFoRDUsWX0ATPcmpy_dgUv-MQB9MD_O-WXrHmNGKNLud06dOTXYYvDdokRyP1WIEZ11mF5AqBcrcf8-lkjxz_-Y2oNX59hfzGhmqtQOD8jE6NDIZ9bytH_mLoTgY9dHUk1HySWInu_pGnbq_hvF6Dh9OT--M2bV5XoBVGKZzKVKmKS5M5waxmuvTOItbTwnBVM4d2jdBHcoG7gPWp0z5TvjZ1xnLHvGJSrsNcp9txG0CYrFJtK21FVSrrELHw0nhjeY37Q-VFAj_Hwi16IxKNYkSXLIppwSSwNZZ80ZjSoAh8_mmGYQ97uxnxjkzDU6MJ7E6a0UbCwYftuO4wDIF_pYIivtfHKB74D_ME9uNSvjvV4uLstpWiDPm3j3XfgYX2_dVlcXl-_WsTFkVACYxTobdg7qk_dNswO6iH36MevwA91-0R
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSyQxEC7UhcUXdQ-xPdYIu_u0wVzdSb8I4jgeuyvDquBbk-5OQJCZYQ4Uf72VTM84wiKIj01CSFdSVV8lla8AvjNZlxhzOWqyXNHwdJGWTgla5lw5Xarcx6uY00t9cWNax4Em52D6FmbCDzE7cAuaEe11UPB-7fefSUPRc2XnrQiJ5SJ8UIjEQ0qflJ3ZGQuiIaliITTBs5yaXN80ue84xP78AC-90jPUnAes0eO0V9871zVYabAmOZxsjk-w4LqfIfmLMLk3iKfp5Cc5urtFzBq_vkDesSFXK9A3P6JLI8PxwNvKkXsM3Mmwj46OhIxPEvPQ3QMZ9foN4_VXuG4fXx2d0qa2Aq0wRuFUpkpVXJrMCWY106V3FpGeFoarmjnUagQ-kgu0AdanTvtM-drUGcsd84pJuQ5L3V7XbQBhskq1rbQVVamsQ7zCS-ON5TVah8qLBH5MZVv0JxQaxYQsWRTzgklgeyr4olGkYRHY_NMMgx72_2ZEOzINhUYT2Js1o4aEaw_bdb1xGAL_SoVt-Fofo3hgP8wT-BVX8tWpFucn_1opypBvvq37LnzstNrFn7OL31uwLAJEYJwKvQ1Lo8HY7cDisB5_i7v4CVfa67c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterizing+surface+wind+speed+over+complex+topography&rft.jtitle=Journal+of+geophysical+research.+Atmospheres&rft.au=Helbig%2C+N.&rft.au=Mott%2C+R.&rft.au=Herwijnen%2C+A.&rft.au=Winstral%2C+A.&rft.date=2017-01-27&rft.issn=2169-897X&rft.eissn=2169-8996&rft.volume=122&rft.issue=2&rft.spage=651&rft.epage=667&rft_id=info:doi/10.1002%2F2016JD025593&rft.externalDBID=10.1002%252F2016JD025593&rft.externalDocID=JGRD53541
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-897X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-897X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-897X&client=summon