Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita

The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (...

Full description

Saved in:
Bibliographic Details
Published in:eLife Vol. 4
Main Authors: Wotton, Karl R, Jiménez-Guri, Eva, Crombach, Anton, Janssens, Hilde, Alcaine-Colet, Anna, Lemke, Steffen, Schmidt-Ott, Urs, Jaeger, Johannes
Format: Journal Article
Language:English
Published: England eLife Sciences Publications Ltd 05-01-2015
eLife Sciences Publications, Ltd
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring 'quantitative system drift'. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution.
AbstractList The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring 'quantitative system drift'. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution.
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution.DOI: http://dx.doi.org/10.7554/eLife.04785.001
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster , while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution. DOI: http://dx.doi.org/10.7554/eLife.04785.001 Similar biological phenomena can result from different processes occurring in different organisms. For example, the early stages of how an insect develops from an egg can vary substantially between different species. Nonetheless, all insects have a body plan that develops in segments. The same outcome occurring as a result of different developmental steps is known as ‘system drift’, but the mechanisms underlying this phenomenon are largely unknown. How the body segments of the fruit fly Drosophila develop has been extensively studied. First, a female fruit fly adds messenger RNA (or mRNA) molecules copied from a number of genes into her egg cells. These mRNA molecules are then used to produce proteins whose concentration varies along the length of each egg. These proteins in turn switch on so-called ‘gap genes’ in differing amounts in different locations throughout the fruit fly embryo. The activity of these genes goes on to define the position and extent of specific segments along the fruit fly's body. Like the fruit fly, the scuttle fly Megaselia abdita has a segmented body. However, mothers of this species deposit somewhat different protein gradients into their eggs. How the regulation of development differs in the scuttle fly to compensate for this change is unknown. Now, Wotton et al. have studied, in detail, how gap genes are regulated in this less well-understood fly species to understand the mechanisms responsible for a specific example of system drift. In the fruit fly, gap genes normally switch-off (or reduce the expression of) other gap genes within the same developing body segment, and Wotton et al. found that the same kind of interactions tended to occur in the scuttle fly. As such, the overall structure of the gap gene network was fairly similar between scuttle and fruit flies. There were, however, differences in the strength of these interactions in the two fly species. These quantitative differences result in a different way of making the same segmental pattern in the embryo. In this way, Wotton et al. show how tinkering with the strength of specific gene interactions can provide an explanation for system drift. DOI: http://dx.doi.org/10.7554/eLife.04785.002
The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We investigate the mechanistic basis of this phenomenon through a systems-level analysis of the gap gene network in the scuttle fly Megaselia abdita (Phoridae). It combines quantification of gene expression at high spatio-temporal resolution with systematic knock-downs by RNA interference (RNAi). Initiation and dynamics of gap gene expression differ markedly between M. abdita and Drosophila melanogaster, while the output of the system converges to equivalent patterns at the end of the blastoderm stage. Although the qualitative structure of the gap gene network is conserved, there are differences in the strength of regulatory interactions between species. We term such network rewiring ‘quantitative system drift’. It provides a mechanistic explanation for the developmental hourglass model in the dipteran lineage. Quantitative system drift is likely to be a widespread mechanism for developmental evolution. Similar biological phenomena can result from different processes occurring in different organisms. For example, the early stages of how an insect develops from an egg can vary substantially between different species. Nonetheless, all insects have a body plan that develops in segments. The same outcome occurring as a result of different developmental steps is known as ‘system drift’, but the mechanisms underlying this phenomenon are largely unknown. How the body segments of the fruit fly Drosophila develop has been extensively studied. First, a female fruit fly adds messenger RNA (or mRNA) molecules copied from a number of genes into her egg cells. These mRNA molecules are then used to produce proteins whose concentration varies along the length of each egg. These proteins in turn switch on so-called ‘gap genes’ in differing amounts in different locations throughout the fruit fly embryo. The activity of these genes goes on to define the position and extent of specific segments along the fruit fly's body. Like the fruit fly, the scuttle fly Megaselia abdita has a segmented body. However, mothers of this species deposit somewhat different protein gradients into their eggs. How the regulation of development differs in the scuttle fly to compensate for this change is unknown. Now, Wotton et al. have studied, in detail, how gap genes are regulated in this less well-understood fly species to understand the mechanisms responsible for a specific example of system drift. In the fruit fly, gap genes normally switch-off (or reduce the expression of) other gap genes within the same developing body segment, and Wotton et al. found that the same kind of interactions tended to occur in the scuttle fly. As such, the overall structure of the gap gene network was fairly similar between scuttle and fruit flies. There were, however, differences in the strength of these interactions in the two fly species. These quantitative differences result in a different way of making the same segmental pattern in the embryo. In this way, Wotton et al. show how tinkering with the strength of specific gene interactions can provide an explanation for system drift.
Author Alcaine-Colet, Anna
Jiménez-Guri, Eva
Lemke, Steffen
Crombach, Anton
Schmidt-Ott, Urs
Jaeger, Johannes
Wotton, Karl R
Janssens, Hilde
Author_xml – sequence: 1
  givenname: Karl R
  surname: Wotton
  fullname: Wotton, Karl R
  organization: European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
– sequence: 2
  givenname: Eva
  surname: Jiménez-Guri
  fullname: Jiménez-Guri, Eva
  organization: European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
– sequence: 3
  givenname: Anton
  surname: Crombach
  fullname: Crombach, Anton
  organization: European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
– sequence: 4
  givenname: Hilde
  surname: Janssens
  fullname: Janssens, Hilde
  organization: European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
– sequence: 5
  givenname: Anna
  surname: Alcaine-Colet
  fullname: Alcaine-Colet, Anna
  organization: European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
– sequence: 6
  givenname: Steffen
  surname: Lemke
  fullname: Lemke, Steffen
  organization: Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
– sequence: 7
  givenname: Urs
  surname: Schmidt-Ott
  fullname: Schmidt-Ott, Urs
  organization: Department of Organismal Biology and Anatomy, University of Chicago, Chicago, United States
– sequence: 8
  givenname: Johannes
  surname: Jaeger
  fullname: Jaeger, Johannes
