Copper-Chelating Azides for Efficient Click Conjugation Reactions in Complex Media
The concept of chelation‐assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)‐catalyzed azide–alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper‐chelating moieties were synthesized; these functional g...
Saved in:
Published in: | Angewandte Chemie International Edition Vol. 53; no. 23; pp. 5872 - 5876 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
02-06-2014
WILEY‐VCH Verlag Wiley Subscription Services, Inc |
Edition: | International ed. in English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The concept of chelation‐assisted copper catalysis was employed for the development of new azides that display unprecedented reactivity in the copper(I)‐catalyzed azide–alkyne [3+2] cycloaddition (CuAAC) reaction. Azides that bear strong copper‐chelating moieties were synthesized; these functional groups allow the formation of azide copper complexes that react almost instantaneously with alkynes under diluted conditions. Efficient ligation occurred at low concentration and in complex media with only one equivalent of copper, which improves the biocompatibility of the CuAAC reaction. Furthermore, such a click reaction allowed the localization of a bioactive compound inside living cells by fluorescence measurements.
Chelating azides were designed to form clickable copper complexes for efficient ligation with alkynes in complex biological media. Among a series of azides that bear nitrogen heterocycles, a bis(triazole) azide allowed ultra‐fast click reactions with alkynes within seconds under diluted conditions. The reactivity and stability of this copper complex enabled efficient click reactions inside living cells. |
---|---|
Bibliography: | ark:/67375/WNG-NBVJ3Q8K-F This work was supported by the European community through the BioChemLig project. European community istex:81F6BCE529FBF7F113CF4323BD66BF45874E1E16 ArticleID:ANIE201310671 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1433-7851 1521-3773 |
DOI: | 10.1002/anie.201310671 |