Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis
Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondbac...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 94; no. 24; pp. 12780 - 12785 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences of the United States of America
25-11-1997
National Acad Sciences National Academy of Sciences The National Academy of Sciences of the USA |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth (Plutella xylostella) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a narrower spectrum, and for some Bt toxins, inheritance that is not recessive and not associated with reduced binding. The observed variation in the genetic and biochemical basis of resistance to Bt, which is unlike patterns documented for some synthetic insecticides, profoundly affects the choice of strategies for combating resistance |
---|---|
Bibliography: | L10 1997068634 H10 L50 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 Communicated by William S. Bowers, University of Arizona, Tucson, AZ To whom reprint requests should be addressed. e-mail: brucet@ag.arizona.edu. |
ISSN: | 0027-8424 1091-6490 |
DOI: | 10.1073/pnas.94.24.12780 |