  organization: European Molecular Biology Laboratory, CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25560971$$D View this record in MEDLINE/PubMed
BookMark eNpdksFrFDEUxgep2Fp78i4BL4JsTSbJZHIRpFgtrIig4C28ybyZZp1J1iRT2UP_d2dna2nNJeHLj-99PL7nxZEPHoviJaPnSkrxDteuw3MqVC2fFCcllXRFa_Hz6MH7uDhLaUPno0RdM_2sOC6lrKhW7KS4_TaBzy5DdjdI0i5lHEkbXZeJDeMWfYKMiXQhEhgyRmzJOCvRw0Cc3045kRxIvkbSw5b06JF4zH9C_EVCt-jJTjkPSLphR75gDwkHBwSadh76onjawZDw7O4-LX5cfvx-8Xm1_vrp6uLDemWlkHnVzrSo25KrhgqhW8E0NFrXUNGyAa07pRrkFi0o5C0XQgkEKbWkXDFJGT8trg6-bYCN2UY3QtyZAM4sQoi9gZidHdCUVFGwHbTA51kMGmEtl6WqGWgEq2av9wev7dSM2Fr0OcLwyPTxj3fXpg83RnCuKlrNBm_uDGL4PWHKZnTJ4jCAxzAlwypZCjnT-9yv_0M3YdrvfqZ0VUlaVQv19kDZGFKK2N2HYdTsW2KWlpilJTP96mH-e_ZfJ_hfaje8mg
CitedBy_id crossref_primary_10_1371_journal_pbio_2002439
crossref_primary_10_1016_j_coisb_2018_08_004
crossref_primary_10_12688_wellcomeopenres_19073_1
crossref_primary_10_1098_rsos_180458
crossref_primary_10_1371_journal_pone_0184657
crossref_primary_10_7554_eLife_33807
crossref_primary_10_1038_s41467_023_38033_3
crossref_primary_10_1534_genetics_118_300995
crossref_primary_10_1016_j_physrep_2024_05_002
crossref_primary_10_1038_sdata_2015_5
crossref_primary_10_1371_journal_pgen_1006052
crossref_primary_10_1534_g3_119_400603
crossref_primary_10_1098_rsfs_2020_0049
crossref_primary_10_7554_eLife_42832
crossref_primary_10_1534_g3_119_400788
crossref_primary_10_1093_molbev_msw013
crossref_primary_10_1534_g3_118_200953
crossref_primary_10_1371_journal_pcbi_1007177
crossref_primary_10_1371_journal_pbio_2003174
crossref_primary_10_1371_journal_pcbi_1008589
crossref_primary_10_1016_j_jtbi_2024_111720
crossref_primary_10_1371_journal_pbio_2005099
crossref_primary_10_1016_j_gde_2020_04_008
crossref_primary_10_1098_rstb_2020_0517
crossref_primary_10_7554_eLife_47380
crossref_primary_10_1098_rsfs_2021_0007
crossref_primary_10_1016_j_plrev_2021_03_004
crossref_primary_10_1007_s10539_019_9716_9
crossref_primary_10_1093_gbe_evz086
crossref_primary_10_1186_s13059_018_1526_x
crossref_primary_10_1371_journal_pcbi_1005285
crossref_primary_10_1134_S1062360416040093
crossref_primary_10_1111_ede_12283
crossref_primary_10_1186_s13227_017_0083_9
crossref_primary_10_1134_S0006350917060185
crossref_primary_10_2139_ssrn_4052006
crossref_primary_10_1111_evo_14356
crossref_primary_10_7554_eLife_72666
Cites_doi 10.1016/j.ydbio.2010.04.019
10.1038/335025a0
10.1242/dev.114.1.99
10.1242/dev.111.2.611
10.1038/336489a0
10.1016/j.mod.2006.11.001
10.1101/pdb.prot5602
10.1073/pnas.0709145105
10.1002/j.1460-2075.1988.tb02801.x
10.1016/j.cell.2008.01.014
10.1242/dev.101.1.1
10.1111/j.1525-142X.2008.00252.x
10.1046/j.1525-142X.2002.02016.x
10.1002/j.1460-2075.1989.tb03538.x
10.1016/S0378-1119(03)00556-0
10.1093/oxfordjournals.molbev.a004169
10.1016/j.cub.2010.06.070
10.1002/jez.1402710106
10.1038/nature11394
10.1371/journal.pcbi.1000303
10.1371/journal.pgen.1000106
10.1016/0092-8674(87)90124-3
10.1007/s00427-008-0204-5
10.1007/s004270050238
10.1007/bf00848158
10.1038/340363a0
10.1242/dev.111.2.367
10.1016/j.cub.2011.02.040
10.1016/0092-8674(92)90466-P
10.1371/journal.pcbi.1000548
10.1038/327383a0
10.1242/jcs.61.1.31
10.1007/BF00444041
10.1242/dev.063735
10.1371/journal.pone.0046658
10.1038/nrg1502
10.1534/genetics.104.027334
10.1242/dev.111.2.601
10.1016/S0925-4773(97)00100-7
10.1016/0012-1606(87)90219-3
10.1242/dev.125.13.2433
10.1038/nature03235
10.1073/pnas.0705396104
10.1093/oxfordjournals.molbev.a026107
10.1038/369664a0
10.1186/1471-2164-14-123
10.1016/j.tree.2012.01.016
10.1038/nature02678
10.1371/journal.pcbi.0020130
10.1371/journal.pbio.1000343
10.1038/332281a0
10.1371/journal.pone.0004688
10.1371/journal.pbio.0030093
10.1016/0092-8674(87)90197-8
10.1038/nrg3095
10.1038/361490a0
10.1038/35000615
10.1073/pnas.190095397
10.4161/fly.6060
10.1016/0012-1606(87)90045-5
10.1016/j.tree.2008.03.006
10.1113/jphysiol.2014.272385
10.1038/23709
10.1242/dev.110.2.621
10.1002/j.1460-2075.1989.tb08460.x
10.1242/dev.125.19.3765
10.1093/acprof:oso/9780199671427.003.0004
10.1038/nature09634
10.1371/journal.pcbi.0020051
10.1016/j.gde.2012.10.003
10.1016/0925-4773(94)90069-8
10.1038/nature08694
10.1016/0012-1606(90)90053-L
10.1016/0092-8674(88)90183-3
10.1038/341337a0
10.1371/journal.pcbi.1002589
10.1016/j.tig.2012.09.007
10.1016/S0959-437X(02)00355-6
10.1186/2041-9139-5-1
10.1016/j.ydbio.2004.08.021
10.1016/j.cub.2005.09.046
10.1038/346577a0
10.1101/pdb.prot5600
10.1016/0092-8674(90)90249-E
10.1038/nature10200
10.7208/chicago/9780226256573.001.0001
10.1038/nature02189
10.1006/dbio.2001.0454
10.1038/324668a0
10.1073/pnas.1012675108
10.1016/S0065-2806(08)60255-6
10.1371/journal.pcbi.1003281
10.1038/msb.2012.35
10.1242/dev.046649
10.1046/j.1525-142x.2001.003002109.x
10.1126/science.2158673
10.1371/journal.pcbi.0030015
10.1093/nar/gku1142
10.1371/journal.pone.0084421
10.1038/287795a0
10.1038/415798a
10.1126/science.1218256
10.1016/j.ydbio.2013.01.008
10.1007/978-3-662-22489-2
10.1242/dev.121.4.1023
10.1006/tpbi.2000.1460
10.1002/j.1460-2075.1988.tb03004.x
10.1038/ng.3009
10.1242/dev.01289
10.1007/s00018-010-0536-y
10.1073/pnas.012292899
10.1101/pdb.emo143
10.1016/j.ydbio.2007.10.037
10.1073/pnas.96.7.3786
10.1371/journal.pbio.1000049
10.1046/j.1525-142X.2001.01043.x
10.1371/journal.pbio.1000596
10.1242/dev.125.5.949
10.1016/j.cell.2008.06.052
10.1242/dev.030270
10.1038/150563a0
10.1016/0925-4773(91)90019-3
10.1093/acprof:oso/9780199692590.001.0001
10.1093/molbev/msg077
10.1371/journal.pone.0084422
10.1371/journal.pgen.1003748
10.1007/s10709-006-0032-3
10.1007/BF00848157
10.1016/0012-1606(84)90046-0
10.1146/annurev.ento.47.091201.145251
10.1038/317040a0
10.1038/nature09632
10.1016/0092-8674(89)90062-7
10.1016/j.biosystems.2014.06.003
ContentType Journal Article
Copyright 2015, Wotton et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2015, Wotton et al 2015 Wotton et al
Copyright_xml – notice: 2015, Wotton et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2015, Wotton et al 2015 Wotton et al
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.7554/eLife.04785
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
ProQuest - Health & Medical Complete保健、医学与药学数据库
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Databases
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database (Proquest) (PQ_SDU_P3)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_2070acfada30441ab4cc352781a9eac7
10_7554_eLife_04785
25560971
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: IOS-0719445/IOS-1121211
– fundername: ;
  grantid: SGR Grant 406
– fundername: ;
  grantid: FP7-KBBE-2011-5/289434
– fundername: ;
  grantid: MEC/EMBL Agreement/BFU2009-10184/BFU2012-33775/SEV-2012-0208
GroupedDBID 3V.
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
DIK
DWQXO
ECM
EIF
EMOBN
FRP
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NPM
NQS
OK1
PGMZT
PIMPY
PQQKQ
PROAC
PSQYO
RHF
RHI
RNS
RPM
UKHRP
AAYXX
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c545t-dabd48d237b0449d419ab998a602ba99f77be3ceca7e3d34474ea559503715013
IEDL.DBID RPM
ISSN 2050-084X
IngestDate Tue Oct 22 15:10:55 EDT 2024
Tue Sep 17 21:27:01 EDT 2024
Sat Oct 26 06:10:04 EDT 2024
Sat Nov 16 15:55:46 EST 2024
Thu Nov 21 22:36:41 EST 2024
Sat Nov 02 12:28:50 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords stem cells
RNA interference
developmental system drift
evolutionary biology
developmental biology
evolutionary developmental biology (evo-devo)
gap gene network
Megaselia abdita
data quantification
genomics
D. melanogaster
Language English
License This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c545t-dabd48d237b0449d419ab998a602ba99f77be3ceca7e3d34474ea559503715013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Centre for Organismal Studies, Ruprecht Karls University, Heidelberg, Germany.
ORCID 0000-0002-9592-1077
0000-0002-8672-9948
0000-0002-2568-2103
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4337606/
PMID 25560971
PQID 1966506631
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_2070acfada30441ab4cc352781a9eac7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4337606
proquest_miscellaneous_1652454331
proquest_journals_1966506631
crossref_primary_10_7554_eLife_04785
pubmed_primary_25560971
PublicationCentury 2000
PublicationDate 2015-01-05
PublicationDateYYYYMMDD 2015-01-05
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2015
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References Bradley (bib7) 2010; 8
Jaeger (bib48) 2011; 68
Lemke (bib63) 2009; 136
Eldon (bib32) 1991; 111
Rafiqi (bib92) 2011b; 2011
García-Solache (bib35) 2010; 344
Clyde (bib18) 2003; 426
Ludwig (bib68) 2000; 403
Brönner (bib8) 1994; 369
Reinitz (bib95) 1995; 271
Wieschaus (bib126) 1984b; 104
Wu (bib129a) 1998; 125
Wotton (bib129) 2014; 9
Pavlicev (bib83) 2012; 27
Domazet-Lošo (bib27) 2010; 468
Wieschaus (bib125) 1984a; 193
Ludwig (bib71) 1998; 125
Surkova (bib112) 2013; 376
Akam (bib1) 1987; 101
Campos-Ortega (bib12) 1997
Slack (bib104) 1993; 361
Levine (bib65) 2010; 20
Hülskamp (bib45) 1990; 346
Moreno (bib77) 1999; 400
Pankratz (bib81) 1989; 341
Becker (bib4) 2013; 9
Casanova (bib14) 1990; 110
McGregor (bib74) 2001; 3
Rafiqi (bib90) 2008; 105
Sander (bib99) 1976; 12
Rohr (bib96) 1999; 209
Ingham (bib46) 1988; 335
Manu (bib73) 2009b; 7
Surkova (bib113) 2008a; 313
Jaeger (bib51) 2007; 124
Wunderlich (bib131) 2012; 8
Driever (bib29) 1988; 54
Petschek (bib86) 1987; 119
Sander (bib100) 1983
Jiménez-Guri (bib54) 2013; 14
Rothe (bib98) 1994; 46
Stauber (bib109) 2000; 97
Yáñez-Cuna (bib132) 2013; 29
Tautz (bib116) 1987
Weigel (bib121) 1990; 248
Draghi (bib28) 2010; 463
Reinitz (bib94) 1990; 140
Goltsev (bib38) 2004; 275
Hoyos (bib44a) 2011; 21
Rafiqi (bib91) 2011a; 2011
Sarrazin (bib100a) 2012; 336
Lehmann (bib61) 1987; 119
Mlodzik (bib75) 1987; 48
Wu (bib130) 1998; 125
Ludwig (bib67) 2002; 12
Lemke (bib64) 2008; 10
Frankel (bib34) 2011; 474
Lemke (bib62) 2010; 137
Gergen (bib37) 1986; 195
Ludwig (bib70) 2005; 3
Stauber (bib107) 2008; 218
Jaeger (bib51a) 2014
Manu (bib72) 2009a; 5
Hancock (bib41) 1999; 16
Rafiqi (bib93) 2011c; 4
Costas (bib19) 2003; 310
Crauk (bib20) 2005; 15
Jaeger (bib50) 2004b; 430
Houchmandzadeh (bib44) 2002; 415
Davis (bib24) 2002; 47
Schulz (bib101) 1995; 121
Richmond (bib95a) 2012; 22
Wiegmann (bib124) 2011; 108
Crombach (bib22) 2012a; 8
Perkins (bib84) 2006; 2
Williams (bib127) 2008; 134
Wagner (bib119) 2011
Peterson (bib85) 2009; 4
Bonneton (bib6) 1997; 66
Dermitzakis (bib25) 2003; 20
Hare (bib43) 2008; 4
Weiss (bib123) 2000; 57
Seidel (bib102) 1960; 164
St Johnston (bib105) 1992; 68
Stauber (bib108) 2002; 99
Duboule (bib31) 1994
Harding (bib42) 1988; 7
Oates (bib80a) 2012; 139
Jaeger (bib51b) 2014; 592
Dermitzakis (bib26) 2002; 19
Rothe (bib97) 1989; 8
Kalinka (bib57) 2010; 468
Little (bib66) 2011; 9
Moses (bib78) 2006; 2
Pignoni (bib87) 1990; 62
Waddington (bib118) 1942; 150
Kraut (bib59) 1991a; 111
Haag (bib40) 2007; 129
Mohler (bib76) 1989; 8
Cicin-Sain (bib15) 2015; 43
Jürgens (bib56) 1984; 193
Kraut (bib60) 1991b; 111
Crombach (bib21) 2014; 123
Gaul (bib36) 1987; 51
Wittkopp (bib128) 2011; 13
Surkova (bib114) 2008b; 2
Brönner (bib9) 1991; 35
Janssens (bib52) 2014; 5
Nauber (bib79) 1988; 336
Capovilla (bib13) 1992; 114
Crombach (bib23) 2012b; 7
Bullock (bib11) 2004; 131
Driever (bib30) 1989; 340
Ciliberti (bib17) 2007b; 3
Jeong (bib53) 2008; 132
Jäckle (bib47) 1986; 324
Strunk (bib111) 2001; 239
Shaw (bib103) 2002; 4
Knipple (bib58) 1985; 317
Tautz (bib115) 1988; 332
Foe (bib33) 1983; 61
Ciliberti (bib16) 2007a; 104
True (bib117) 2001; 3
Ashyraliyev (bib3) 2009; 5
Brönner (bib10) 1996; 40
Quint (bib88) 2012; 490
Nüsslein-Volhard (bib80) 1980; 287
Paris (bib82) 2013; 9
Struhl (bib110) 1989; 57
Arnold (bib2) 2014; 46
Gompel (bib39) 2005; 433
Raff (bib89) 1996
Wagner (bib120) 2008; 23
Jiménez-Guri (bib55) 2014; 9
Ludwig (bib69) 1995; 12
Stauber (bib106) 1999; 96
Jaeger (bib49) 2004a; 167
Weiss (bib122) 2005; 6
Berleth (bib5) 1988; 7
References_xml – volume: 344
  start-page: 306
  year: 2010
  ident: bib35
  article-title: A systematic analysis of the gap gene system in the moth midge Clogmia albipunctata
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2010.04.019
  contributor:
    fullname: García-Solache
– volume: 335
  start-page: 25
  year: 1988
  ident: bib46
  article-title: The molecular genetics of embryonic pattern formation in Drosophila
  publication-title: Nature
  doi: 10.1038/335025a0
  contributor:
    fullname: Ingham
– volume: 114
  start-page: 99
  year: 1992
  ident: bib13
  article-title: The giant gene of Drosophila encodes a b-ZIP DNA-binding protein that regulates the expression of other segmentation gap genes
  publication-title: Development
  doi: 10.1242/dev.114.1.99
  contributor:
    fullname: Capovilla
– volume: 111
  start-page: 611
  year: 1991b
  ident: bib60
  article-title: Mutually repressive interactions between the gap genes giant and Krüppel define middle body regions of the Drosophila embryo
  publication-title: Development
  doi: 10.1242/dev.111.2.611
  contributor:
    fullname: Kraut
– volume: 336
  start-page: 489
  year: 1988
  ident: bib79
  article-title: Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps
  publication-title: Nature
  doi: 10.1038/336489a0
  contributor:
    fullname: Nauber
– volume: 124
  start-page: 108
  year: 2007
  ident: bib51
  article-title: Known maternal gradients are not sufficient for the establishment of gap domains in Drosophila melanogaster
  publication-title: Mechanisms of Development
  doi: 10.1016/j.mod.2006.11.001
  contributor:
    fullname: Jaeger
– volume: 2011
  start-page: pdb.prot5602
  year: 2011b
  ident: bib92
  article-title: Megaselia abdita: fixing and devitellinizing embryos
  publication-title: Cold Spring Harbor Protocols
  doi: 10.1101/pdb.prot5602
  contributor:
    fullname: Rafiqi
– volume: 105
  start-page: 234
  year: 2008
  ident: bib90
  article-title: Evolutionary origin of the amnioserosa in cyclorrhaphan flies correlates with spatial and temporal expression changes of zen
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.0709145105
  contributor:
    fullname: Rafiqi
– volume: 7
  start-page: 205
  year: 1988
  ident: bib42
  article-title: Gap genes define the limits of antennapedia and bithorax gene expression during early development in Drosophila
  publication-title: The EMBO Journal
  doi: 10.1002/j.1460-2075.1988.tb02801.x
  contributor:
    fullname: Harding
– volume: 132
  start-page: 783
  year: 2008
  ident: bib53
  article-title: The evolution of gene regulation underlies a morphological difference between two Drosophila sister species
  publication-title: Cell
  doi: 10.1016/j.cell.2008.01.014
  contributor:
    fullname: Jeong
– volume: 101
  start-page: 1
  year: 1987
  ident: bib1
  article-title: The molecular basis for metameric pattern in the Drosophila embryo
  publication-title: Development
  doi: 10.1242/dev.101.1.1
  contributor:
    fullname: Akam
– volume: 10
  start-page: 413
  year: 2008
  ident: bib64
  article-title: Bicoid occurrence and Bicoid-dependent hunchback regulation in lower cyclorrhaphan flies
  publication-title: Evolution & Development
  doi: 10.1111/j.1525-142X.2008.00252.x
  contributor:
    fullname: Lemke
– volume: 4
  start-page: 265
  year: 2002
  ident: bib103
  article-title: Coevolution in bicoid-dependent promoters and the inception of regulatory incompatibilities among species of higher Diptera
  publication-title: Evolution & Development
  doi: 10.1046/j.1525-142X.2002.02016.x
  contributor:
    fullname: Shaw
– volume: 8
  start-page: 1539
  year: 1989
  ident: bib76
  article-title: A novel spatial transcription pattern associated with the segmentation gene, giant, of Drosophila
  publication-title: The EMBO Journal
  doi: 10.1002/j.1460-2075.1989.tb03538.x
  contributor:
    fullname: Mohler
– volume: 310
  start-page: 215
  year: 2003
  ident: bib19
  article-title: Turnover of binding sites for transcription factors involved in early Drosophila development
  publication-title: Gene
  doi: 10.1016/S0378-1119(03)00556-0
  contributor:
    fullname: Costas
– volume: 19
  start-page: 1114
  year: 2002
  ident: bib26
  article-title: Evolution of transcription factor binding sites in mammalian gene regulatory regions: conservation and turnover
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a004169
  contributor:
    fullname: Dermitzakis
– volume: 20
  start-page: R754
  year: 2010
  ident: bib65
  article-title: Transcriptional enhancers in animal development and evolution
  publication-title: Current Biology
  doi: 10.1016/j.cub.2010.06.070
  contributor:
    fullname: Levine
– volume: 271
  start-page: 47
  year: 1995
  ident: bib95
  article-title: Model for cooperative control of positional information in Drosophila by bicoid and maternal hunchback
  publication-title: The Journal of Experimental Zoology
  doi: 10.1002/jez.1402710106
  contributor:
    fullname: Reinitz
– volume: 490
  start-page: 98
  year: 2012
  ident: bib88
  article-title: A transcriptomic hourglass in plant embryogenesis
  publication-title: Nature
  doi: 10.1038/nature11394
  contributor:
    fullname: Quint
– volume: 5
  start-page: e1000303
  year: 2009a
  ident: bib72
  article-title: Canalization of gene expression and domain shifts in the Drosophila blastoderm by dynamical attractors
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000303
  contributor:
    fullname: Manu
– volume: 4
  start-page: e1000106
  year: 2008
  ident: bib43
  article-title: Sepsid even-skipped enhancers are functionally conserved in Drosophila despite lack of sequence conservation
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1000106
  contributor:
    fullname: Hare
– volume: 51
  start-page: 549
  year: 1987
  ident: bib36
  article-title: Pole region-dependent repression of the Drosophila gap gene Krüppel by maternal gene products
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90124-3
  contributor:
    fullname: Gaul
– volume: 218
  start-page: 81
  year: 2008
  ident: bib107
  article-title: Expression and regulation of caudal in the lower cyclorrhaphan fly Megaselia
  publication-title: Development Genes and Evolution
  doi: 10.1007/s00427-008-0204-5
  contributor:
    fullname: Stauber
– volume: 209
  start-page: 145
  year: 1999
  ident: bib96
  article-title: Segmentation gene expression in the mothmidge Clogmia albipunctata (Diptera, psychodidae) and other primitive dipterans
  publication-title: Development Genes and Evolution
  doi: 10.1007/s004270050238
  contributor:
    fullname: Rohr
– volume: 193
  start-page: 296
  year: 1984a
  ident: bib125
  article-title: Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. 3. Zygotic loci on the X chromosome and 4th chromosome
  publication-title: Development Genes and Evolution
  doi: 10.1007/bf00848158
  contributor:
    fullname: Wieschaus
– volume: 340
  start-page: 363
  year: 1989
  ident: bib30
  article-title: Determination of spatial domains of zygotic gene expression in the Drosophila embryo by the affinity of binding sites for the bicoid morphogen
  publication-title: Nature
  doi: 10.1038/340363a0
  contributor:
    fullname: Driever
– volume: 111
  start-page: 367
  year: 1991
  ident: bib32
  article-title: Interactions of the Drosophila gap gene giant with maternal and zygotic pattern-forming genes
  publication-title: Development
  doi: 10.1242/dev.111.2.367
  contributor:
    fullname: Eldon
– volume: 21
  start-page: 527
  year: 2011
  ident: bib44a
  article-title: Quantitative Variation in Autocrine Signaling and Pathway Crosstalk in the Caenorhabditis Vulval Network
  publication-title: Current Biology
  doi: 10.1016/j.cub.2011.02.040
  contributor:
    fullname: Hoyos
– volume: 68
  start-page: 201
  year: 1992
  ident: bib105
  article-title: The origin of pattern and polarity in the Drosophila embryo
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90466-P
  contributor:
    fullname: St Johnston
– volume: 5
  start-page: e1000548
  year: 2009
  ident: bib3
  article-title: Gene circuit analysis of the terminal gap gene huckebein
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1000548
  contributor:
    fullname: Ashyraliyev
– year: 1987
  ident: bib116
  article-title: Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes
  publication-title: Nature
  doi: 10.1038/327383a0
  contributor:
    fullname: Tautz
– volume: 61
  start-page: 31
  year: 1983
  ident: bib33
  article-title: Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis
  publication-title: Journal of Cell Science
  doi: 10.1242/jcs.61.1.31
  contributor:
    fullname: Foe
– volume: 195
  start-page: 49
  year: 1986
  ident: bib37
  article-title: Localized requirements for gene activity in segmentation of Drosophila embryos: analysis of armadillo, fused, giant and unpaired mutations in mosaic embryos
  publication-title: Roux's Archives of Developmental Biology
  doi: 10.1007/BF00444041
  contributor:
    fullname: Gergen
– volume: 139
  start-page: 625
  year: 2012
  ident: bib80a
  article-title: Patterning embryos with oscillations: structure, function and dynamics of the vertebrate segmentation clock
  publication-title: Development
  doi: 10.1242/dev.063735
  contributor:
    fullname: Oates
– volume: 7
  start-page: e46658
  year: 2012b
  ident: bib23
  article-title: Medium-throughput processing of whole mount in situ hybridisation experiments into gene expression domains
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0046658
  contributor:
    fullname: Crombach
– volume: 6
  start-page: 36
  year: 2005
  ident: bib122
  article-title: The phenogenetic logic of life
  publication-title: Nature Reviews. Genetics
  doi: 10.1038/nrg1502
  contributor:
    fullname: Weiss
– volume: 167
  start-page: 1721
  year: 2004a
  ident: bib49
  article-title: Dynamical analysis of regulatory interactions in the gap gene system of Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1534/genetics.104.027334
  contributor:
    fullname: Jaeger
– volume: 111
  start-page: 601
  year: 1991a
  ident: bib59
  article-title: Spatial regulation of the gap gene giant during Drosophila development
  publication-title: Development
  doi: 10.1242/dev.111.2.601
  contributor:
    fullname: Kraut
– volume: 66
  start-page: 143
  year: 1997
  ident: bib6
  article-title: Comparison of bicoid-dependent regulation of hunchback between Musca domestica and Drosophila melanogaster
  publication-title: Mechanisms of Development
  doi: 10.1016/S0925-4773(97)00100-7
  contributor:
    fullname: Bonneton
– volume: 119
  start-page: 175
  year: 1987
  ident: bib86
  article-title: Region-specific defects in l(1)giant embryos of Drosophila melanogaster
  publication-title: Developmental Biology
  doi: 10.1016/0012-1606(87)90219-3
  contributor:
    fullname: Petschek
– volume: 125
  start-page: 2433
  year: 1998
  ident: bib129a
  article-title: Role of caudal in hindgut specification and gastrulation suggests homology between Drosophila amnioproctodeal invagination and vertebrate blastopore
  publication-title: Development
  doi: 10.1242/dev.125.13.2433
  contributor:
    fullname: Wu
– volume: 433
  start-page: 481
  year: 2005
  ident: bib39
  article-title: Chance caught on the wing: cis-regulatory evolution and the origin of pigment patterns in Drosophila
  publication-title: Nature
  doi: 10.1038/nature03235
  contributor:
    fullname: Gompel
– volume: 164
  start-page: 245
  year: 1960
  ident: bib102
  article-title: Körpergrundgestalt und Keimstruktur. Eine Erörterung über die Grundlagen der vergleichenden und experimentellen Embryologie und deren Gültigkeit bei phylogenetischen Berlegungen
  publication-title: Zoologischer Anzeiger
  contributor:
    fullname: Seidel
– volume: 40
  start-page: 157
  year: 1996
  ident: bib10
  article-title: Regulation and function of the terminal gap gene huckebein in the Drosophila blastoderm
  publication-title: The International Journal of Developmental Biology
  contributor:
    fullname: Brönner
– volume: 104
  start-page: 13591
  year: 2007a
  ident: bib16
  article-title: Innovation and robustness in complex regulatory gene networks
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.0705396104
  contributor:
    fullname: Ciliberti
– volume: 16
  start-page: 253
  year: 1999
  ident: bib41
  article-title: High sequence turnover in the regulatory regions of the developmental gene hunchback in insects
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/oxfordjournals.molbev.a026107
  contributor:
    fullname: Hancock
– volume: 369
  start-page: 664
  year: 1994
  ident: bib8
  article-title: Sp1/egr-like zinc-finger protein required for endoderm specification and germ-layer formation in Drosophila
  publication-title: Nature
  doi: 10.1038/369664a0
  contributor:
    fullname: Brönner
– volume: 14
  start-page: 123
  year: 2013
  ident: bib54
  article-title: Comparative transcriptomics of early dipteran development
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-14-123
  contributor:
    fullname: Jiménez-Guri
– volume: 27
  start-page: 316
  year: 2012
  ident: bib83
  article-title: A model of developmental evolution: selection, pleiotropy and compensation
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2012.01.016
  contributor:
    fullname: Pavlicev
– volume: 430
  start-page: 368
  year: 2004b
  ident: bib50
  article-title: Dynamic control of positional information in the early Drosophila embryo
  publication-title: Nature
  doi: 10.1038/nature02678
  contributor:
    fullname: Jaeger
– volume: 2
  start-page: e130
  year: 2006
  ident: bib78
  article-title: Large-scale turnover of functional transcription factor binding sites in Drosophila
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.0020130
  contributor:
    fullname: Moses
– volume: 8
  start-page: e1000343
  year: 2010
  ident: bib7
  article-title: Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1000343
  contributor:
    fullname: Bradley
– volume: 332
  start-page: 281
  year: 1988
  ident: bib115
  article-title: Regulation of the Drosophila segmentation gene hunchback by two maternal morphogenetic centres
  publication-title: Nature
  doi: 10.1038/332281a0
  contributor:
    fullname: Tautz
– volume: 4
  start-page: e4688
  year: 2009
  ident: bib85
  article-title: Big genomes facilitate the comparative identification of regulatory elements
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0004688
  contributor:
    fullname: Peterson
– volume: 3
  start-page: e93
  year: 2005
  ident: bib70
  article-title: Functional evolution of a cis-regulatory module
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.0030093
  contributor:
    fullname: Ludwig
– volume: 48
  start-page: 465
  year: 1987
  ident: bib75
  article-title: Expression of the caudal gene in the germ line of Drosophila: formation of an RNA and protein gradient during early embryogenesis
  publication-title: Cell
  doi: 10.1016/0092-8674(87)90197-8
  contributor:
    fullname: Mlodzik
– volume: 13
  start-page: 59
  year: 2011
  ident: bib128
  article-title: Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3095
  contributor:
    fullname: Wittkopp
– volume: 361
  start-page: 490
  year: 1993
  ident: bib104
  article-title: The zootype and the phylotypic stage
  publication-title: Nature
  doi: 10.1038/361490a0
  contributor:
    fullname: Slack
– start-page: 135
  year: 1994
  ident: bib31
  article-title: Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony
  publication-title: Development Supplement
  contributor:
    fullname: Duboule
– volume: 403
  start-page: 564
  year: 2000
  ident: bib68
  article-title: Evidence for stabilizing selection in a eukaryotic enhancer element
  publication-title: Nature
  doi: 10.1038/35000615
  contributor:
    fullname: Ludwig
– volume: 97
  start-page: 10844
  year: 2000
  ident: bib109
  article-title: Function of bicoid and hunchback homologs in the basal cyclorrhaphan fly Megaselia (Phoridae)
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.190095397
  contributor:
    fullname: Stauber
– volume: 2
  start-page: 58
  year: 2008b
  ident: bib114
  article-title: Pipeline for acquisition of quantitative data on segmentation gene expression from confocal images
  publication-title: Fly
  doi: 10.4161/fly.6060
  contributor:
    fullname: Surkova
– volume: 119
  start-page: 402
  year: 1987
  ident: bib61
  article-title: hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo
  publication-title: Developmental Biology
  doi: 10.1016/0012-1606(87)90045-5
  contributor:
    fullname: Lehmann
– volume: 23
  start-page: 377
  year: 2008
  ident: bib120
  article-title: The gene regulatory logic of transcription factor evolution
  publication-title: Trends in Ecology & Evolution
  doi: 10.1016/j.tree.2008.03.006
  contributor:
    fullname: Wagner
– volume: 592
  start-page: 2267
  year: 2014
  ident: bib51b
  article-title: Bioattractors: dynamical systems theory and the evolution of regulatory processes
  publication-title: Journal of Physiology
  doi: 10.1113/jphysiol.2014.272385
  contributor:
    fullname: Jaeger
– volume: 400
  start-page: 873
  year: 1999
  ident: bib77
  article-title: Caudal is the Hox gene that specifies the most posterior Drosophila segment
  publication-title: Nature
  doi: 10.1038/23709
  contributor:
    fullname: Moreno
– volume: 110
  start-page: 621
  year: 1990
  ident: bib14
  article-title: Pattern formation under the control of the terminal system in the Drosophila embryo
  publication-title: Development
  doi: 10.1242/dev.110.2.621
  contributor:
    fullname: Casanova
– volume: 8
  start-page: 3087
  year: 1989
  ident: bib97
  article-title: Three hormone receptor-like Drosophila genes encode an identical DNA-binding finger
  publication-title: The EMBO Journal
  doi: 10.1002/j.1460-2075.1989.tb08460.x
  contributor:
    fullname: Rothe
– volume: 125
  start-page: 3765
  year: 1998
  ident: bib130
  article-title: Two distinct mechanisms for differential positioning of gene expression borders involving the Drosophila gap protein giant
  publication-title: Development
  doi: 10.1242/dev.125.19.3765
  contributor:
    fullname: Wu
– start-page: 56
  year: 2014
  ident: bib51a
  article-title: On the concept of mechanism in development
  publication-title: Towards a Theory of Development
  doi: 10.1093/acprof:oso/9780199671427.003.0004
  contributor:
    fullname: Jaeger
– volume: 468
  start-page: 811
  year: 2010
  ident: bib57
  article-title: Gene expression divergence recapitulates the developmental hourglass model
  publication-title: Nature
  doi: 10.1038/nature09634
  contributor:
    fullname: Kalinka
– volume: 2
  start-page: e51
  year: 2006
  ident: bib84
  article-title: Reverse engineering the gap gene network of Drosophila melanogaster
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.0020051
  contributor:
    fullname: Perkins
– volume: 22
  start-page: 600
  year: 2012
  ident: bib95a
  article-title: The segmentation clock: inherited trait or universal design principle?
  publication-title: Current Opinion in Genetics and Development
  doi: 10.1016/j.gde.2012.10.003
  contributor:
    fullname: Richmond
– volume: 46
  start-page: 169
  year: 1994
  ident: bib98
  article-title: Identical transacting factor requirement for knirps and knirps-related gene expression in the anterior but not in the posterior region of the Drosophila embryo
  publication-title: Mechanisms of Development
  doi: 10.1016/0925-4773(94)90069-8
  contributor:
    fullname: Rothe
– volume: 463
  start-page: 353
  year: 2010
  ident: bib28
  article-title: Mutational robustness can facilitate adaptation
  publication-title: Nature
  doi: 10.1038/nature08694
  contributor:
    fullname: Draghi
– volume: 140
  start-page: 57
  year: 1990
  ident: bib94
  article-title: Control of the initiation of homeotic gene expression by the gap genes giant and tailless in Drosophila
  publication-title: Developmental Biology
  doi: 10.1016/0012-1606(90)90053-L
  contributor:
    fullname: Reinitz
– volume: 54
  start-page: 95
  year: 1988
  ident: bib29
  article-title: The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90183-3
  contributor:
    fullname: Driever
– volume: 341
  start-page: 337
  year: 1989
  ident: bib81
  article-title: Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo
  publication-title: Nature
  doi: 10.1038/341337a0
  contributor:
    fullname: Pankratz
– volume: 8
  start-page: e1002589
  year: 2012a
  ident: bib22
  article-title: Efficient reverse-engineering of a developmental gene regulatory network
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1002589
  contributor:
    fullname: Crombach
– volume: 29
  start-page: 11
  year: 2013
  ident: bib132
  article-title: Deciphering the transcriptional cis-regulatory code
  publication-title: Trends in Genetics
  doi: 10.1016/j.tig.2012.09.007
  contributor:
    fullname: Yáñez-Cuna
– volume: 12
  start-page: 634
  year: 2002
  ident: bib67
  article-title: Functional evolution of noncoding DNA
  publication-title: Current Opinion in Genetics & Development
  doi: 10.1016/S0959-437X(02)00355-6
  contributor:
    fullname: Ludwig
– volume: 5
  start-page: 1
  year: 2014
  ident: bib52
  article-title: A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera: psychodidae) blastoderm embryos
  publication-title: EvoDevo
  doi: 10.1186/2041-9139-5-1
  contributor:
    fullname: Janssens
– volume: 275
  start-page: 435
  year: 2004
  ident: bib38
  article-title: Different combinations of gap repressors for common stripes in Anopheles and Drosophila embryos
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2004.08.021
  contributor:
    fullname: Goltsev
– volume: 15
  start-page: 1888
  year: 2005
  ident: bib20
  article-title: Bicoid determines sharp and precise target gene expression in the Drosophila embryo
  publication-title: Current Biology
  doi: 10.1016/j.cub.2005.09.046
  contributor:
    fullname: Crauk
– volume: 346
  start-page: 577
  year: 1990
  ident: bib45
  article-title: A morphogenetic gradient of hunchback protein organizes the expression of the gap genes Krüppel and knirps in the early Drosophila embryo
  publication-title: Nature
  doi: 10.1038/346577a0
  contributor:
    fullname: Hülskamp
– volume: 2011
  start-page: pdb.prot5600
  year: 2011a
  ident: bib91
  article-title: Megaselia abdita: culturing and egg collection
  publication-title: Cold Spring Harbor Protocols
  doi: 10.1101/pdb.prot5600
  contributor:
    fullname: Rafiqi
– volume: 12
  start-page: 1002
  year: 1995
  ident: bib69
  article-title: Evolutionary dynamics of the enhancer region of even-skipped in Drosophila
  publication-title: Molecular Biology and Evolution
  contributor:
    fullname: Ludwig
– volume: 62
  start-page: 151
  year: 1990
  ident: bib87
  article-title: The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90249-E
  contributor:
    fullname: Pignoni
– volume: 474
  start-page: 598
  year: 2011
  ident: bib34
  article-title: Morphological evolution caused by many subtle-effect substitutions in regulatory DNA
  publication-title: Nature
  doi: 10.1038/nature10200
  contributor:
    fullname: Frankel
– volume-title: The Shape of Life: Genes, Development, and the Evolution of Animal Form
  year: 1996
  ident: bib89
  doi: 10.7208/chicago/9780226256573.001.0001
  contributor:
    fullname: Raff
– volume: 426
  start-page: 849
  year: 2003
  ident: bib18
  article-title: A self-organizing system of repressor gradients establishes segmental complexity in Drosophila
  publication-title: Nature
  doi: 10.1038/nature02189
  contributor:
    fullname: Clyde
– volume: 239
  start-page: 229
  year: 2001
  ident: bib111
  article-title: Role of CtBP in transcriptional repression by the Drosophila giant protein
  publication-title: Developmental Biology
  doi: 10.1006/dbio.2001.0454
  contributor:
    fullname: Strunk
– volume: 324
  start-page: 668
  year: 1986
  ident: bib47
  article-title: Cross-regulatory interactions among the gap genes of Drosophila
  publication-title: Nature
  doi: 10.1038/324668a0
  contributor:
    fullname: Jäckle
– volume: 108
  start-page: 5690
  year: 2011
  ident: bib124
  article-title: Episodic radiations in the fly tree of life
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.1012675108
  contributor:
    fullname: Wiegmann
– volume: 12
  start-page: 125
  year: 1976
  ident: bib99
  article-title: Specification of the basic body pattern in insect embryogenesis
  publication-title: Advances in Insect Physiology
  doi: 10.1016/S0065-2806(08)60255-6
  contributor:
    fullname: Sander
– volume: 9
  start-page: e1003281
  year: 2013
  ident: bib4
  article-title: Reverse-engineering post-transcriptional regulation of gap genes in Drosophila melanogaster
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.1003281
  contributor:
    fullname: Becker
– volume: 8
  start-page: 604
  year: 2012
  ident: bib131
  article-title: Dissecting sources of quantitative gene expression pattern divergence between Drosophila species
  publication-title: Molecular Systems Biology
  doi: 10.1038/msb.2012.35
  contributor:
    fullname: Wunderlich
– volume: 137
  start-page: 1709
  year: 2010
  ident: bib62
  article-title: Maternal activation of gap genes in the hover fly Episyrphus
  publication-title: Development
  doi: 10.1242/dev.046649
  contributor:
    fullname: Lemke
– volume: 3
  start-page: 109
  year: 2001
  ident: bib117
  article-title: Developmental system drift and flexibility in evolutionary trajectories
  publication-title: Evolution & Development
  doi: 10.1046/j.1525-142x.2001.003002109.x
  contributor:
    fullname: True
– volume: 248
  start-page: 495
  year: 1990
  ident: bib121
  article-title: Two gap genes mediate maternal terminal pattern information in Drosophila
  publication-title: Science
  doi: 10.1126/science.2158673
  contributor:
    fullname: Weigel
– volume: 3
  start-page: e15
  year: 2007b
  ident: bib17
  article-title: Robustness can evolve gradually in complex regulatory gene networks with varying topology
  publication-title: PLOS Computational Biology
  doi: 10.1371/journal.pcbi.0030015
  contributor:
    fullname: Ciliberti
– volume: 43
  start-page: D751
  year: 2015
  ident: bib15
  article-title: SuperFly: a comparative database for quantified spatio-temporal gene expression patterns in early dipteran embryos
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gku1142
  contributor:
    fullname: Cicin-Sain
– volume: 9
  start-page: e84421
  year: 2014
  ident: bib129
  article-title: A staging scheme for the development of the scuttle fly Megaselia abdita
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0084421
  contributor:
    fullname: Wotton
– volume: 287
  start-page: 795
  year: 1980
  ident: bib80
  article-title: Mutations affecting segment number and polarity in Drosophila
  publication-title: Nature
  doi: 10.1038/287795a0
  contributor:
    fullname: Nüsslein-Volhard
– volume: 415
  start-page: 798
  year: 2002
  ident: bib44
  article-title: Establishment of developmental precision and proportions in the early Drosophila embryo
  publication-title: Nature
  doi: 10.1038/415798a
  contributor:
    fullname: Houchmandzadeh
– volume: 336
  start-page: 338
  year: 2012
  ident: bib100a
  article-title: A segmentation clock with two-segment periodicity in insects
  publication-title: Science
  doi: 10.1126/science.1218256
  contributor:
    fullname: Sarrazin
– volume: 376
  start-page: 99
  year: 2013
  ident: bib112
  article-title: Quantitative dynamics and increased variability of segmentation gene expression in the Drosophila Krüppel and knirps mutants
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2013.01.008
  contributor:
    fullname: Surkova
– volume-title: The Embryonic Development of Drosophila melanogaster
  year: 1997
  ident: bib12
  doi: 10.1007/978-3-662-22489-2
  contributor:
    fullname: Campos-Ortega
– volume: 121
  start-page: 1023
  year: 1995
  ident: bib101
  article-title: Zygotic caudal regulation by hunchback and its role in abdominal segment formation of the Drosophila embryo
  publication-title: Development
  doi: 10.1242/dev.121.4.1023
  contributor:
    fullname: Schulz
– volume: 57
  start-page: 187
  year: 2000
  ident: bib123
  article-title: Phenogenetic drift and the evolution of genotype-phenotype relationships
  publication-title: Theoretical Population Biology
  doi: 10.1006/tpbi.2000.1460
  contributor:
    fullname: Weiss
– volume: 7
  start-page: 1749
  year: 1988
  ident: bib5
  article-title: The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo
  publication-title: The EMBO Journal
  doi: 10.1002/j.1460-2075.1988.tb03004.x
  contributor:
    fullname: Berleth
– volume: 46
  start-page: 685
  year: 2014
  ident: bib2
  article-title: Quantitative genome-wide enhancer activity maps for five Drosophila species show functional enhancer conservation and turnover during cis-regulatory evolution
  publication-title: Nature Genetics
  doi: 10.1038/ng.3009
  contributor:
    fullname: Arnold
– volume: 131
  start-page: 4251
  year: 2004
  ident: bib11
  article-title: Differential cytoplasmic mRNA localisation adjusts pair-rule transcription factor activity to cytoarchitecture in dipteran evolution
  publication-title: Development
  doi: 10.1242/dev.01289
  contributor:
    fullname: Bullock
– volume: 68
  start-page: 243
  year: 2011
  ident: bib48
  article-title: The gap gene network
  publication-title: Cellular and Molecular Life Sciences
  doi: 10.1007/s00018-010-0536-y
  contributor:
    fullname: Jaeger
– volume: 99
  start-page: 274
  year: 2002
  ident: bib108
  article-title: A single Hox3 gene with composite bicoid and zerknüllt expression characteristics in non-Cyclorrhaphan flies
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.012292899
  contributor:
    fullname: Stauber
– volume: 4
  start-page: 349
  year: 2011c
  ident: bib93
  article-title: The scuttle fly Megaselia abdita (Phoridae): a link between Drosophila and mosquito development
  publication-title: Cold Spring Harbor Protocols
  doi: 10.1101/pdb.emo143
  contributor:
    fullname: Rafiqi
– volume: 313
  start-page: 844
  year: 2008a
  ident: bib113
  article-title: Characterization of the Drosophila segment determination morphome
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2007.10.037
  contributor:
    fullname: Surkova
– volume: 96
  start-page: 3786
  year: 1999
  ident: bib106
  article-title: The anterior determinant bicoid of Drosophila is a derived Hox class 3 gene
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.96.7.3786
  contributor:
    fullname: Stauber
– volume: 7
  start-page: e1000049
  year: 2009b
  ident: bib73
  article-title: Canalization of gene expression in the Drosophila blastoderm by gap gene cross regulation
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1000049
  contributor:
    fullname: Manu
– volume: 3
  start-page: 397
  year: 2001
  ident: bib74
  article-title: Rapid restructuring of bicoid-dependent hunchback promoters within and between Dipteran species: implications for molecular coevolution
  publication-title: Evolution & Development
  doi: 10.1046/j.1525-142X.2001.01043.x
  contributor:
    fullname: McGregor
– volume: 9
  start-page: e1000596
  year: 2011
  ident: bib66
  article-title: The formation of the Bicoid morphogen gradient requires protein movement from anteriorly localized mRNA
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1000596
  contributor:
    fullname: Little
– volume: 125
  start-page: 949
  year: 1998
  ident: bib71
  article-title: Functional analysis of eve stripe 2 enhancer evolution in Drosophila: rules governing conservation and change
  publication-title: Development
  doi: 10.1242/dev.125.5.949
  contributor:
    fullname: Ludwig
– volume: 134
  start-page: 610
  year: 2008
  ident: bib127
  article-title: The regulation and evolution of a genetic switch controlling sexually dimorphic traits in Drosophila
  publication-title: Cell
  doi: 10.1016/j.cell.2008.06.052
  contributor:
    fullname: Williams
– volume: 136
  start-page: 117
  year: 2009
  ident: bib63
  article-title: Evidence for a composite anterior determinant in the hover fly Episyrphus balteatus (Syrphidae), a cyclorrhaphan fly with an anterodorsal serosa anlage
  publication-title: Development
  doi: 10.1242/dev.030270
  contributor:
    fullname: Lemke
– volume: 150
  start-page: 563
  year: 1942
  ident: bib118
  article-title: Canalization of development and the inheritance of acquired characters
  publication-title: Nature
  doi: 10.1038/150563a0
  contributor:
    fullname: Waddington
– volume: 35
  start-page: 205
  year: 1991
  ident: bib9
  article-title: Control and function of terminal gap gene activity in the posterior pole region of the Drosophila embryo
  publication-title: Mechanisms of Development
  doi: 10.1016/0925-4773(91)90019-3
  contributor:
    fullname: Brönner
– volume-title: The Origins of Evolutionary Innovations: A Theory of Transformative Change in Living Systems
  year: 2011
  ident: bib119
  doi: 10.1093/acprof:oso/9780199692590.001.0001
  contributor:
    fullname: Wagner
– volume: 20
  start-page: 703
  year: 2003
  ident: bib25
  article-title: Tracing the evolutionary history of Drosophila regulatory regions with models that identify transcription factor binding sites
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msg077
  contributor:
    fullname: Dermitzakis
– volume: 9
  start-page: e84422
  year: 2014
  ident: bib55
  article-title: A staging scheme for the development of the moth midge Clogmia albipunctata
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0084422
  contributor:
    fullname: Jiménez-Guri
– volume: 9
  start-page: e1003748
  year: 2013
  ident: bib82
  article-title: Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1003748
  contributor:
    fullname: Paris
– volume: 129
  start-page: 45
  year: 2007
  ident: bib40
  article-title: Compensatory vs. pseudocompensatory evolution in molecular and developmental interactions
  publication-title: Genetica
  doi: 10.1007/s10709-006-0032-3
  contributor:
    fullname: Haag
– volume: 193
  start-page: 283
  year: 1984
  ident: bib56
  article-title: Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster - II. Zygotic loci on the third chromosome
  publication-title: Wilhelm Roux's Archives of Developmental Biology
  doi: 10.1007/BF00848157
  contributor:
    fullname: Jürgens
– volume: 104
  start-page: 172
  year: 1984b
  ident: bib126
  article-title: Krüppel, a gene whose activity is required early in the zygotic genome for normal embryonic segmentation
  publication-title: Developmental Biology
  doi: 10.1016/0012-1606(84)90046-0
  contributor:
    fullname: Wieschaus
– volume: 47
  start-page: 669
  year: 2002
  ident: bib24
  article-title: Short, long, and beyond: molecular and embryological approaches to insect segmentation
  publication-title: Annual Review of Entomology
  doi: 10.1146/annurev.ento.47.091201.145251
  contributor:
    fullname: Davis
– start-page: 137
  volume-title: Development and Evolution
  year: 1983
  ident: bib100
  contributor:
    fullname: Sander
– volume: 317
  start-page: 40
  year: 1985
  ident: bib58
  article-title: Spatial and temporal patterns of Krüppel gene expression in early Drosophila embryos
  publication-title: Nature
  doi: 10.1038/317040a0
  contributor:
    fullname: Knipple
– volume: 468
  start-page: 815
  year: 2010
  ident: bib27
  article-title: A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns
  publication-title: Nature
  doi: 10.1038/nature09632
  contributor:
    fullname: Domazet-Lošo
– volume: 57
  start-page: 1259
  year: 1989
  ident: bib110
  article-title: The gradient morphogen bicoid is a concentration-dependent transcriptional activator
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90062-7
  contributor:
    fullname: Struhl
– volume: 123
  start-page: 74
  year: 2014
  ident: bib21
  article-title: Evolution of early development in dipterans: reverse-engineering the gap gene network in the moth midge Clogmia albipunctata (Psychodidae)
  publication-title: BioSystems
  doi: 10.1016/j.biosystems.2014.06.003
  contributor:
    fullname: Crombach
SSID ssj0000748819
Score 2.3705928
Snippet The segmentation gene network in insects can produce equivalent phenotypic outputs despite differences in upstream regulatory inputs between species. We...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
SubjectTerms Abdomen
Animals
Biology
Blastoderm
Body Patterning - genetics
Chironomidae
Culicidae
data quantification
Databases, Genetic
Developmental Biology and Stem Cells
developmental system drift
Diptera - embryology
Diptera - genetics
Drift
Drosophila melanogaster
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Drosophilidae
Embryo, Nonmammalian - metabolism
Evolution
Evolution, Molecular
evolutionary developmental biology
Female
gap gene network
Gene expression
Gene Expression Regulation, Developmental
Gene Regulatory Networks
Genes, Insect
Genomics and Evolutionary Biology
Megaselia abdita
Mosquitoes
Phylogenetics
Psychodidae
RNA Interference
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA-mediated interference
Segmentation
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BT1wQCGhDCxqkXgObxF7HRx6temgrIUDiFo0fKSuh7KqbHHrof2fG3q66CIlLr7HjOPP58Y3t-QxwbJVR0fZt6QPpUhlfl6SDL6NvAwWqQ6Mldvjsm7n82X45EZmc7VVfciYsywNnw8kKyIx8z--x460qcsp7Jg2mrcjyoJHjyGfze85UGoMNN8zK5oA8w1Pmh3i-6ON70aLRO1NQUur_F738-5TkvWnn9Bk83fBF_Jjr-RwexeEF3H6daEjRYTxWYRZjxnC96EeUI-LsmQqDROajmHbDY0AmpkntGRfDahrXOC6RqR9e0Qq5CUUc8nFwXPbp-dpPIm6M_e8bvIhXJGHrhOQCf_Ql_Dg9-f75rNzco1B65kdjGThVtaFujGMT2qAqS47dLJrPakfW9sa42PjoycQmiASgisSehhY5P80c8RXsDcshHgBGzlm7WT83zqvWameDtqppPZdhrG4KOL4zbbfKchkduxmCQJcQ6BICBXwSs2-ziMZ1esDIdxvku_8hX8DRHWjdpuOtOx5QmHMyjaoKeLdN5i4j-yA0xOXEeea6VlpCxQrYzxhvayKKbCKrVYDZQX-nqrspw-JXkuXmAg27g68f4t8O4QkzM53WevQR7I3XU3wDj9dhepsa-h_Z8Aig
  priority: 102
  providerName: Directory of Open Access Journals
Title Quantitative system drift compensates for altered maternal inputs to the gap gene network of the scuttle fly Megaselia abdita
URI https://www.ncbi.nlm.nih.gov/pubmed/25560971
https://www.proquest.com/docview/1966506631
https://search.proquest.com/docview/1652454331
https://pubmed.ncbi.nlm.nih.gov/PMC4337606
https://doaj.org/article/2070acfada30441ab4cc352781a9eac7
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbYnrggEK_QsppKvWYfib2Oj1BatYIiECD1FvmVJVLrrHaTAwf-OzNOsuoiTlxjJ7E845lv7JnPjJ0pLrlXVZFap0XKpc1SLZxNvS2cdjpzuaDa4atv8vNt8eGCaHLEWAsTk_atqWfh7n4W6p8xt3Jzb-djntj8y805zymVYzWfsAliwwchejS_EnUyXuiRLUTkLb3t6_Ikes65_1RXfkaUNHRnDfFvEYnSgVOK3P3_Apx_500-cESXT9mTAUHCu36kz9gjH56z3187HWK9GFov6OmZwW3rqgVKGsdYlTAlIEKFeD7uHSBUjfzPUIdN1-6gbQDBIKz1BlCpPIQ-QRyaKj7f2Y7ojqG6-wU3fq2pkF2DNg5_-oL9uLz4fn6VDjcrpBYRU5s6bOWFy3JpFpwrx5dKGwy89GqRGa1UJaXxufVWS587IgXkXmPsIYjgTyBqfMmOQhP8awYee2ZmUa2ksbxQwignFM8Li9-QSuQJOxunttz0BBolBh4kjDIKo4zCSNh7mvZ9F2K9jg-a7bocZF9maJ-0rVCHchz2UhtuLQJIWSy1QgciE3YyCq0cluKuRBODKBSB1TJhp_tmXER0MqKDbzrssxIZF1Q8lrBXvYz3Ixl1JGHyQPoHQz1sQb2NRN2Dnr757zeP2WMEaCJu-YgTdtRuO_-WTXaumyL8v_44jVsI07gA_gDJqAxe
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RcoBLAfFKW8BIvWY3m9jr-Ail1SJ2KxBF6i3yK0uk1lntJoce-t87dpJVF3Hq1XYSJzOe-Sae-QxwIiinVpR5rI1kMeU6jSUzOrY6N9LI1GTM1w7PfvOLq_zbmafJYUMtTEja16oaueubkav-htzK1Y0eD3li45-LU5r5VI7peA-e4npNkgdBejDAHLUyHOmRJiwwl151lXkcfefYzqvSjjwpjT-1xjNweRqlHbcU2Pv_Bzn_zZx84IrOXzzyJV7CQY89yZeu-xU8se413P1qpQuVZmj3SEfsTMy6Khvi080xyvVolCC2JWFn3RqCIDcwR5PKrdpmQ5qaIIwkS7kiqI6WuC61nNRlaN_o1hMlk_L6lizsUvoSeEmkMvjQN_Dn_OzydBb3ZzLEGrFWExvspblJM64SSoWhEyEVhmxymqRKClFyrmymrZbcZsbTCVIrMWphnhqQId58C_uudvY9EIsjU5WUU640zQVTwjBBs1zjPbhgWQQng0iKVUe9UWDI4oVYBCEWQYgRfPXi2g7xfNmhoV4vi_6DFylaNqlL1L4Mpz2RimqN0JPnEynQ9fAIjgdhF_0i3hRonBC_IiSbRPB5243Lz--pSGfrFsdMWUqZLzuL4F2nG9uZDLoVAd_Rmp2p7vagsgSK7145Dh995Sd4NrtczIv594sfR_AcYR4LP47YMew369Z-gL2NaT-GhXMP2bEf9Q
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIiEuBcSjgQJG6jWbrGOv4yO0XRXRVkWA1FvkV7aR2iTaTQ4c-O-MneyqW3EqV9tJnMyM_U088w3AoWSCOVnmsbGKx0wYGituTexMbpVV1Gbc5w6f_hAXV_nxiafJ2ZT6CkH7RleT-uZ2UlfXIbayvTXJOk4suTw_YpkP5ZglrS2THXiMNpvSO456WIQFamYo60FTHthLr4bsPIH7Z-LOqtJNPDGNr1zjWbg8ldLW1hQY_P8FO-9HT97ZjubP_uNFnsPeiEHJ52HIC3jk6pfw53uv6pBxhusfGQieiV1WZUd82Dl6ux6VEsS4JJywO0sQ7AYGaVLVbd-tSNcQhJNkoVqCaulIPYSYk6YM7SvTe8JkUt78JuduoXwqvCJKW3zoK_g1P_l5dBqPtRlig5iriy32stzSTOiUMWnZVCqNrpuapVQrKUshtMuMM0q4zHpaQeYUei_cUwRyxJ2vYbduarcPxOFIqtNyJrRhueRaWi5Zlhu8h5A8i-BwLZaiHSg4CnRdvCCLIMgiCDKCL15kmyGeNzs0NMtFMX70guIKp0yJWpjhtKdKM2MQgop8qiRuQSKCg7XAi9GYVwUuUohjEZpNI_i06UYz9GcrqnZNj2NmnDLu088ieDPox2Yma_2KQGxpztZUt3tQYQLV96ggbx985Ud4cnk8L86-Xnx7B08R7fHw_4gfwG637N172FnZ_kOwnb_KECJ1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+system+drift+compensates+for+altered+maternal+inputs+to+the+gap+gene+network+of+the+scuttle+fly+Megaselia+abdita&rft.jtitle=eLife&rft.au=Wotton%2C+Karl+R&rft.au=Jim%C3%A9nez-Guri%2C+Eva&rft.au=Crombach%2C+Anton&rft.au=Janssens%2C+Hilde&rft.date=2015-01-05&rft.eissn=2050-084X&rft.volume=4&rft_id=info:doi/10.7554%2FeLife.04785&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon