Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients
Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI)...
Saved in:
Published in: | Human brain mapping Vol. 33; no. 8; pp. 1929 - 1940 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-08-2012
Wiley-Liss John Wiley & Sons, Inc Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow‐up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post‐implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice‐sensitive areas‐TVA). These abnormal activity levels diminish with post‐implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech‐related visual processing through cross‐modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo‐audio‐motor speech processing loop, including Broca's area. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc |
---|---|
AbstractList | Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow‐up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post‐implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice‐sensitive areas‐TVA). These abnormal activity levels diminish with post‐implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech‐related visual processing through cross‐modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo‐audio‐motor speech processing loop, including Broca's area. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow-up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post-implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice-sensitive areas-TVA). These abnormal activity levels diminish with post-implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech-related visual processing through cross-modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo-audio-motor speech processing loop, including Broca's area. Hum Brain Mapp, 2011. © 2011 Wiley-Liss, Inc. Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow-up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post-implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice-sensitive areas-TVA). These abnormal activity levels diminish with post-implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech-related visual processing through cross-modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo-audio-motor speech processing loop, including Broca's area. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc [PUBLICATION ABSTRACT] Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow-up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post-implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice-sensitive areas-TVA). These abnormal activity levels diminish with post-implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech-related visual processing through cross-modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo-audio-motor speech processing loop, including Broca's area. |
Author | Barone, Pascal Démonet, Jean-François Lagleyre, Sébastien Fraysse, Bernard Rouger, Julien Deguine, Olivier |
AuthorAffiliation | 4 Present address: Julien Rouger is currently at Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University of Maastricht, The Netherlands 3 Imagerie cérébrale et handicaps neurologiques, Université Toulouse, Institut national de la santé et de la recherche médicale U825, Hôpital Purpan, Toulouse, France 2 Service d'oto‐rhino‐laryngologie et d'oto‐neurologie, Hôpital Purpan, Toulouse, France 1 Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France |
AuthorAffiliation_xml | – name: 3 Imagerie cérébrale et handicaps neurologiques, Université Toulouse, Institut national de la santé et de la recherche médicale U825, Hôpital Purpan, Toulouse, France – name: 4 Present address: Julien Rouger is currently at Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University of Maastricht, The Netherlands – name: 1 Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France – name: 2 Service d'oto‐rhino‐laryngologie et d'oto‐neurologie, Hôpital Purpan, Toulouse, France |
Author_xml | – sequence: 1 givenname: Julien surname: Rouger fullname: Rouger, Julien organization: Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France – sequence: 2 givenname: Sébastien surname: Lagleyre fullname: Lagleyre, Sébastien organization: Service d'oto-rhino-laryngologie et d'oto-neurologie, Hôpital Purpan, Toulouse, France – sequence: 3 givenname: Jean-François surname: Démonet fullname: Démonet, Jean-François organization: Imagerie cérébrale et handicaps neurologiques, Université Toulouse, Institut national de la santé et de la recherche médicale U825, Hôpital Purpan, Toulouse, France – sequence: 4 givenname: Bernard surname: Fraysse fullname: Fraysse, Bernard organization: Service d'oto-rhino-laryngologie et d'oto-neurologie, Hôpital Purpan, Toulouse, France – sequence: 5 givenname: Olivier surname: Deguine fullname: Deguine, Olivier organization: Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France – sequence: 6 givenname: Pascal surname: Barone fullname: Barone, Pascal email: pascal.barone@cerco.ups-tlse.fr organization: Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26156598$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21557388$$D View this record in MEDLINE/PubMed https://hal.science/hal-00718784$$DView record in HAL |
BookMark | eNp1kVtvEzEQhVeoiF7ggT-AVkJI8LCtx5e184JUqrYBhYsQqDwgWRNntnG7uw72JlB-PZvmUqjEky3Pd-aM5-xnO21oKcueAjsExvjRdNwcchACHmR7wAa6YDAQO8t7qYqB1LCb7ad0xRiAYvAo2-WglBbG7GXfTxehnnc-tHmochdDSk2YYJ1HCvESW_8bN8VuSvkieEc5RsLct7kLbloTxsI3sxrbjib5hLDKZ72G2i49zh5WWCd6sj4Psq9np19OhsXo4_nbk-NR4ZRUUIyV5ATAtCRB0pHUrOKOyJQCq9IYDa6sCMdcIHMCeEVjxhH5wKAGI5U4yF6v-s7m44YmrveOWNtZ9A3GGxvQ238rrZ_ay7CwpdFMGNY3eLVqML0nGx6P7PKNsd5JG7mAnn25Novhx5xSZxufHNX9AijMkwXGNZNc6CX6_B56Feax7VdhQYEWqjQS7sxvtx-p2k4AzC7ztX2-9jbfnn3290-35CbQHnixBjA5rKuIrfPpjitBlWqw5I5W3E9f083_He3wzfuNdbFS-NTRr60C47UttdDKXnw4t58-D8--XbyTlos_nbrM4g |
CitedBy_id | crossref_primary_10_1371_journal_pone_0107252 crossref_primary_10_1159_000371599 crossref_primary_10_1016_j_heares_2016_03_007 crossref_primary_10_1016_j_heares_2015_03_007 crossref_primary_10_1523_JNEUROSCI_2559_15_2016 crossref_primary_10_3389_fnhum_2014_00834 crossref_primary_10_1016_j_nicl_2022_102942 crossref_primary_10_1155_2018_9303674 crossref_primary_10_1177_23312165211060983 crossref_primary_10_1097_AUD_0000000000001181 crossref_primary_10_1093_brain_awt274 crossref_primary_10_1016_j_conb_2019_11_003 crossref_primary_10_1155_2020_4576729 crossref_primary_10_1097_MAO_0000000000001494 crossref_primary_10_1073_pnas_1618287114 crossref_primary_10_1177_2331216519866029 crossref_primary_10_1016_j_crneur_2022_100059 crossref_primary_10_1007_s00405_023_08262_9 crossref_primary_10_1177_2331216518786850 crossref_primary_10_3390_brainsci12101291 crossref_primary_10_3724_SP_J_1042_2019_00278 crossref_primary_10_1121_10_0003532 crossref_primary_10_1016_j_heares_2016_07_013 crossref_primary_10_1111_ejn_15365 crossref_primary_10_3389_fnins_2023_1141886 crossref_primary_10_1007_s00060_019_5863_5 crossref_primary_10_1016_j_neuroscience_2014_08_003 crossref_primary_10_1016_j_nicl_2022_102982 crossref_primary_10_1044_1092_4388_2013_12_0132 crossref_primary_10_1155_2017_8986362 crossref_primary_10_3389_fnhum_2017_00510 crossref_primary_10_3390_jcm10102093 crossref_primary_10_1093_cercor_bhac025 crossref_primary_10_1155_2012_970136 crossref_primary_10_1002_hbm_23515 crossref_primary_10_1016_j_neubiorev_2023_105323 crossref_primary_10_1111_ejn_12827 crossref_primary_10_3109_14992027_2014_938194 crossref_primary_10_1159_000509969 crossref_primary_10_3389_fnins_2019_00443 crossref_primary_10_1073_pnas_1704785114 crossref_primary_10_1016_j_neuroimage_2015_07_062 crossref_primary_10_2196_38407 crossref_primary_10_1016_j_heares_2016_07_005 crossref_primary_10_1016_j_isci_2022_105711 crossref_primary_10_1016_j_nicl_2022_103188 crossref_primary_10_1016_j_heares_2013_08_006 crossref_primary_10_1155_2016_4382656 crossref_primary_10_1121_1_5116009 crossref_primary_10_1016_j_cortex_2016_08_005 crossref_primary_10_1097_AUD_0000000000000474 crossref_primary_10_1097_AUD_0000000000000475 crossref_primary_10_3389_fnins_2020_00291 crossref_primary_10_1093_cercor_bhac277 crossref_primary_10_2196_resprot_9916 crossref_primary_10_1007_s10162_021_00811_5 crossref_primary_10_1038_s41598_017_10792_2 crossref_primary_10_1016_j_neuropsychologia_2017_05_005 crossref_primary_10_1007_s00431_016_2827_2 crossref_primary_10_1016_j_neurol_2021_09_004 crossref_primary_10_1155_2013_318521 crossref_primary_10_1016_j_heares_2024_109074 crossref_primary_10_3389_fnins_2015_00068 crossref_primary_10_1016_j_heares_2014_07_005 crossref_primary_10_1016_j_heares_2017_09_012 crossref_primary_10_1016_j_heares_2014_10_001 crossref_primary_10_3389_fnhum_2019_00038 crossref_primary_10_1016_j_clinph_2022_02_005 crossref_primary_10_1007_s00429_013_0704_6 crossref_primary_10_1016_j_nicl_2017_09_001 crossref_primary_10_1038_ncomms14872 crossref_primary_10_1093_cercor_bhac204 crossref_primary_10_1097_MAO_0b013e31829411b4 crossref_primary_10_1038_s41598_022_22117_z crossref_primary_10_1371_journal_pone_0090594 crossref_primary_10_1007_s10162_019_00729_z crossref_primary_10_1177_23312165231156412 |
Cites_doi | 10.1097/00001756-200006050-00026 10.1016/j.neuroimage.2005.12.020 10.1016/j.neuropsychologia.2008.10.017 10.1038/nrn2758 10.2967/jnumed.107.044545 10.1038/nn.2326 10.1073/pnas.97.25.13961 10.1016/j.neuroimage.2004.02.020 10.1038/nrn2113 10.1037/h0058700 10.1016/j.neuropsychologia.2007.11.026 10.1016/S0896-6273(01)00318-X 10.1121/1.2816573 10.1093/cercor/bhl001 10.1046/j.1460-9568.2002.02147.x 10.1016/S0926-6410(01)00054-4 10.1038/16376 10.1097/00001756-200502080-00010 10.1073/pnas.0805234105 10.1038/nn763 10.1097/00001756-200203040-00013 10.1016/j.tics.2006.09.006 10.1016/j.neuropsychologia.2006.03.036 10.1523/JNEUROSCI.20-07-02664.2000 10.1073/pnas.0609419104 10.1016/S1364-6613(00)01471-6 10.1097/00001756-200502080-00009 10.1152/jn.00926.2002 10.1093/brain/115.6.1753 10.1007/s10162-004-4046-1 10.1038/380526a0 10.1126/science.270.5234.303 10.1080/14992020802233907 10.1016/S1364-6613(00)01463-7 10.1093/cercor/bhp183 10.1016/j.cogbrainres.2005.09.010 10.1152/physrev.00049.2003 10.1111/j.1467-9450.2009.00741.x 10.1097/01.mao.0000178124.13118.76 10.1016/j.neuroimage.2009.01.035 10.1038/35002078 10.1016/j.brainres.2007.10.049 10.1098/rstb.2007.2155 10.1162/0898929053279577 |
ContentType | Journal Article |
Copyright | Copyright © 2011 Wiley Periodicals, Inc 2015 INIST-CNRS Copyright © 2011 Wiley Periodicals, Inc. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright © 2011 Wiley Periodicals, Inc – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Wiley Periodicals, Inc. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 1XC 5PM |
DOI | 10.1002/hbm.21331 |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Chemoreception Abstracts Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
DocumentTitleAlternate | Voice Area Reorganizes After Cochlear Implantation |
EISSN | 1097-0193 |
EndPage | 1940 |
ExternalDocumentID | oai_HAL_hal_00718784v1 3278362801 10_1002_hbm_21331 21557388 26156598 HBM21331 ark_67375_WNG_PRHFXWJ4_2 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: The Action Concertée Incitative Neurosciences Intégratives et Computationnelles – fundername: The Fondation pour la Recherche Médicale – fundername: The Fondation de l'Avenir; The Action Thématique et Incitative sur Programmes et Equipes from the CNRS |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 8FI 8FJ 8UM 930 A03 AAESR AAEVG AAHHS AAONW AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ABUWG ACBWZ ACCFJ ACGFS ACIWK ACPOU ACPRK ACSCC ACXQS ADBBV ADEOM ADIZJ ADMGS ADPDF ADXAS ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFRAH AFZJQ AHMBA AIURR AIWBW AJBDE AJXKR ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CCPQU CS3 D-E D-F DCZOG DPXWK DR1 DR2 DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FYUFA G-S G.N GAKWD GNP GODZA GROUPED_DOAJ H.T H.X HBH HF~ HHY HHZ HMCUK HVGLF HZ~ IAO IHR ITC IX1 J0M JPC KQQ L7B LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OK1 OVD OVEED P2P P2W P2X P4D PALCI PIMPY PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RPM RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 UKHRP V2E W8V W99 WBKPD WIB WIH WIK WIN WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XSW XV2 ZZTAW ~IA ~WT AAPBV ABHUG ACXME ADAWD AFVGU AGJLS IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QR 7TK 7U7 8FD C1K FR3 K9. P64 7X8 1XC 5PM |
ID | FETCH-LOGICAL-c5451-b542e11074e3e4ce470f2cee863af68871c6feab23a0c312feb02aa298a718453 |
IEDL.DBID | RPM |
ISSN | 1065-9471 |
IngestDate | Tue Sep 17 20:55:41 EDT 2024 Tue Oct 15 14:49:23 EDT 2024 Sat Aug 17 03:35:01 EDT 2024 Thu Oct 10 22:20:36 EDT 2024 Thu Nov 21 21:17:47 EST 2024 Sat Sep 28 07:58:34 EDT 2024 Sun Oct 22 16:07:39 EDT 2023 Sat Aug 24 00:56:32 EDT 2024 Wed Oct 30 10:00:52 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Human Nervous system diseases Implant Radiodiagnosis Auditory disorder Multisensory integration Crossmodal interaction crossmodal compensation Hearing loss voice area cochlear implant speechreading Compensation ENT disease Evolution deafness Voice multisensory integration |
Language | English |
License | CC BY 4.0 Copyright © 2011 Wiley Periodicals, Inc. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c5451-b542e11074e3e4ce470f2cee863af68871c6feab23a0c312feb02aa298a718453 |
Notes | The Action Concertée Incitative Neurosciences Intégratives et Computationnelles The Fondation pour la Recherche Médicale istex:C733A411A786B7AA1BF72D03605F4DFC7F8FDBBF The Fondation de l'Avenir; The Action Thématique et Incitative sur Programmes et Equipes from the CNRS ArticleID:HBM21331 Authors contribution: Julien Rouger and Sébastien Lagleyre contributed equally to this work. ark:/67375/WNG-PRHFXWJ4-2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 PMCID: PMC6870380 |
ORCID | 0000-0003-0125-7468 0000-0003-4174-2580 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21331?download=true |
PMID | 21557388 |
PQID | 1517356841 |
PQPubID | 996345 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870380 hal_primary_oai_HAL_hal_00718784v1 proquest_miscellaneous_1027042371 proquest_journals_1517356841 crossref_primary_10_1002_hbm_21331 pubmed_primary_21557388 pascalfrancis_primary_26156598 wiley_primary_10_1002_hbm_21331_HBM21331 istex_primary_ark_67375_WNG_PRHFXWJ4_2 |
PublicationCentury | 2000 |
PublicationDate | August 2012 |
PublicationDateYYYYMMDD | 2012-08-01 |
PublicationDate_xml | – month: 08 year: 2012 text: August 2012 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: New York, NY – name: United States – name: San Antonio |
PublicationTitle | Human brain mapping |
PublicationTitleAlternate | Hum. Brain Mapp |
PublicationYear | 2012 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company Wiley-Liss John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company – name: Wiley-Liss – name: John Wiley & Sons, Inc – name: Wiley |
References | Strelnikov K, Rouger J, Demonet JF, Lagleyre S, Fraysse B, Deguine O, Barone P ( 2010): Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation. Cereb Cortex 20: 1217-1222. Demonet JF, Chollet F, Ramsay S, Cardebat D, Nespoulous JL, Wise R, Rascol A, Frackowiak R. ( 1992): The anatomy of phonological and semantic processing in normal subjects. Brain 115( Pt 6): 1753-1768. Finney EM, Fine I, Dobkins KR ( 2001): Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4: 1171-1173. MacSweeney M, Amaro E, Calvert GA, Campbell R, David AS, McGuire P, Williams SC, Woll B, Brammer MJ ( 2000): Silent speechreading in the absence of scanner noise: An event-related fMRI study. Neuroreport 11: 1729-1733. Dufor O, Serniclaes W, Sprenger-Charolles L, Demonet JF ( 2009): Left premotor cortex and allophonic speech perception in dyslexia: A PET study. Neuroimage 46: 241-248. Lambertz N, Gizewski ER, de Greiff A, Forsting M ( 2005): Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss. Brain Res Cogn Brain Res 25: 884-890. Rouger J, Fraysse B, Deguine O, Barone P ( 2008): McGurk effects in cochlear-implanted deaf subjects. Brain Res 1188: 87-99. Kriegstein KV, Giraud AL ( 2004): Distinct functional substrates along the right superior temporal sulcus for the processing of voices. Neuroimage 22: 948-955. Hickok G, Poeppel D ( 2007): The cortical organization of speech processing. Nat Rev Neurosci 8: 393-402. Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS, Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C. ( 2008): Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A 105: 18035-18040. Bavelier D, Dye MW, Hauser PC ( 2006): Do deaf individuals see better? Trends Cogn Sci 10: 512-518. Nishimura H, Hashikawa K, Doi K, Iwaki T, Watanabe Y, Kusuoka H, Nishimura T, Kubo T ( 1999): Sign language 'heard' in the auditory cortex. Nature 397: 116. Paulesu E, Perani D, Blasi V, Silani G, Borghese NA, De Giovanni U, Sensolo S, Fazio F ( 2003): A functional-anatomical model for lipreading. J Neurophysiol 90: 2005-1203. Merabet LB, Pascual-Leone A ( 2010): Neural reorganization following sensory loss: The opportunity of change. Nat Rev Neurosci 11: 44-52. Desai S, Stickney G, Zeng FG ( 2008): Auditory-visual speech perception in normal-hearing and cochlear-implant listeners. J Acoust Soc Am 123: 428-440. Campbell R ( 2008): The processing of audio-visual speech: Empirical and neural bases. Philos Trans R Soc Lond B Biol Sci 363: 1001-1010. Demonet JF, Thierry G, Cardebat D ( 2005): Renewal of the neurophysiology of language: Functional neuroimaging. Physiol Rev 85: 49-95. Hickok G, Poeppel D ( 2000): Towards a functional neuroanatomy of speech perception. Trends Cogn Sci 4: 131-138. Pekkola J, Ojanen V, Autti T, Jaaskelainen IP, Mottonen R, Tarkiainen A, Sams M ( 2005): Primary auditory cortex activation by visual speech: An fMRI study at 3 T. Neuroreport 16: 125-128. Liberman AM, Whalen DH ( 2000): On the relation of speech to language. Trends Cogn Sci 4: 187-196. Capek CM, Macsweeney M, Woll B, Waters D, McGuire PK, David AS, Brammer MJ, Campbell R ( 2008): Cortical circuits for silent speechreading in deaf and hearing people. Neuropsychologia 46: 1233-1241. Moore DR, Shannon RV ( 2009): Beyond cochlear implants: awakening the deafened brain. Nat Neurosci 12: 686-691. Saint-Amour D, De Sanctis P, Molholm S, Ritter W, Foxe JJ ( 2007): Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion. Neuropsychologia 45: 587-597. Lee HJ, Giraud AL, Kang E, Oh SH, Kang H, Kim CS, Lee DS ( 2007): Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex 17: 909-917. Röder B, Stock O, Bien S, Neville H, Rosler F ( 2002): Speech processing activates visual cortex in congenitally blind humans. Eur J Neurosci 16: 930-936. Rouger J, Lagleyre S, Fraysse B, Deneve S, Deguine O, Barone P ( 2007): Evidence thant cochlear implanted deaf patients are better multisensory integrators. Proc Natl Acad Sci U S A 104: 7295-7300. Tanner WP Jr., Swets JA ( 1954): A decision-making theory of visual detection. Psychol Rev 61: 401-409. Coez A, Zilbovicius M, Ferrary E, Bouccara D, Mosnier I, Ambert-Dahan E, Bizaguet E, Syrota A, Samson Y, Sterkers O ( 2008): Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations. J Nucl Med 49: 60-67. Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M ( 1995): Speech recognition with primarily temporal cues. Science 270: 303-304. Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B ( 2000): Voice-selective areas in human auditory cortex. Nature 403: 309-312. Strelnikov K, Rouger J, Lagleyre S, Fraysse B, Deguine O, Barone P. ( 2009b): Improvement in speech-reading ability by auditory training: Evidence from gender differences in normally hearing, deaf and cochlear implanted subjects. Neuropsychologia 47: 972-979. Campbell R, MacSweeney M, Surguladze S, Calvert G, McGuire P, Suckling J, Brammer MJ, David AS ( 2001): Cortical substrates for the perception of face actions: An fMRI study of the specificity of activation for seen speech and for meaningless lower-face acts (gurning). Brain Res Cogn Brain Res 12: 233-243. Molholm S, Foxe JJ ( 2005): Look 'hear', primary auditory cortex is active during lip-reading. Neuroreport 16: 123-124. Mortensen MV, Mirz F, Gjedde A ( 2006): Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness. Neuroimage 31: 842-852. Fu QJ, Chinchilla S, Galvin JJ ( 2004): The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users. J Assoc Res Otolaryngol 5: 253-260. Massida Z, Rouger J, James CJ, Belin P, Barone P, Deguine O ( 2008): Voice gender perception in cochlear implanted patients, Vol. 4. The Federation for European Neuroscience Societies: Geneva. pp 087.12. Strelnikov K, Rouger J, Barone P, Deguine O. ( 2009a): Role of speechreading in audiovisual interactions during the recovery of speech comprehension in deaf adults with cochlear implants. Scand J Psychol 50: 437-444. Campbell R, Capek C ( 2008): Seeing speech and seeing sign: Insights from a fMRI study. Int J Audiol 47( Suppl 2): S3-S9. Moody-Antonio S, Takayanagi S, Masuda A, Auer ET Jr., Fisher L, Bernstein LE ( 2005): Improved speech perception in adult congenitally deafened cochlear implant recipients. Otol Neurotol 26: 649-654. Petitto LA, Zatorre RJ, Gauna K, Nikelski EJ, Dostie D, Evans AC ( 2000): Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proc Natl Acad Sci U S A 97: 13961-13966. Giraud AL, Price CJ, Graham JM, Truy E, Frackowiak RS ( 2001): Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30: 657-663. von Kriegstein K, Kleinschmidt A, Sterzer P, Giraud AL ( 2005): Interaction of face and voice areas during speaker recognition. J Cogn Neurosci 17: 367-376. Bernstein LE, Auer ET Jr., Moore JK, Ponton CW, Don M, Singh M ( 2002): Visual speech perception without primary auditory cortex activation. Neuroreport 13: 311-315. Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M ( 1996): Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380: 526-528. Weeks R, Horwitz B, Aziz-Sultan A, Tian B, Wessinger CM, Cohen LG, Hallett M, Rauschecker JP ( 2000): A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci 20: 2664-2672. 2007; 17 2002; 16 2004; 22 2010; 11 2007; 104 1954; 61 2009; 46 2006; 31 2009b; 47 2006; 10 2000; 4 2002; 13 2000; 20 2005; 85 1996; 380 2004; 5 2008; 105 2004 2008; 4 2008; 123 2005; 26 2008; 363 1995; 270 2005; 25 2009; 12 2008; 1188 2010; 20 2003; 90 2001; 4 2000; 403 2000; 11 2009a; 50 2008; 49 1992; 115 2000; 97 2008; 47 2007; 8 2008; 46 1999; 397 2001; 12 2005; 16 2005; 17 2007; 45 2001; 30 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_31_1 Penny W (e_1_2_7_34_1) 2004 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 Massida Z (e_1_2_7_25_1) 2008 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 4 start-page: 1171 year: 2001 end-page: 1173 article-title: Visual stimuli activate auditory cortex in the deaf publication-title: Nat Neurosci – volume: 46 start-page: 1233 year: 2008 end-page: 1241 article-title: Cortical circuits for silent speechreading in deaf and hearing people publication-title: Neuropsychologia – volume: 11 start-page: 1729 year: 2000 end-page: 1733 article-title: Silent speechreading in the absence of scanner noise: An event‐related fMRI study publication-title: Neuroreport – volume: 22 start-page: 948 year: 2004 end-page: 955 article-title: Distinct functional substrates along the right superior temporal sulcus for the processing of voices publication-title: Neuroimage – volume: 4 start-page: 087.12 year: 2008 – volume: 16 start-page: 125 year: 2005 end-page: 128 article-title: Primary auditory cortex activation by visual speech: An fMRI study at 3 T publication-title: Neuroreport – volume: 115 start-page: 1753 issue: Pt 6 year: 1992 end-page: 1768 article-title: The anatomy of phonological and semantic processing in normal subjects publication-title: Brain – volume: 12 start-page: 686 year: 2009 end-page: 691 article-title: Beyond cochlear implants: awakening the deafened brain publication-title: Nat Neurosci – volume: 49 start-page: 60 year: 2008 end-page: 67 article-title: Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations publication-title: J Nucl Med – volume: 17 start-page: 909 year: 2007 end-page: 917 article-title: Cortical activity at rest predicts cochlear implantation outcome publication-title: Cereb Cortex – volume: 31 start-page: 842 year: 2006 end-page: 852 article-title: Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness publication-title: Neuroimage – volume: 5 start-page: 253 year: 2004 end-page: 260 article-title: The role of spectral and temporal cues in voice gender discrimination by normal‐hearing listeners and cochlear implant users publication-title: J Assoc Res Otolaryngol – volume: 11 start-page: 44 year: 2010 end-page: 52 article-title: Neural reorganization following sensory loss: The opportunity of change publication-title: Nat Rev Neurosci – volume: 16 start-page: 123 year: 2005 end-page: 124 article-title: Look ‘hear’, primary auditory cortex is active during lip‐reading publication-title: Neuroreport – volume: 16 start-page: 930 year: 2002 end-page: 936 article-title: Speech processing activates visual cortex in congenitally blind humans publication-title: Eur J Neurosci – volume: 17 start-page: 367 year: 2005 end-page: 376 article-title: Interaction of face and voice areas during speaker recognition publication-title: J Cogn Neurosci – volume: 47 start-page: S3 issue: Suppl 2 year: 2008 end-page: S9 article-title: Seeing speech and seeing sign: Insights from a fMRI study publication-title: Int J Audiol – volume: 123 start-page: 428 year: 2008 end-page: 440 article-title: Auditory‐visual speech perception in normal‐hearing and cochlear‐implant listeners publication-title: J Acoust Soc Am – volume: 20 start-page: 1217 year: 2010 end-page: 1222 article-title: Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation publication-title: Cereb Cortex – volume: 61 start-page: 401 year: 1954 end-page: 409 article-title: A decision‐making theory of visual detection publication-title: Psychol Rev – volume: 12 start-page: 233 year: 2001 end-page: 243 article-title: Cortical substrates for the perception of face actions: An fMRI study of the specificity of activation for seen speech and for meaningless lower‐face acts (gurning) publication-title: Brain Res Cogn Brain Res – volume: 30 start-page: 657 year: 2001 end-page: 663 article-title: Cross‐modal plasticity underpins language recovery after cochlear implantation publication-title: Neuron – volume: 90 start-page: 2005 year: 2003 end-page: 1203 article-title: A functional‐anatomical model for lipreading publication-title: J Neurophysiol – volume: 26 start-page: 649 year: 2005 end-page: 654 article-title: Improved speech perception in adult congenitally deafened cochlear implant recipients publication-title: Otol Neurotol – volume: 46 start-page: 241 year: 2009 end-page: 248 article-title: Left premotor cortex and allophonic speech perception in dyslexia: A PET study publication-title: Neuroimage – start-page: 842 year: 2004 end-page: 850 – volume: 47 start-page: 972 year: 2009b end-page: 979 article-title: Improvement in speech‐reading ability by auditory training: Evidence from gender differences in normally hearing, deaf and cochlear implanted subjects publication-title: Neuropsychologia – volume: 8 start-page: 393 year: 2007 end-page: 402 article-title: The cortical organization of speech processing publication-title: Nat Rev Neurosci – volume: 45 start-page: 587 year: 2007 end-page: 597 article-title: Seeing voices: High‐density electrical mapping and source‐analysis of the multisensory mismatch negativity evoked during the McGurk illusion publication-title: Neuropsychologia – volume: 50 start-page: 437 year: 2009a end-page: 444 article-title: Role of speechreading in audiovisual interactions during the recovery of speech comprehension in deaf adults with cochlear implants publication-title: Scand J Psychol – volume: 104 start-page: 7295 year: 2007 end-page: 7300 article-title: Evidence thant cochlear implanted deaf patients are better multisensory integrators publication-title: Proc Natl Acad Sci U S A – volume: 397 start-page: 116 year: 1999 article-title: Sign language ‘heard’ in the auditory cortex publication-title: Nature – volume: 270 start-page: 303 year: 1995 end-page: 304 article-title: Speech recognition with primarily temporal cues publication-title: Science – volume: 85 start-page: 49 year: 2005 end-page: 95 article-title: Renewal of the neurophysiology of language: Functional neuroimaging publication-title: Physiol Rev – volume: 105 start-page: 18035 year: 2008 end-page: 18040 article-title: Ventral and dorsal pathways for language publication-title: Proc Natl Acad Sci U S A – volume: 97 start-page: 13961 year: 2000 end-page: 13966 article-title: Speech‐like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language publication-title: Proc Natl Acad Sci U S A – volume: 13 start-page: 311 year: 2002 end-page: 315 article-title: Visual speech perception without primary auditory cortex activation publication-title: Neuroreport – volume: 25 start-page: 884 year: 2005 end-page: 890 article-title: Cross‐modal plasticity in deaf subjects dependent on the extent of hearing loss publication-title: Brain Res Cogn Brain Res – article-title: Voice discrimination in cochlear‐implanted deaf subjects – volume: 1188 start-page: 87 year: 2008 end-page: 99 article-title: McGurk effects in cochlear‐implanted deaf subjects publication-title: Brain Res – volume: 403 start-page: 309 year: 2000 end-page: 312 article-title: Voice‐selective areas in human auditory cortex publication-title: Nature – volume: 4 start-page: 187 year: 2000 end-page: 196 article-title: On the relation of speech to language publication-title: Trends Cogn Sci – volume: 363 start-page: 1001 year: 2008 end-page: 1010 article-title: The processing of audio‐visual speech: Empirical and neural bases publication-title: Philos Trans R Soc Lond B Biol Sci – volume: 380 start-page: 526 year: 1996 end-page: 528 article-title: Activation of the primary visual cortex by Braille reading in blind subjects publication-title: Nature – volume: 10 start-page: 512 year: 2006 end-page: 518 article-title: Do deaf individuals see better? publication-title: Trends Cogn Sci – volume: 20 start-page: 2664 year: 2000 end-page: 2672 article-title: A positron emission tomographic study of auditory localization in the congenitally blind publication-title: J Neurosci – volume: 4 start-page: 131 year: 2000 end-page: 138 article-title: Towards a functional neuroanatomy of speech perception publication-title: Trends Cogn Sci – ident: e_1_2_7_23_1 doi: 10.1097/00001756-200006050-00026 – ident: e_1_2_7_30_1 doi: 10.1016/j.neuroimage.2005.12.020 – ident: e_1_2_7_44_1 doi: 10.1016/j.neuropsychologia.2008.10.017 – ident: e_1_2_7_26_1 doi: 10.1038/nrn2758 – ident: e_1_2_7_9_1 doi: 10.2967/jnumed.107.044545 – ident: e_1_2_7_29_1 doi: 10.1038/nn.2326 – ident: e_1_2_7_35_1 doi: 10.1073/pnas.97.25.13961 – ident: e_1_2_7_19_1 doi: 10.1016/j.neuroimage.2004.02.020 – ident: e_1_2_7_18_1 doi: 10.1038/nrn2113 – ident: e_1_2_7_46_1 doi: 10.1037/h0058700 – ident: e_1_2_7_8_1 doi: 10.1016/j.neuropsychologia.2007.11.026 – ident: e_1_2_7_16_1 doi: 10.1016/S0896-6273(01)00318-X – start-page: 842 volume-title: Human Brain Function year: 2004 ident: e_1_2_7_34_1 contributor: fullname: Penny W – ident: e_1_2_7_12_1 doi: 10.1121/1.2816573 – ident: e_1_2_7_21_1 doi: 10.1093/cercor/bhl001 – ident: e_1_2_7_36_1 doi: 10.1046/j.1460-9568.2002.02147.x – ident: e_1_2_7_7_1 doi: 10.1016/S0926-6410(01)00054-4 – ident: e_1_2_7_31_1 doi: 10.1038/16376 – ident: e_1_2_7_33_1 doi: 10.1097/00001756-200502080-00010 – ident: e_1_2_7_41_1 doi: 10.1073/pnas.0805234105 – ident: e_1_2_7_14_1 doi: 10.1038/nn763 – ident: e_1_2_7_4_1 doi: 10.1097/00001756-200203040-00013 – ident: e_1_2_7_2_1 doi: 10.1016/j.tics.2006.09.006 – ident: e_1_2_7_40_1 doi: 10.1016/j.neuropsychologia.2006.03.036 – ident: e_1_2_7_48_1 doi: 10.1523/JNEUROSCI.20-07-02664.2000 – ident: e_1_2_7_37_1 doi: 10.1073/pnas.0609419104 – ident: e_1_2_7_22_1 doi: 10.1016/S1364-6613(00)01471-6 – ident: e_1_2_7_27_1 doi: 10.1097/00001756-200502080-00009 – ident: e_1_2_7_32_1 doi: 10.1152/jn.00926.2002 – ident: e_1_2_7_10_1 doi: 10.1093/brain/115.6.1753 – ident: e_1_2_7_15_1 doi: 10.1007/s10162-004-4046-1 – ident: e_1_2_7_39_1 doi: 10.1038/380526a0 – ident: e_1_2_7_42_1 doi: 10.1126/science.270.5234.303 – ident: e_1_2_7_6_1 doi: 10.1080/14992020802233907 – ident: e_1_2_7_17_1 doi: 10.1016/S1364-6613(00)01463-7 – ident: e_1_2_7_24_1 – ident: e_1_2_7_45_1 doi: 10.1093/cercor/bhp183 – ident: e_1_2_7_20_1 doi: 10.1016/j.cogbrainres.2005.09.010 – ident: e_1_2_7_11_1 doi: 10.1152/physrev.00049.2003 – ident: e_1_2_7_43_1 doi: 10.1111/j.1467-9450.2009.00741.x – ident: e_1_2_7_28_1 doi: 10.1097/01.mao.0000178124.13118.76 – ident: e_1_2_7_13_1 doi: 10.1016/j.neuroimage.2009.01.035 – ident: e_1_2_7_3_1 doi: 10.1038/35002078 – ident: e_1_2_7_38_1 doi: 10.1016/j.brainres.2007.10.049 – ident: e_1_2_7_5_1 doi: 10.1098/rstb.2007.2155 – start-page: 087.12 volume-title: Voice gender perception in cochlear implanted patients year: 2008 ident: e_1_2_7_25_1 contributor: fullname: Massida Z – ident: e_1_2_7_47_1 doi: 10.1162/0898929053279577 |
SSID | ssj0011501 |
Score | 2.4124024 |
Snippet | Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation... |
SourceID | pubmedcentral hal proquest crossref pubmed pascalfrancis wiley istex |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1929 |
SubjectTerms | Adult Aged, 80 and over Biological and medical sciences Brain - physiology Brain Mapping cochlear implant Cochlear Implants crossmodal compensation deafness Deafness - physiopathology Deafness - surgery Female Human viral diseases Humans Infectious diseases Investigative techniques, diagnostic techniques (general aspects) Life Sciences Lipreading Male Medical sciences Middle Aged multisensory integration Nervous system Neuronal Plasticity - physiology Neurons and Cognition Photic Stimulation Positron-Emission Tomography Radiodiagnosis. Nmr imagery. Nmr spectrometry Speech Perception - physiology speechreading Viral diseases Viral diseases of the lymphoid tissue and the blood. Aids Visual Perception - physiology voice area |
Title | Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients |
URI | https://api.istex.fr/ark:/67375/WNG-PRHFXWJ4-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21331 https://www.ncbi.nlm.nih.gov/pubmed/21557388 https://www.proquest.com/docview/1517356841 https://search.proquest.com/docview/1027042371 https://hal.science/hal-00718784 https://pubmed.ncbi.nlm.nih.gov/PMC6870380 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbokBAvCDYugTEZhCZe0iaOHcePZbRUiE4TF21PWHZiqxVLUrW0gjd-Ar-RX8Kxk3SrgBfeqvo0F59jn-_Unz8j9EIYp_GS0lAQUoRUZyLUghchFznTjNvY-l2ukw_89CJ7PXIyOazbC-NJ-7me96vLsl_NZ55buSjzQccTG5xNT1IIsiSLBj3UA2zYlejt0gEgHF9lQW4NBUy9nZxQRAYzXfYJFGWxlwBmjCf-wJWrfNSbOTbkTdfB3xxLUq2go2xzwsXfIOifTMrrCNenqPFddKfFlnjYvMM9dMNU--hgWEFdXX7Hx9izPf3f6Pvo1rRdVD9An0ebNv5wbbF_zLIu4EJLU1_bqekaAS3iTQ1zC1YANvG8wjCfztzJE79-_JyXi0vnpwIXRlncKrau7qNP49HHk0nYHrsQ5gCn4lAzSowrC6lJDM0N5ZElkEuzNFE2hUkpzlNrlCaJivIkJtboiChFRKYg0VGWPEB7VV2ZRwgzbWGAJ8TkjFORc6Et59aazIi40CQK0POu8-WiUdeQjY4ykeAs6Z0FRuCWbbvTw54M30n3nQNIGc_oBoyOvde2Zmr5xXHWOJPnp2_k2fvJ-OL8LZUkQEc7bt3-AEpJALciC9Bh52fZjueVBFzEE5ZmFG70bNsMI9Etr6jK1GuwgQrfs4zA5mETFlcXb6MtQHwnYHbearcFgt-rfbfBHqCXPrT-3U9y8mrqPzz-75s8QbcBEJKG4HiI9r4u1-Yp6q2K9ZEfZL8BqZEqng |
link.rule.ids | 230,315,729,782,786,887,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfoJsFe-LMBK4xhEJp4SZs4dpw8ltESoK0mGNqeZjmJrVYsSdXSCt74CHxGPglnJ-lWAS97q3rXRPad735X_3xG6FWkTI-XgDoRIZlDkzBykohnDo9SljCuPW1Pucaf-fg8fNs3bXJYcxbGkvbTZNopLvNOMZ1YbuUsT7sNT6x7MjoOwMn80O220DasV9dtivR68wAwjq2zILs6EQTfpqGQS7qTJO8QKMs82wSYMe7bK1euMlJrYviQ22aKvxuepFzAVOnqjot_gdC_uZTXMa5NUoN7NxzefXS3RqW4V4kfoFuq2EV7vQIq8vwHPsKWJ2r_gN9Ft0f1dvweuuivas_FpcZ2eHmZwYPmqrx2xtMIAWfiVQlRCUuAqXhaYIjEE3Nnxe-fv6b57NJYOMOZkhrXvV4XD9GXQf_0OHbqCxucFICY5ySMEmUKSqp8RVNFuasJZOEw8KUOIJx5aaCVTIgv3dT3iFaJS6QkUSghRVLmP0JbRVmofYRZoiE0-ESljNMo5VGiOddahSrysoS4bfSyMZqYVX05RNWBmQgwsrBGBiUw51puOmnHvaEw3xloFfKQrkDpyFp7rSbnXw3bjTNxNn4nTj7Fg_OzD1SQNjrccIf1D6AIBVgchW100PiHqCPBQgCi4j4LQgoverEWwxo2GzOyUOUSdFzCLT8JdB5X7nT18NpL24hvONrGqDYl4Fe2T3jtR2302rrk_-dJxG9G9sOTG7_kOboTn46GYvh-_PEp2gFYSSqa5AHa-jZfqmeotciWh3ah_gF_OkAm |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfoJk28MNj40zGGQWjiJW3iOHH8WLaWAmtV8Ufb0yw7sdWKJalaWsEbH4HPyCfh7KTdKuAF3qL4msi-n-9-V1_uEHrBta3xElOPE5J5VCXcU5xlHuNppCJmAuO-cu1_YMOL5LRry-SsW325pP1UTVrFVd4qJmOXWznN0_YqT6w9GpzEALIw8dvTzLQbaBv2rE9WgXp9gAA8x8Va4GE9DgZ4VVTIJ-2xylsEQrPAFQKOIha6tivXXqkxtjmR23aZv9pcSTmH5TJVn4s_EdHf8ylv8lznqHq7_zHFu-hOzU5xpxK5h27pYg_tdwqIzPNv-Bi7fFH3R_we2hnUx_L76LK7rBGMS4PdFPMygwfNdHnjW087CHwTL0uwTlgCXcWTAoNFHtveFT-__5jk0yur6QxnWhpc13yd30efet2PJ32vbtzgpUDIAk9FlGgbWFIdappqynxDwBsncShNDGYtSGOjpSKh9NMwIEYrn0hJeCLBVdIofIC2irLQjxCOlAETERKdRozylHFlGDNGJ5oHmSJ-Ez1fKU5Mq_ocoqrETAQoWjhFgxCodD1uK2r3O2fC3rMUK2EJXYLQsdP4WkzOPtusNxaJ8-FrMXrf712cv6WCNNHRBiTWP4BgFOgxT5rocIURUVuEuQBmxcIoTii86Nl6GPayPaCRhS4XIOMT5vKUQOZhBanrh9dIbSK2AbaNWW2OALZcvfAaS0300sHy7-sk-q8G7uLgn1_yFO2MTnvi7M3w3WN0G9glqbIlD9HWl9lCP0GNebY4cnv1F38dQqY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+crossmodal+reorganization+of+the+voice+area+in+cochlear%E2%80%90implanted+deaf+patients&rft.jtitle=Human+brain+mapping&rft.au=Rouger%2C+Julien&rft.au=Lagleyre%2C+S%C3%A9bastien&rft.au=D%C3%A9monet%2C+Jean%E2%80%90Fran%C3%A7ois&rft.au=Fraysse%2C+Bernard&rft.date=2012-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=8&rft.spage=1929&rft.epage=1940&rft_id=info:doi/10.1002%2Fhbm.21331&rft.externalDBID=10.1002%252Fhbm.21331&rft.externalDocID=HBM21331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon |