Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients

Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI)...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping Vol. 33; no. 8; pp. 1929 - 1940
Main Authors: Rouger, Julien, Lagleyre, Sébastien, Démonet, Jean-François, Fraysse, Bernard, Deguine, Olivier, Barone, Pascal
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01-08-2012
Wiley-Liss
John Wiley & Sons, Inc
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow‐up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post‐implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice‐sensitive areas‐TVA). These abnormal activity levels diminish with post‐implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech‐related visual processing through cross‐modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo‐audio‐motor speech processing loop, including Broca's area. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc
AbstractList Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow‐up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post‐implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice‐sensitive areas‐TVA). These abnormal activity levels diminish with post‐implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech‐related visual processing through cross‐modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo‐audio‐motor speech processing loop, including Broca's area. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc
Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow-up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post-implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice-sensitive areas-TVA). These abnormal activity levels diminish with post-implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech-related visual processing through cross-modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo-audio-motor speech processing loop, including Broca's area. Hum Brain Mapp, 2011. © 2011 Wiley-Liss, Inc.
Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow-up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post-implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice-sensitive areas-TVA). These abnormal activity levels diminish with post-implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech-related visual processing through cross-modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo-audio-motor speech processing loop, including Broca's area. Hum Brain Mapp, 2012. © 2011 Wiley Periodicals, Inc [PUBLICATION ABSTRACT]
Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation leads to a brain functional reorganization that favors the spared modalities. In postlingually deaf patients, the use of a cochlear implant (CI) allows a recovery of the auditory function, which will probably counteract the cortical crossmodal reorganization induced by hearing loss. To study the dynamics of such reversed crossmodal plasticity, we designed a longitudinal neuroimaging study involving the follow-up of 10 postlingually deaf adult CI users engaged in a visual speechreading task. While speechreading activates Broca's area in normally hearing subjects (NHS), the activity level elicited in this region in CI patients is abnormally low and increases progressively with post-implantation time. Furthermore, speechreading in CI patients induces abnormal crossmodal activations in right anterior regions of the superior temporal cortex normally devoted to processing human voice stimuli (temporal voice-sensitive areas-TVA). These abnormal activity levels diminish with post-implantation time and tend towards the levels observed in NHS. First, our study revealed that the neuroplasticity after cochlear implantation involves not only auditory but also visual and audiovisual speech processing networks. Second, our results suggest that during deafness, the functional links between cortical regions specialized in face and voice processing are reallocated to support speech-related visual processing through cross-modal reorganization. Such reorganization allows a more efficient audiovisual integration of speech after cochlear implantation. These compensatory sensory strategies are later completed by the progressive restoration of the visuo-audio-motor speech processing loop, including Broca's area.
Author Barone, Pascal
Démonet, Jean-François
Lagleyre, Sébastien
Fraysse, Bernard
Rouger, Julien
Deguine, Olivier
AuthorAffiliation 4 Present address: Julien Rouger is currently at Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University of Maastricht, The Netherlands
3 Imagerie cérébrale et handicaps neurologiques, Université Toulouse, Institut national de la santé et de la recherche médicale U825, Hôpital Purpan, Toulouse, France
2 Service d'oto‐rhino‐laryngologie et d'oto‐neurologie, Hôpital Purpan, Toulouse, France
1 Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France
AuthorAffiliation_xml – name: 3 Imagerie cérébrale et handicaps neurologiques, Université Toulouse, Institut national de la santé et de la recherche médicale U825, Hôpital Purpan, Toulouse, France
– name: 4 Present address: Julien Rouger is currently at Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, University of Maastricht, The Netherlands
– name: 1 Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France
– name: 2 Service d'oto‐rhino‐laryngologie et d'oto‐neurologie, Hôpital Purpan, Toulouse, France
Author_xml – sequence: 1
  givenname: Julien
  surname: Rouger
  fullname: Rouger, Julien
  organization: Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France
– sequence: 2
  givenname: Sébastien
  surname: Lagleyre
  fullname: Lagleyre, Sébastien
  organization: Service d'oto-rhino-laryngologie et d'oto-neurologie, Hôpital Purpan, Toulouse, France
– sequence: 3
  givenname: Jean-François
  surname: Démonet
  fullname: Démonet, Jean-François
  organization: Imagerie cérébrale et handicaps neurologiques, Université Toulouse, Institut national de la santé et de la recherche médicale U825, Hôpital Purpan, Toulouse, France
– sequence: 4
  givenname: Bernard
  surname: Fraysse
  fullname: Fraysse, Bernard
  organization: Service d'oto-rhino-laryngologie et d'oto-neurologie, Hôpital Purpan, Toulouse, France
– sequence: 5
  givenname: Olivier
  surname: Deguine
  fullname: Deguine, Olivier
  organization: Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France
– sequence: 6
  givenname: Pascal
  surname: Barone
  fullname: Barone, Pascal
  email: pascal.barone@cerco.ups-tlse.fr
  organization: Centre de recherche Cerveau et Cognition, Université Toulouse, Centre national de la recherche scientifique UMR 5549, Hôpital Purpan, Toulouse, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26156598$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21557388$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00718784$$DView record in HAL
BookMark eNp1kVtvEzEQhVeoiF7ggT-AVkJI8LCtx5e184JUqrYBhYsQqDwgWRNntnG7uw72JlB-PZvmUqjEky3Pd-aM5-xnO21oKcueAjsExvjRdNwcchACHmR7wAa6YDAQO8t7qYqB1LCb7ad0xRiAYvAo2-WglBbG7GXfTxehnnc-tHmochdDSk2YYJ1HCvESW_8bN8VuSvkieEc5RsLct7kLbloTxsI3sxrbjib5hLDKZ72G2i49zh5WWCd6sj4Psq9np19OhsXo4_nbk-NR4ZRUUIyV5ATAtCRB0pHUrOKOyJQCq9IYDa6sCMdcIHMCeEVjxhH5wKAGI5U4yF6v-s7m44YmrveOWNtZ9A3GGxvQ238rrZ_ay7CwpdFMGNY3eLVqML0nGx6P7PKNsd5JG7mAnn25Novhx5xSZxufHNX9AijMkwXGNZNc6CX6_B56Feax7VdhQYEWqjQS7sxvtx-p2k4AzC7ztX2-9jbfnn3290-35CbQHnixBjA5rKuIrfPpjitBlWqw5I5W3E9f083_He3wzfuNdbFS-NTRr60C47UttdDKXnw4t58-D8--XbyTlos_nbrM4g
CitedBy_id crossref_primary_10_1371_journal_pone_0107252
crossref_primary_10_1159_000371599
crossref_primary_10_1016_j_heares_2016_03_007
crossref_primary_10_1016_j_heares_2015_03_007
crossref_primary_10_1523_JNEUROSCI_2559_15_2016
crossref_primary_10_3389_fnhum_2014_00834
crossref_primary_10_1016_j_nicl_2022_102942
crossref_primary_10_1155_2018_9303674
crossref_primary_10_1177_23312165211060983
crossref_primary_10_1097_AUD_0000000000001181
crossref_primary_10_1093_brain_awt274
crossref_primary_10_1016_j_conb_2019_11_003
crossref_primary_10_1155_2020_4576729
crossref_primary_10_1097_MAO_0000000000001494
crossref_primary_10_1073_pnas_1618287114
crossref_primary_10_1177_2331216519866029
crossref_primary_10_1016_j_crneur_2022_100059
crossref_primary_10_1007_s00405_023_08262_9
crossref_primary_10_1177_2331216518786850
crossref_primary_10_3390_brainsci12101291
crossref_primary_10_3724_SP_J_1042_2019_00278
crossref_primary_10_1121_10_0003532
crossref_primary_10_1016_j_heares_2016_07_013
crossref_primary_10_1111_ejn_15365
crossref_primary_10_3389_fnins_2023_1141886
crossref_primary_10_1007_s00060_019_5863_5
crossref_primary_10_1016_j_neuroscience_2014_08_003
crossref_primary_10_1016_j_nicl_2022_102982
crossref_primary_10_1044_1092_4388_2013_12_0132
crossref_primary_10_1155_2017_8986362
crossref_primary_10_3389_fnhum_2017_00510
crossref_primary_10_3390_jcm10102093
crossref_primary_10_1093_cercor_bhac025
crossref_primary_10_1155_2012_970136
crossref_primary_10_1002_hbm_23515
crossref_primary_10_1016_j_neubiorev_2023_105323
crossref_primary_10_1111_ejn_12827
crossref_primary_10_3109_14992027_2014_938194
crossref_primary_10_1159_000509969
crossref_primary_10_3389_fnins_2019_00443
crossref_primary_10_1073_pnas_1704785114
crossref_primary_10_1016_j_neuroimage_2015_07_062
crossref_primary_10_2196_38407
crossref_primary_10_1016_j_heares_2016_07_005
crossref_primary_10_1016_j_isci_2022_105711
crossref_primary_10_1016_j_nicl_2022_103188
crossref_primary_10_1016_j_heares_2013_08_006
crossref_primary_10_1155_2016_4382656
crossref_primary_10_1121_1_5116009
crossref_primary_10_1016_j_cortex_2016_08_005
crossref_primary_10_1097_AUD_0000000000000474
crossref_primary_10_1097_AUD_0000000000000475
crossref_primary_10_3389_fnins_2020_00291
crossref_primary_10_1093_cercor_bhac277
crossref_primary_10_2196_resprot_9916
crossref_primary_10_1007_s10162_021_00811_5
crossref_primary_10_1038_s41598_017_10792_2
crossref_primary_10_1016_j_neuropsychologia_2017_05_005
crossref_primary_10_1007_s00431_016_2827_2
crossref_primary_10_1016_j_neurol_2021_09_004
crossref_primary_10_1155_2013_318521
crossref_primary_10_1016_j_heares_2024_109074
crossref_primary_10_3389_fnins_2015_00068
crossref_primary_10_1016_j_heares_2014_07_005
crossref_primary_10_1016_j_heares_2017_09_012
crossref_primary_10_1016_j_heares_2014_10_001
crossref_primary_10_3389_fnhum_2019_00038
crossref_primary_10_1016_j_clinph_2022_02_005
crossref_primary_10_1007_s00429_013_0704_6
crossref_primary_10_1016_j_nicl_2017_09_001
crossref_primary_10_1038_ncomms14872
crossref_primary_10_1093_cercor_bhac204
crossref_primary_10_1097_MAO_0b013e31829411b4
crossref_primary_10_1038_s41598_022_22117_z
crossref_primary_10_1371_journal_pone_0090594
crossref_primary_10_1007_s10162_019_00729_z
crossref_primary_10_1177_23312165231156412
Cites_doi 10.1097/00001756-200006050-00026
10.1016/j.neuroimage.2005.12.020
10.1016/j.neuropsychologia.2008.10.017
10.1038/nrn2758
10.2967/jnumed.107.044545
10.1038/nn.2326
10.1073/pnas.97.25.13961
10.1016/j.neuroimage.2004.02.020
10.1038/nrn2113
10.1037/h0058700
10.1016/j.neuropsychologia.2007.11.026
10.1016/S0896-6273(01)00318-X
10.1121/1.2816573
10.1093/cercor/bhl001
10.1046/j.1460-9568.2002.02147.x
10.1016/S0926-6410(01)00054-4
10.1038/16376
10.1097/00001756-200502080-00010
10.1073/pnas.0805234105
10.1038/nn763
10.1097/00001756-200203040-00013
10.1016/j.tics.2006.09.006
10.1016/j.neuropsychologia.2006.03.036
10.1523/JNEUROSCI.20-07-02664.2000
10.1073/pnas.0609419104
10.1016/S1364-6613(00)01471-6
10.1097/00001756-200502080-00009
10.1152/jn.00926.2002
10.1093/brain/115.6.1753
10.1007/s10162-004-4046-1
10.1038/380526a0
10.1126/science.270.5234.303
10.1080/14992020802233907
10.1016/S1364-6613(00)01463-7
10.1093/cercor/bhp183
10.1016/j.cogbrainres.2005.09.010
10.1152/physrev.00049.2003
10.1111/j.1467-9450.2009.00741.x
10.1097/01.mao.0000178124.13118.76
10.1016/j.neuroimage.2009.01.035
10.1038/35002078
10.1016/j.brainres.2007.10.049
10.1098/rstb.2007.2155
10.1162/0898929053279577
ContentType Journal Article
Copyright Copyright © 2011 Wiley Periodicals, Inc
2015 INIST-CNRS
Copyright © 2011 Wiley Periodicals, Inc.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright © 2011 Wiley Periodicals, Inc
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Wiley Periodicals, Inc.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
1XC
5PM
DOI 10.1002/hbm.21331
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Chemoreception Abstracts
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList

Technology Research Database

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
DocumentTitleAlternate Voice Area Reorganizes After Cochlear Implantation
EISSN 1097-0193
EndPage 1940
ExternalDocumentID oai_HAL_hal_00718784v1
3278362801
10_1002_hbm_21331
21557388
26156598
HBM21331
ark_67375_WNG_PRHFXWJ4_2
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The Action Concertée Incitative Neurosciences Intégratives et Computationnelles
– fundername: The Fondation pour la Recherche Médicale
– fundername: The Fondation de l'Avenir; The Action Thématique et Incitative sur Programmes et Equipes from the CNRS
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
8FI
8FJ
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABPVW
ABUWG
ACBWZ
ACCFJ
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADXAS
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHMBA
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FYUFA
G-S
G.N
GAKWD
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HF~
HHY
HHZ
HMCUK
HVGLF
HZ~
IAO
IHR
ITC
IX1
J0M
JPC
KQQ
L7B
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
OVD
OVEED
P2P
P2W
P2X
P4D
PALCI
PIMPY
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RPM
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WIN
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XSW
XV2
ZZTAW
~IA
~WT
AAPBV
ABHUG
ACXME
ADAWD
AFVGU
AGJLS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QR
7TK
7U7
8FD
C1K
FR3
K9.
P64
7X8
1XC
5PM
ID FETCH-LOGICAL-c5451-b542e11074e3e4ce470f2cee863af68871c6feab23a0c312feb02aa298a718453
IEDL.DBID RPM
ISSN 1065-9471
IngestDate Tue Sep 17 20:55:41 EDT 2024
Tue Oct 15 14:49:23 EDT 2024
Sat Aug 17 03:35:01 EDT 2024
Thu Oct 10 22:20:36 EDT 2024
Thu Nov 21 21:17:47 EST 2024
Sat Sep 28 07:58:34 EDT 2024
Sun Oct 22 16:07:39 EDT 2023
Sat Aug 24 00:56:32 EDT 2024
Wed Oct 30 10:00:52 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Human
Nervous system diseases
Implant
Radiodiagnosis
Auditory disorder
Multisensory integration
Crossmodal interaction
crossmodal compensation
Hearing loss
voice area
cochlear implant
speechreading
Compensation
ENT disease
Evolution
deafness
Voice
multisensory integration
Language English
License CC BY 4.0
Copyright © 2011 Wiley Periodicals, Inc.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c5451-b542e11074e3e4ce470f2cee863af68871c6feab23a0c312feb02aa298a718453
Notes The Action Concertée Incitative Neurosciences Intégratives et Computationnelles
The Fondation pour la Recherche Médicale
istex:C733A411A786B7AA1BF72D03605F4DFC7F8FDBBF
The Fondation de l'Avenir; The Action Thématique et Incitative sur Programmes et Equipes from the CNRS
ArticleID:HBM21331
Authors contribution: Julien Rouger and Sébastien Lagleyre contributed equally to this work.
ark:/67375/WNG-PRHFXWJ4-2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC6870380
ORCID 0000-0003-0125-7468
0000-0003-4174-2580
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/hbm.21331?download=true
PMID 21557388
PQID 1517356841
PQPubID 996345
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6870380
hal_primary_oai_HAL_hal_00718784v1
proquest_miscellaneous_1027042371
proquest_journals_1517356841
crossref_primary_10_1002_hbm_21331
pubmed_primary_21557388
pascalfrancis_primary_26156598
wiley_primary_10_1002_hbm_21331_HBM21331
istex_primary_ark_67375_WNG_PRHFXWJ4_2
PublicationCentury 2000
PublicationDate August 2012
PublicationDateYYYYMMDD 2012-08-01
PublicationDate_xml – month: 08
  year: 2012
  text: August 2012
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: New York, NY
– name: United States
– name: San Antonio
PublicationTitle Human brain mapping
PublicationTitleAlternate Hum. Brain Mapp
PublicationYear 2012
Publisher Wiley Subscription Services, Inc., A Wiley Company
Wiley-Liss
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
– name: Wiley-Liss
– name: John Wiley & Sons, Inc
– name: Wiley
References Strelnikov K, Rouger J, Demonet JF, Lagleyre S, Fraysse B, Deguine O, Barone P ( 2010): Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation. Cereb Cortex 20: 1217-1222.
Demonet JF, Chollet F, Ramsay S, Cardebat D, Nespoulous JL, Wise R, Rascol A, Frackowiak R. ( 1992): The anatomy of phonological and semantic processing in normal subjects. Brain 115( Pt 6): 1753-1768.
Finney EM, Fine I, Dobkins KR ( 2001): Visual stimuli activate auditory cortex in the deaf. Nat Neurosci 4: 1171-1173.
MacSweeney M, Amaro E, Calvert GA, Campbell R, David AS, McGuire P, Williams SC, Woll B, Brammer MJ ( 2000): Silent speechreading in the absence of scanner noise: An event-related fMRI study. Neuroreport 11: 1729-1733.
Dufor O, Serniclaes W, Sprenger-Charolles L, Demonet JF ( 2009): Left premotor cortex and allophonic speech perception in dyslexia: A PET study. Neuroimage 46: 241-248.
Lambertz N, Gizewski ER, de Greiff A, Forsting M ( 2005): Cross-modal plasticity in deaf subjects dependent on the extent of hearing loss. Brain Res Cogn Brain Res 25: 884-890.
Rouger J, Fraysse B, Deguine O, Barone P ( 2008): McGurk effects in cochlear-implanted deaf subjects. Brain Res 1188: 87-99.
Kriegstein KV, Giraud AL ( 2004): Distinct functional substrates along the right superior temporal sulcus for the processing of voices. Neuroimage 22: 948-955.
Hickok G, Poeppel D ( 2007): The cortical organization of speech processing. Nat Rev Neurosci 8: 393-402.
Saur D, Kreher BW, Schnell S, Kümmerer D, Kellmeyer P, Vry MS, Umarova R, Musso M, Glauche V, Abel S, Huber W, Rijntjes M, Hennig J, Weiller C. ( 2008): Ventral and dorsal pathways for language. Proc Natl Acad Sci U S A 105: 18035-18040.
Bavelier D, Dye MW, Hauser PC ( 2006): Do deaf individuals see better? Trends Cogn Sci 10: 512-518.
Nishimura H, Hashikawa K, Doi K, Iwaki T, Watanabe Y, Kusuoka H, Nishimura T, Kubo T ( 1999): Sign language 'heard' in the auditory cortex. Nature 397: 116.
Paulesu E, Perani D, Blasi V, Silani G, Borghese NA, De Giovanni U, Sensolo S, Fazio F ( 2003): A functional-anatomical model for lipreading. J Neurophysiol 90: 2005-1203.
Merabet LB, Pascual-Leone A ( 2010): Neural reorganization following sensory loss: The opportunity of change. Nat Rev Neurosci 11: 44-52.
Desai S, Stickney G, Zeng FG ( 2008): Auditory-visual speech perception in normal-hearing and cochlear-implant listeners. J Acoust Soc Am 123: 428-440.
Campbell R ( 2008): The processing of audio-visual speech: Empirical and neural bases. Philos Trans R Soc Lond B Biol Sci 363: 1001-1010.
Demonet JF, Thierry G, Cardebat D ( 2005): Renewal of the neurophysiology of language: Functional neuroimaging. Physiol Rev 85: 49-95.
Hickok G, Poeppel D ( 2000): Towards a functional neuroanatomy of speech perception. Trends Cogn Sci 4: 131-138.
Pekkola J, Ojanen V, Autti T, Jaaskelainen IP, Mottonen R, Tarkiainen A, Sams M ( 2005): Primary auditory cortex activation by visual speech: An fMRI study at 3 T. Neuroreport 16: 125-128.
Liberman AM, Whalen DH ( 2000): On the relation of speech to language. Trends Cogn Sci 4: 187-196.
Capek CM, Macsweeney M, Woll B, Waters D, McGuire PK, David AS, Brammer MJ, Campbell R ( 2008): Cortical circuits for silent speechreading in deaf and hearing people. Neuropsychologia 46: 1233-1241.
Moore DR, Shannon RV ( 2009): Beyond cochlear implants: awakening the deafened brain. Nat Neurosci 12: 686-691.
Saint-Amour D, De Sanctis P, Molholm S, Ritter W, Foxe JJ ( 2007): Seeing voices: High-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion. Neuropsychologia 45: 587-597.
Lee HJ, Giraud AL, Kang E, Oh SH, Kang H, Kim CS, Lee DS ( 2007): Cortical activity at rest predicts cochlear implantation outcome. Cereb Cortex 17: 909-917.
Röder B, Stock O, Bien S, Neville H, Rosler F ( 2002): Speech processing activates visual cortex in congenitally blind humans. Eur J Neurosci 16: 930-936.
Rouger J, Lagleyre S, Fraysse B, Deneve S, Deguine O, Barone P ( 2007): Evidence thant cochlear implanted deaf patients are better multisensory integrators. Proc Natl Acad Sci U S A 104: 7295-7300.
Tanner WP Jr., Swets JA ( 1954): A decision-making theory of visual detection. Psychol Rev 61: 401-409.
Coez A, Zilbovicius M, Ferrary E, Bouccara D, Mosnier I, Ambert-Dahan E, Bizaguet E, Syrota A, Samson Y, Sterkers O ( 2008): Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations. J Nucl Med 49: 60-67.
Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M ( 1995): Speech recognition with primarily temporal cues. Science 270: 303-304.
Belin P, Zatorre RJ, Lafaille P, Ahad P, Pike B ( 2000): Voice-selective areas in human auditory cortex. Nature 403: 309-312.
Strelnikov K, Rouger J, Lagleyre S, Fraysse B, Deguine O, Barone P. ( 2009b): Improvement in speech-reading ability by auditory training: Evidence from gender differences in normally hearing, deaf and cochlear implanted subjects. Neuropsychologia 47: 972-979.
Campbell R, MacSweeney M, Surguladze S, Calvert G, McGuire P, Suckling J, Brammer MJ, David AS ( 2001): Cortical substrates for the perception of face actions: An fMRI study of the specificity of activation for seen speech and for meaningless lower-face acts (gurning). Brain Res Cogn Brain Res 12: 233-243.
Molholm S, Foxe JJ ( 2005): Look 'hear', primary auditory cortex is active during lip-reading. Neuroreport 16: 123-124.
Mortensen MV, Mirz F, Gjedde A ( 2006): Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness. Neuroimage 31: 842-852.
Fu QJ, Chinchilla S, Galvin JJ ( 2004): The role of spectral and temporal cues in voice gender discrimination by normal-hearing listeners and cochlear implant users. J Assoc Res Otolaryngol 5: 253-260.
Massida Z, Rouger J, James CJ, Belin P, Barone P, Deguine O ( 2008): Voice gender perception in cochlear implanted patients, Vol. 4. The Federation for European Neuroscience Societies: Geneva. pp 087.12.
Strelnikov K, Rouger J, Barone P, Deguine O. ( 2009a): Role of speechreading in audiovisual interactions during the recovery of speech comprehension in deaf adults with cochlear implants. Scand J Psychol 50: 437-444.
Campbell R, Capek C ( 2008): Seeing speech and seeing sign: Insights from a fMRI study. Int J Audiol 47( Suppl 2): S3-S9.
Moody-Antonio S, Takayanagi S, Masuda A, Auer ET Jr., Fisher L, Bernstein LE ( 2005): Improved speech perception in adult congenitally deafened cochlear implant recipients. Otol Neurotol 26: 649-654.
Petitto LA, Zatorre RJ, Gauna K, Nikelski EJ, Dostie D, Evans AC ( 2000): Speech-like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language. Proc Natl Acad Sci U S A 97: 13961-13966.
Giraud AL, Price CJ, Graham JM, Truy E, Frackowiak RS ( 2001): Cross-modal plasticity underpins language recovery after cochlear implantation. Neuron 30: 657-663.
von Kriegstein K, Kleinschmidt A, Sterzer P, Giraud AL ( 2005): Interaction of face and voice areas during speaker recognition. J Cogn Neurosci 17: 367-376.
Bernstein LE, Auer ET Jr., Moore JK, Ponton CW, Don M, Singh M ( 2002): Visual speech perception without primary auditory cortex activation. Neuroreport 13: 311-315.
Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M ( 1996): Activation of the primary visual cortex by Braille reading in blind subjects. Nature 380: 526-528.
Weeks R, Horwitz B, Aziz-Sultan A, Tian B, Wessinger CM, Cohen LG, Hallett M, Rauschecker JP ( 2000): A positron emission tomographic study of auditory localization in the congenitally blind. J Neurosci 20: 2664-2672.
2007; 17
2002; 16
2004; 22
2010; 11
2007; 104
1954; 61
2009; 46
2006; 31
2009b; 47
2006; 10
2000; 4
2002; 13
2000; 20
2005; 85
1996; 380
2004; 5
2008; 105
2004
2008; 4
2008; 123
2005; 26
2008; 363
1995; 270
2005; 25
2009; 12
2008; 1188
2010; 20
2003; 90
2001; 4
2000; 403
2000; 11
2009a; 50
2008; 49
1992; 115
2000; 97
2008; 47
2007; 8
2008; 46
1999; 397
2001; 12
2005; 16
2005; 17
2007; 45
2001; 30
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_31_1
Penny W (e_1_2_7_34_1) 2004
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
Massida Z (e_1_2_7_25_1) 2008
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 4
  start-page: 1171
  year: 2001
  end-page: 1173
  article-title: Visual stimuli activate auditory cortex in the deaf
  publication-title: Nat Neurosci
– volume: 46
  start-page: 1233
  year: 2008
  end-page: 1241
  article-title: Cortical circuits for silent speechreading in deaf and hearing people
  publication-title: Neuropsychologia
– volume: 11
  start-page: 1729
  year: 2000
  end-page: 1733
  article-title: Silent speechreading in the absence of scanner noise: An event‐related fMRI study
  publication-title: Neuroreport
– volume: 22
  start-page: 948
  year: 2004
  end-page: 955
  article-title: Distinct functional substrates along the right superior temporal sulcus for the processing of voices
  publication-title: Neuroimage
– volume: 4
  start-page: 087.12
  year: 2008
– volume: 16
  start-page: 125
  year: 2005
  end-page: 128
  article-title: Primary auditory cortex activation by visual speech: An fMRI study at 3 T
  publication-title: Neuroreport
– volume: 115
  start-page: 1753
  issue: Pt 6
  year: 1992
  end-page: 1768
  article-title: The anatomy of phonological and semantic processing in normal subjects
  publication-title: Brain
– volume: 12
  start-page: 686
  year: 2009
  end-page: 691
  article-title: Beyond cochlear implants: awakening the deafened brain
  publication-title: Nat Neurosci
– volume: 49
  start-page: 60
  year: 2008
  end-page: 67
  article-title: Cochlear implant benefits in deafness rehabilitation: PET study of temporal voice activations
  publication-title: J Nucl Med
– volume: 17
  start-page: 909
  year: 2007
  end-page: 917
  article-title: Cortical activity at rest predicts cochlear implantation outcome
  publication-title: Cereb Cortex
– volume: 31
  start-page: 842
  year: 2006
  end-page: 852
  article-title: Restored speech comprehension linked to activity in left inferior prefrontal and right temporal cortices in postlingual deafness
  publication-title: Neuroimage
– volume: 5
  start-page: 253
  year: 2004
  end-page: 260
  article-title: The role of spectral and temporal cues in voice gender discrimination by normal‐hearing listeners and cochlear implant users
  publication-title: J Assoc Res Otolaryngol
– volume: 11
  start-page: 44
  year: 2010
  end-page: 52
  article-title: Neural reorganization following sensory loss: The opportunity of change
  publication-title: Nat Rev Neurosci
– volume: 16
  start-page: 123
  year: 2005
  end-page: 124
  article-title: Look ‘hear’, primary auditory cortex is active during lip‐reading
  publication-title: Neuroreport
– volume: 16
  start-page: 930
  year: 2002
  end-page: 936
  article-title: Speech processing activates visual cortex in congenitally blind humans
  publication-title: Eur J Neurosci
– volume: 17
  start-page: 367
  year: 2005
  end-page: 376
  article-title: Interaction of face and voice areas during speaker recognition
  publication-title: J Cogn Neurosci
– volume: 47
  start-page: S3
  issue: Suppl 2
  year: 2008
  end-page: S9
  article-title: Seeing speech and seeing sign: Insights from a fMRI study
  publication-title: Int J Audiol
– volume: 123
  start-page: 428
  year: 2008
  end-page: 440
  article-title: Auditory‐visual speech perception in normal‐hearing and cochlear‐implant listeners
  publication-title: J Acoust Soc Am
– volume: 20
  start-page: 1217
  year: 2010
  end-page: 1222
  article-title: Does brain activity at rest reflect adaptive strategies? Evidence from speech processing after cochlear implantation
  publication-title: Cereb Cortex
– volume: 61
  start-page: 401
  year: 1954
  end-page: 409
  article-title: A decision‐making theory of visual detection
  publication-title: Psychol Rev
– volume: 12
  start-page: 233
  year: 2001
  end-page: 243
  article-title: Cortical substrates for the perception of face actions: An fMRI study of the specificity of activation for seen speech and for meaningless lower‐face acts (gurning)
  publication-title: Brain Res Cogn Brain Res
– volume: 30
  start-page: 657
  year: 2001
  end-page: 663
  article-title: Cross‐modal plasticity underpins language recovery after cochlear implantation
  publication-title: Neuron
– volume: 90
  start-page: 2005
  year: 2003
  end-page: 1203
  article-title: A functional‐anatomical model for lipreading
  publication-title: J Neurophysiol
– volume: 26
  start-page: 649
  year: 2005
  end-page: 654
  article-title: Improved speech perception in adult congenitally deafened cochlear implant recipients
  publication-title: Otol Neurotol
– volume: 46
  start-page: 241
  year: 2009
  end-page: 248
  article-title: Left premotor cortex and allophonic speech perception in dyslexia: A PET study
  publication-title: Neuroimage
– start-page: 842
  year: 2004
  end-page: 850
– volume: 47
  start-page: 972
  year: 2009b
  end-page: 979
  article-title: Improvement in speech‐reading ability by auditory training: Evidence from gender differences in normally hearing, deaf and cochlear implanted subjects
  publication-title: Neuropsychologia
– volume: 8
  start-page: 393
  year: 2007
  end-page: 402
  article-title: The cortical organization of speech processing
  publication-title: Nat Rev Neurosci
– volume: 45
  start-page: 587
  year: 2007
  end-page: 597
  article-title: Seeing voices: High‐density electrical mapping and source‐analysis of the multisensory mismatch negativity evoked during the McGurk illusion
  publication-title: Neuropsychologia
– volume: 50
  start-page: 437
  year: 2009a
  end-page: 444
  article-title: Role of speechreading in audiovisual interactions during the recovery of speech comprehension in deaf adults with cochlear implants
  publication-title: Scand J Psychol
– volume: 104
  start-page: 7295
  year: 2007
  end-page: 7300
  article-title: Evidence thant cochlear implanted deaf patients are better multisensory integrators
  publication-title: Proc Natl Acad Sci U S A
– volume: 397
  start-page: 116
  year: 1999
  article-title: Sign language ‘heard’ in the auditory cortex
  publication-title: Nature
– volume: 270
  start-page: 303
  year: 1995
  end-page: 304
  article-title: Speech recognition with primarily temporal cues
  publication-title: Science
– volume: 85
  start-page: 49
  year: 2005
  end-page: 95
  article-title: Renewal of the neurophysiology of language: Functional neuroimaging
  publication-title: Physiol Rev
– volume: 105
  start-page: 18035
  year: 2008
  end-page: 18040
  article-title: Ventral and dorsal pathways for language
  publication-title: Proc Natl Acad Sci U S A
– volume: 97
  start-page: 13961
  year: 2000
  end-page: 13966
  article-title: Speech‐like cerebral activity in profoundly deaf people processing signed languages: Implications for the neural basis of human language
  publication-title: Proc Natl Acad Sci U S A
– volume: 13
  start-page: 311
  year: 2002
  end-page: 315
  article-title: Visual speech perception without primary auditory cortex activation
  publication-title: Neuroreport
– volume: 25
  start-page: 884
  year: 2005
  end-page: 890
  article-title: Cross‐modal plasticity in deaf subjects dependent on the extent of hearing loss
  publication-title: Brain Res Cogn Brain Res
– article-title: Voice discrimination in cochlear‐implanted deaf subjects
– volume: 1188
  start-page: 87
  year: 2008
  end-page: 99
  article-title: McGurk effects in cochlear‐implanted deaf subjects
  publication-title: Brain Res
– volume: 403
  start-page: 309
  year: 2000
  end-page: 312
  article-title: Voice‐selective areas in human auditory cortex
  publication-title: Nature
– volume: 4
  start-page: 187
  year: 2000
  end-page: 196
  article-title: On the relation of speech to language
  publication-title: Trends Cogn Sci
– volume: 363
  start-page: 1001
  year: 2008
  end-page: 1010
  article-title: The processing of audio‐visual speech: Empirical and neural bases
  publication-title: Philos Trans R Soc Lond B Biol Sci
– volume: 380
  start-page: 526
  year: 1996
  end-page: 528
  article-title: Activation of the primary visual cortex by Braille reading in blind subjects
  publication-title: Nature
– volume: 10
  start-page: 512
  year: 2006
  end-page: 518
  article-title: Do deaf individuals see better?
  publication-title: Trends Cogn Sci
– volume: 20
  start-page: 2664
  year: 2000
  end-page: 2672
  article-title: A positron emission tomographic study of auditory localization in the congenitally blind
  publication-title: J Neurosci
– volume: 4
  start-page: 131
  year: 2000
  end-page: 138
  article-title: Towards a functional neuroanatomy of speech perception
  publication-title: Trends Cogn Sci
– ident: e_1_2_7_23_1
  doi: 10.1097/00001756-200006050-00026
– ident: e_1_2_7_30_1
  doi: 10.1016/j.neuroimage.2005.12.020
– ident: e_1_2_7_44_1
  doi: 10.1016/j.neuropsychologia.2008.10.017
– ident: e_1_2_7_26_1
  doi: 10.1038/nrn2758
– ident: e_1_2_7_9_1
  doi: 10.2967/jnumed.107.044545
– ident: e_1_2_7_29_1
  doi: 10.1038/nn.2326
– ident: e_1_2_7_35_1
  doi: 10.1073/pnas.97.25.13961
– ident: e_1_2_7_19_1
  doi: 10.1016/j.neuroimage.2004.02.020
– ident: e_1_2_7_18_1
  doi: 10.1038/nrn2113
– ident: e_1_2_7_46_1
  doi: 10.1037/h0058700
– ident: e_1_2_7_8_1
  doi: 10.1016/j.neuropsychologia.2007.11.026
– ident: e_1_2_7_16_1
  doi: 10.1016/S0896-6273(01)00318-X
– start-page: 842
  volume-title: Human Brain Function
  year: 2004
  ident: e_1_2_7_34_1
  contributor:
    fullname: Penny W
– ident: e_1_2_7_12_1
  doi: 10.1121/1.2816573
– ident: e_1_2_7_21_1
  doi: 10.1093/cercor/bhl001
– ident: e_1_2_7_36_1
  doi: 10.1046/j.1460-9568.2002.02147.x
– ident: e_1_2_7_7_1
  doi: 10.1016/S0926-6410(01)00054-4
– ident: e_1_2_7_31_1
  doi: 10.1038/16376
– ident: e_1_2_7_33_1
  doi: 10.1097/00001756-200502080-00010
– ident: e_1_2_7_41_1
  doi: 10.1073/pnas.0805234105
– ident: e_1_2_7_14_1
  doi: 10.1038/nn763
– ident: e_1_2_7_4_1
  doi: 10.1097/00001756-200203040-00013
– ident: e_1_2_7_2_1
  doi: 10.1016/j.tics.2006.09.006
– ident: e_1_2_7_40_1
  doi: 10.1016/j.neuropsychologia.2006.03.036
– ident: e_1_2_7_48_1
  doi: 10.1523/JNEUROSCI.20-07-02664.2000
– ident: e_1_2_7_37_1
  doi: 10.1073/pnas.0609419104
– ident: e_1_2_7_22_1
  doi: 10.1016/S1364-6613(00)01471-6
– ident: e_1_2_7_27_1
  doi: 10.1097/00001756-200502080-00009
– ident: e_1_2_7_32_1
  doi: 10.1152/jn.00926.2002
– ident: e_1_2_7_10_1
  doi: 10.1093/brain/115.6.1753
– ident: e_1_2_7_15_1
  doi: 10.1007/s10162-004-4046-1
– ident: e_1_2_7_39_1
  doi: 10.1038/380526a0
– ident: e_1_2_7_42_1
  doi: 10.1126/science.270.5234.303
– ident: e_1_2_7_6_1
  doi: 10.1080/14992020802233907
– ident: e_1_2_7_17_1
  doi: 10.1016/S1364-6613(00)01463-7
– ident: e_1_2_7_24_1
– ident: e_1_2_7_45_1
  doi: 10.1093/cercor/bhp183
– ident: e_1_2_7_20_1
  doi: 10.1016/j.cogbrainres.2005.09.010
– ident: e_1_2_7_11_1
  doi: 10.1152/physrev.00049.2003
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1467-9450.2009.00741.x
– ident: e_1_2_7_28_1
  doi: 10.1097/01.mao.0000178124.13118.76
– ident: e_1_2_7_13_1
  doi: 10.1016/j.neuroimage.2009.01.035
– ident: e_1_2_7_3_1
  doi: 10.1038/35002078
– ident: e_1_2_7_38_1
  doi: 10.1016/j.brainres.2007.10.049
– ident: e_1_2_7_5_1
  doi: 10.1098/rstb.2007.2155
– start-page: 087.12
  volume-title: Voice gender perception in cochlear implanted patients
  year: 2008
  ident: e_1_2_7_25_1
  contributor:
    fullname: Massida Z
– ident: e_1_2_7_47_1
  doi: 10.1162/0898929053279577
SSID ssj0011501
Score 2.4124024
Snippet Psychophysical and neuroimaging studies in both animal and human subjects have clearly demonstrated that cortical plasticity following sensory deprivation...
SourceID pubmedcentral
hal
proquest
crossref
pubmed
pascalfrancis
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1929
SubjectTerms Adult
Aged, 80 and over
Biological and medical sciences
Brain - physiology
Brain Mapping
cochlear implant
Cochlear Implants
crossmodal compensation
deafness
Deafness - physiopathology
Deafness - surgery
Female
Human viral diseases
Humans
Infectious diseases
Investigative techniques, diagnostic techniques (general aspects)
Life Sciences
Lipreading
Male
Medical sciences
Middle Aged
multisensory integration
Nervous system
Neuronal Plasticity - physiology
Neurons and Cognition
Photic Stimulation
Positron-Emission Tomography
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Speech Perception - physiology
speechreading
Viral diseases
Viral diseases of the lymphoid tissue and the blood. Aids
Visual Perception - physiology
voice area
Title Evolution of crossmodal reorganization of the voice area in cochlear-implanted deaf patients
URI https://api.istex.fr/ark:/67375/WNG-PRHFXWJ4-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fhbm.21331
https://www.ncbi.nlm.nih.gov/pubmed/21557388
https://www.proquest.com/docview/1517356841
https://search.proquest.com/docview/1027042371
https://hal.science/hal-00718784
https://pubmed.ncbi.nlm.nih.gov/PMC6870380
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbokBAvCDYugTEZhCZe0iaOHcePZbRUiE4TF21PWHZiqxVLUrW0gjd-Ar-RX8Kxk3SrgBfeqvo0F59jn-_Unz8j9EIYp_GS0lAQUoRUZyLUghchFznTjNvY-l2ukw_89CJ7PXIyOazbC-NJ-7me96vLsl_NZ55buSjzQccTG5xNT1IIsiSLBj3UA2zYlejt0gEgHF9lQW4NBUy9nZxQRAYzXfYJFGWxlwBmjCf-wJWrfNSbOTbkTdfB3xxLUq2go2xzwsXfIOifTMrrCNenqPFddKfFlnjYvMM9dMNU--hgWEFdXX7Hx9izPf3f6Pvo1rRdVD9An0ebNv5wbbF_zLIu4EJLU1_bqekaAS3iTQ1zC1YANvG8wjCfztzJE79-_JyXi0vnpwIXRlncKrau7qNP49HHk0nYHrsQ5gCn4lAzSowrC6lJDM0N5ZElkEuzNFE2hUkpzlNrlCaJivIkJtboiChFRKYg0VGWPEB7VV2ZRwgzbWGAJ8TkjFORc6Et59aazIi40CQK0POu8-WiUdeQjY4ykeAs6Z0FRuCWbbvTw54M30n3nQNIGc_oBoyOvde2Zmr5xXHWOJPnp2_k2fvJ-OL8LZUkQEc7bt3-AEpJALciC9Bh52fZjueVBFzEE5ZmFG70bNsMI9Etr6jK1GuwgQrfs4zA5mETFlcXb6MtQHwnYHbearcFgt-rfbfBHqCXPrT-3U9y8mrqPzz-75s8QbcBEJKG4HiI9r4u1-Yp6q2K9ZEfZL8BqZEqng
link.rule.ids 230,315,729,782,786,887,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfoJsFe-LMBK4xhEJp4SZs4dpw8ltESoK0mGNqeZjmJrVYsSdXSCt74CHxGPglnJ-lWAS97q3rXRPad735X_3xG6FWkTI-XgDoRIZlDkzBykohnDo9SljCuPW1Pucaf-fg8fNs3bXJYcxbGkvbTZNopLvNOMZ1YbuUsT7sNT6x7MjoOwMn80O220DasV9dtivR68wAwjq2zILs6EQTfpqGQS7qTJO8QKMs82wSYMe7bK1euMlJrYviQ22aKvxuepFzAVOnqjot_gdC_uZTXMa5NUoN7NxzefXS3RqW4V4kfoFuq2EV7vQIq8vwHPsKWJ2r_gN9Ft0f1dvweuuivas_FpcZ2eHmZwYPmqrx2xtMIAWfiVQlRCUuAqXhaYIjEE3Nnxe-fv6b57NJYOMOZkhrXvV4XD9GXQf_0OHbqCxucFICY5ySMEmUKSqp8RVNFuasJZOEw8KUOIJx5aaCVTIgv3dT3iFaJS6QkUSghRVLmP0JbRVmofYRZoiE0-ESljNMo5VGiOddahSrysoS4bfSyMZqYVX05RNWBmQgwsrBGBiUw51puOmnHvaEw3xloFfKQrkDpyFp7rSbnXw3bjTNxNn4nTj7Fg_OzD1SQNjrccIf1D6AIBVgchW100PiHqCPBQgCi4j4LQgoverEWwxo2GzOyUOUSdFzCLT8JdB5X7nT18NpL24hvONrGqDYl4Fe2T3jtR2302rrk_-dJxG9G9sOTG7_kOboTn46GYvh-_PEp2gFYSSqa5AHa-jZfqmeotciWh3ah_gF_OkAm
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELfoJk28MNj40zGGQWjiJW3iOHH8WLaWAmtV8Ufb0yw7sdWKJalaWsEbH4HPyCfh7KTdKuAF3qL4msi-n-9-V1_uEHrBta3xElOPE5J5VCXcU5xlHuNppCJmAuO-cu1_YMOL5LRry-SsW325pP1UTVrFVd4qJmOXWznN0_YqT6w9GpzEALIw8dvTzLQbaBv2rE9WgXp9gAA8x8Va4GE9DgZ4VVTIJ-2xylsEQrPAFQKOIha6tivXXqkxtjmR23aZv9pcSTmH5TJVn4s_EdHf8ylv8lznqHq7_zHFu-hOzU5xpxK5h27pYg_tdwqIzPNv-Bi7fFH3R_we2hnUx_L76LK7rBGMS4PdFPMygwfNdHnjW087CHwTL0uwTlgCXcWTAoNFHtveFT-__5jk0yur6QxnWhpc13yd30efet2PJ32vbtzgpUDIAk9FlGgbWFIdappqynxDwBsncShNDGYtSGOjpSKh9NMwIEYrn0hJeCLBVdIofIC2irLQjxCOlAETERKdRozylHFlGDNGJ5oHmSJ-Ez1fKU5Mq_ocoqrETAQoWjhFgxCodD1uK2r3O2fC3rMUK2EJXYLQsdP4WkzOPtusNxaJ8-FrMXrf712cv6WCNNHRBiTWP4BgFOgxT5rocIURUVuEuQBmxcIoTii86Nl6GPayPaCRhS4XIOMT5vKUQOZhBanrh9dIbSK2AbaNWW2OALZcvfAaS0300sHy7-sk-q8G7uLgn1_yFO2MTnvi7M3w3WN0G9glqbIlD9HWl9lCP0GNebY4cnv1F38dQqY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolution+of+crossmodal+reorganization+of+the+voice+area+in+cochlear%E2%80%90implanted+deaf+patients&rft.jtitle=Human+brain+mapping&rft.au=Rouger%2C+Julien&rft.au=Lagleyre%2C+S%C3%A9bastien&rft.au=D%C3%A9monet%2C+Jean%E2%80%90Fran%C3%A7ois&rft.au=Fraysse%2C+Bernard&rft.date=2012-08-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1065-9471&rft.eissn=1097-0193&rft.volume=33&rft.issue=8&rft.spage=1929&rft.epage=1940&rft_id=info:doi/10.1002%2Fhbm.21331&rft.externalDBID=10.1002%252Fhbm.21331&rft.externalDocID=HBM21331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1065-9471&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1065-9471&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1065-9471&client=summon