Ugi Adducts as Novel Anti-austerity Agents against PANC-1 Human Pancreatic Cancer Cell Line: A Rapid Synthetic Approach
Pancreatic cancer cells have an inherent tolerance to withstand nutrition starvation, allowing them to survive in hypovascular tumor microenvironments that lack of sufficient nutrients and oxygen. Developing anti-cancer agents that target this tolerance to nutritional starvation is a promising anti-...
Saved in:
Published in: | Biological & pharmaceutical bulletin Vol. 46; no. 10; pp. 1412 - 1420 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Japan
The Pharmaceutical Society of Japan
01-10-2023
Japan Science and Technology Agency |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Pancreatic cancer cells have an inherent tolerance to withstand nutrition starvation, allowing them to survive in hypovascular tumor microenvironments that lack of sufficient nutrients and oxygen. Developing anti-cancer agents that target this tolerance to nutritional starvation is a promising anti-austerity strategy for eradicating pancreatic cancer cells in their microenvironment. In this study, we employed a chemical biology approach using the Ugi reaction to rapidly synthesize new anti-austerity agents and evaluate their structure–activity relationships. Out of seventeen Ugi adducts tested, Ugi adduct 11 exhibited the strongest anti-austerity activity, showing preferential cytotoxicity against PANC-1 pancreatic cancer cells with a PC50 value of 0.5 µM. Further biological investigation of Ugi adduct 11 revealed a dramatic alteration of cellular morphology, leading to PANC-1 cell death within 24 h under nutrient-deprived conditions. Furthermore, the R absolute configuration of 11 was found to significantly contribute to the preferential anti-austerity ability toward PANC-1, with a PC50 value of 0.2 µM. Mechanistically, Ugi adduct (R)-11 was found to inhibit the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway preferentially under nutrition starvation conditions. Consequently, Ugi-adduct (R)-11 could be a promising candidate for drug development targeting pancreatic cancer based on the anti-austerity strategy. Our study also demonstrated that the Ugi reaction-based chemical engineering of natural product extracts can be used as a rapid method for discovering novel anti-austerity agents for combating pancreatic cancer. |
---|---|
AbstractList | Pancreatic cancer cells have an inherent tolerance to withstand nutrition starvation, allowing them to survive in hypovascular tumor microenvironments that lack of sufficient nutrients and oxygen. Developing anti-cancer agents that target this tolerance to nutritional starvation is a promising anti-austerity strategy for eradicating pancreatic cancer cells in their microenvironment. In this study, we employed a chemical biology approach using the Ugi reaction to rapidly synthesize new anti-austerity agents and evaluate their structure-activity relationships. Out of seventeen Ugi adducts tested, Ugi adduct 11 exhibited the strongest anti-austerity activity, showing preferential cytotoxicity against PANC-1 pancreatic cancer cells with a PC
value of 0.5 µM. Further biological investigation of Ugi adduct 11 revealed a dramatic alteration of cellular morphology, leading to PANC-1 cell death within 24 h under nutrient-deprived conditions. Furthermore, the R absolute configuration of 11 was found to significantly contribute to the preferential anti-austerity ability toward PANC-1, with a PC
value of 0.2 µM. Mechanistically, Ugi adduct (R)-11 was found to inhibit the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway preferentially under nutrition starvation conditions. Consequently, Ugi-adduct (R)-11 could be a promising candidate for drug development targeting pancreatic cancer based on the anti-austerity strategy. Our study also demonstrated that the Ugi reaction-based chemical engineering of natural product extracts can be used as a rapid method for discovering novel anti-austerity agents for combating pancreatic cancer. Pancreatic cancer cells have an inherent tolerance to withstand nutrition starvation, allowing them to survive in hypovascular tumor microenvironments that lack of sufficient nutrients and oxygen. Developing anti-cancer agents that target this tolerance to nutritional starvation is a promising anti-austerity strategy for eradicating pancreatic cancer cells in their microenvironment. In this study, we employed a chemical biology approach using the Ugi reaction to rapidly synthesize new anti-austerity agents and evaluate their structure-activity relationships. Out of seventeen Ugi adducts tested, Ugi adduct 11 exhibited the strongest anti-austerity activity, showing preferential cytotoxicity against PANC-1 pancreatic cancer cells with a PC50 value of 0.5 µM. Further biological investigation of Ugi adduct 11 revealed a dramatic alteration of cellular morphology, leading to PANC-1 cell death within 24 h under nutrient-deprived conditions. Furthermore, the R absolute configuration of 11 was found to significantly contribute to the preferential anti-austerity ability toward PANC-1, with a PC50 value of 0.2 µM. Mechanistically, Ugi adduct (R)-11 was found to inhibit the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway preferentially under nutrition starvation conditions. Consequently, Ugi-adduct (R)-11 could be a promising candidate for drug development targeting pancreatic cancer based on the anti-austerity strategy. Our study also demonstrated that the Ugi reaction-based chemical engineering of natural product extracts can be used as a rapid method for discovering novel anti-austerity agents for combating pancreatic cancer. |
ArticleNumber | b23-00224 |
Author | Maneenet, Juthamart Ohashi, Nao Nose, Takeru Tomohara, Keisuke Fujii, Rintaro Kim, Min Jo Sun, Sijia Awale, Suresh |
Author_xml | – sequence: 1 fullname: Tomohara, Keisuke organization: Faculty of Arts and Science, Kyushu University – sequence: 2 fullname: Maneenet, Juthamart organization: Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama – sequence: 3 fullname: Ohashi, Nao organization: Graduate School of Science, Kyushu University – sequence: 4 fullname: Nose, Takeru organization: Faculty of Arts and Science, Kyushu University – sequence: 5 fullname: Fujii, Rintaro organization: Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama – sequence: 6 fullname: Kim, Min Jo organization: Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama – sequence: 7 fullname: Sun, Sijia organization: Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama – sequence: 8 fullname: Awale, Suresh organization: Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37779042$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkT1v2zAQhokiQeOkHbsWBLp0UcIPUaS6CepHChhJkDYzQZFnW4ZMqSTVwv--dJx66EISdw-eO_C9RGd-9IDQO0quKSvVTTd11x3jBSGMla_QgvJSFoJRcYYWpKaqqKhQF-gyxi0hRBLGX6MLLqWsSckW6M_TuseNc7NNEZuI78bfMODGp74wc0wQ-rTHzRr8ob02vY8JPzR3bUHx7bwzHj8YbwOY1Fvc5icE3MIw4GXv4RNu8KOZeod_7H3awIFppimMxm7eoPOVGSK8fbmv0NPXLz_b22J5_-172ywLK8oyFV2pDOfEOU6t5Z2zlZAul4yjyilbOSe6yqqVUYLUALnMrTNOrSiTvIKSX6GPR28e-2uGmPSujzZvaDyMc9RMSVoJQVmV0Q__odtxDj5vlylVK1FXss5UcaRsGGMMsNJT6Hcm7DUl-pCIzononIh-TiTz71-sc7cDd6L_RZCBz0dgG5NZwwkwIf_XAM-6sjrY83nyntp2Y4IGz_8CTqmgXA |
CitedBy_id | crossref_primary_10_1016_j_rechem_2024_101352 |
Cites_doi | 10.1016/j.phytochem.2020.112646 10.1002/anie.196200081 10.1038/s41598-022-19579-6 10.1038/s41429-020-0340-3 10.3390/plants10020229 10.1016/j.bmc.2022.116963 10.1080/10409238.2021.1934811 10.1248/cpb.c17-00684 10.1016/j.phyplu.2021.100101 10.1248/cpb.c12-00834 10.1021/acs.jnatprod.0c00330 10.1002/cmdc.201900549 10.1371/journal.pone.0192464 10.1007/s11033-021-06607-3 10.1016/j.fitote.2021.104901 10.3390/ijms231710132 10.1016/j.bmc.2020.115950 10.1002/cbdv.202000495 10.1016/j.ejmech.2019.03.013 10.1016/j.bmcl.2020.126964 10.1186/s13045-020-01030-w 10.1021/acs.jnatprod.1c00150 10.1016/j.tet.2022.132931 10.1016/j.tetlet.2022.153881 10.1021/acs.jnatprod.9b01109 10.1016/j.bmcl.2020.127352 10.3390/plants11192466 10.1016/j.bmc.2021.116563 10.1038/s43018-022-00393-y 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U 10.1158/0008-5472.CAN-05-3143 10.1016/j.bmcl.2021.127967 10.3390/md20110661 |
ContentType | Journal Article |
Copyright | 2023 The Pharmaceutical Society of Japan Copyright Japan Science and Technology Agency 2023 |
Copyright_xml | – notice: 2023 The Pharmaceutical Society of Japan – notice: Copyright Japan Science and Technology Agency 2023 |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
DOI | 10.1248/bpb.b23-00224 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Virology and AIDS Abstracts |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1347-5215 |
EndPage | 1420 |
ExternalDocumentID | 10_1248_bpb_b23_00224 37779042 article_bpb_46_10_46_b23_00224_article_char_en |
Genre | Journal Article |
GroupedDBID | --- 23N 2WC 5GY 6J9 ACGFO ACIWK ACPRK ADBBV AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BAWUL BKOMP CS3 DIK DU5 E3Z EBS EJD F5P GX1 HH5 JMI JSF JSH KQ8 MOJWN OK1 P2P RJT RZJ TR2 XSB .55 1CY 53G ABJNI ABTAH AI. CGR CUY CVF ECM EIF NPM TKC VH1 X7M ZXP ZY4 AAYXX CITATION 7QP 7QR 7TK 7U9 8FD FR3 H94 P64 7X8 |
ID | FETCH-LOGICAL-c544t-b48a330dd31cc3bdc657d8a3ad18d8c6dd5b6c8fa8509eead13cdad8f12736e43 |
ISSN | 0918-6158 |
IngestDate | Thu Apr 11 18:16:53 EDT 2024 Thu Oct 10 16:53:27 EDT 2024 Fri Aug 23 01:03:19 EDT 2024 Sat Nov 02 12:30:41 EDT 2024 Thu Nov 09 14:00:43 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | preferential cytotoxicity pancreatic cancer natural product hybrid Ugi reaction anti-austerity agent |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c544t-b48a330dd31cc3bdc657d8a3ad18d8c6dd5b6c8fa8509eead13cdad8f12736e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/bpb/46/10/46_b23-00224/_article/-char/en |
PMID | 37779042 |
PQID | 2889859679 |
PQPubID | 1966364 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2871655126 proquest_journals_2889859679 crossref_primary_10_1248_bpb_b23_00224 pubmed_primary_37779042 jstage_primary_article_bpb_46_10_46_b23_00224_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Japan |
PublicationPlace_xml | – name: Japan – name: Tokyo |
PublicationTitle | Biological & pharmaceutical bulletin |
PublicationTitleAlternate | Biol Pharm Bull |
PublicationYear | 2023 |
Publisher | The Pharmaceutical Society of Japan Japan Science and Technology Agency |
Publisher_xml | – name: The Pharmaceutical Society of Japan – name: Japan Science and Technology Agency |
References | 6) Omar AM, Sun S, Kim MJ, Phan ND, Tawila AM, Awale S. Benzophenones from Betula alnoides with antiausterity activities against the PANC-1 human pancreatic cancer cell line. J. Nat. Prod., 84, 1607–1616 (2021). 9) Sun S, Omar AM, Kim MJ, Phan ND, Chulikhit Y, Awale S. Chemical constituents of Thai Piper ribesoides and their antiausterity activities against the PANC-1 human pancreatic cancer cell line. Fitoterapia, 151, 104901 (2021). 4) Tawila AM, Omar AM, Phan ND, Takahashi I, Maneenet J, Awale S. New callistrilone epimers from Callistemon citrinus and their antiausterity activity against the PANC-1 human pancreatic cancer cell line. Tetrahedron Lett., 100, 153881 (2022). 10) Sun S, Kim MJ, Omar AM, Phan ND, Awale S. (+)-Panduratin A induces PANC-1 human pancreatic cancer cell death preferentially under nutrient starvation by inhibiting PI3K/Akt/mTOR/autophagy signaling pathway. Phytomed. Plus, 1, 100101 (2021). 29) Katsuyama A, Ichikawa S. Synthesis and medicinal chemistry of muraymycins, nucleoside antibiotics. Chem. Pharm. Bull., 66, 123–131 (2018). 16) Tawila AM, Sun S, Kim MJ, Omar AM, Dibwe DF, Ueda J, Toyooka N, Awale S. Chemical constituents of Callistemon citrinus from Egypt and their antiausterity activity against PANC-1 human pancreatic cancer cell line. Bioorg. Med. Chem. Lett., 30, 127352 (2020). 20) Luan NNT, Okada T, Arata R, Prudhvi L, Miyaguchi M, Kodama Y, Awale S, Toyooka N. Structure–activity relationship study of 4′-O-methylgrynullarin derivatives for the development of novel anticancer agents based on anti-austerity strategy. Tetrahedron, 122, 132931 (2022). 11) Sun S, Kim MJ, Dibwe DF, Omar AM, Athikomkulchai S, Phrutivorapongkul A, Okada T, Tsuge K, Toyooka N, Awale S. Anti-austerity activity of thai medicinal plants: chemical constituents and anti-pancreatic cancer activities of Kaempferia parviflora. Plants, 10, 229 (2021). 22) Tang R, Zhou D, Kimishima A, Setiawan A, Arai M. Selective cytotoxicity of marine-derived fungal metabolite (3S,6S)-3,6-dibenzylpiperazine-2,5-dione against cancer cells adapted to nutrient starvation. J. Antibiot. (Tokyo), 73, 873–875 (2020). 5) Maneenet J, Tawila AM, Omar AM, Phan ND, Ojima C, Kuroda M, Sato M, Mizoguchi M, Takahashi I, Awale S. Chemical constituents of Callistemon subulatus and their anti-pancreatic cancer activity against human PANC-1 cell line. Plants (Basel), 11, 2466 (2022). 31) Mardanshahi A, Gharibkandi NA, Vaseghi S, Abedi SM, Molavipordanjani S. The PI3K/AKT/mTOR signaling pathway inhibitors enhance radiosensitivity in cancer cell lines. Mol. Biol. Rep., 48, 1–14 (2021). 23) Okada T, Chino Y, Yokoyama K, Fujihashi Y, Phan ND, Maneenet J, Prudhvi L, Awale S, Toyooka N. Design and synthesis of novel pipernonaline derivatives as anti-austerity agents against human pancreatic cancer PANC-1 cells. Bioorg. Med. Chem., 71, 116963 (2022). 19) Alexander BE, Sun S, Palframan MJ, Kociok-Köhn G, Dibwe DF, Watanabe S, Caggiano L, Awale S, Lewis SE. Sidechain diversification of grandifloracin allows identification of analogues with enhanced anti-austerity activity against human PANC-1 pancreatic cancer cells. ChemMedChem, 15, 125–135 (2020). 13) Tawila AM, Sun S, Kim MJ, Omar AM, Dibwe DF, Ueda J, Toyooka N, Awale S. Highly potent antiausterity agents from Callistemon citrinus and their mechanism of action against the PANC-1 human pancreatic cancer cell line. J. Nat. Prod., 83, 2221–2232 (2020). 26) Dömling A, Ugi I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 39, 3168–3210 (2000). 7) Sun S, Dibwe DF, Kim MJ, Omar AM, Phan ND, Fujino H, Pongterdsak N, Chaithatwatthana K, Phrutivorapongkul A, Awale S. A new anti-austerity agent, 4′-O-methylgrynullarin from Derris scandens induces PANC-1 human pancreatic cancer cell death under nutrition starvation via inhibition of Akt/mTOR pathway. Bioorg. Med. Chem. Lett., 40, 127967 (2021). 21) Haedar JR, Uria AR, Lallo S, Dibwe DF, Wakimoto T. New theonellapeptolides from Indonesian marine sponge Theonella swinhoei as anti-austerity agents. Mar. Drugs, 20, 661 (2022). 17) Kohyama A, Kim MJ, Yokoyama R, Sun S, Omar AM, Phan ND, Meselhy MR, Tsuge K, Awale S, Matsuya Y. Structure–activity relationship and mechanistic study on guggulsterone derivatives; discovery of new anti-pancreatic cancer candidate. Bioorg. Med. Chem., 54, 116563 (2022). 24) Shen Q, Wang J, Liu C-X, Cui W, Zhang L, Zhang Y, Wang Y, Wu J, Li J-X. Synthesis and evaluation of tetrahydroquinoline-2(1H)-one derivatives as novel anti-pancreatic cancer agents via targeting autophagy. Eur. J. Med. Chem., 170, 28–44 (2019). 8) Nguyen MTT, Nguyen HX, Dang PH, Le TH, Do TNV, Omar AM, Awale S, Nguyen NT. Panduratins Q–Y, dimeric metabolites from Boesenbergia rotunda and their antiausterity activities against the PANC-1 human pancreatic cancer cell line. Phytochemistry, 183, 112646 (2021). 2) Tao J, Yang G, Zhou W, Qiu J, Chen G, Luo W, Zhao F, You L, Zheng L, Zhang T, Zhao Y. Targeting hypoxic tumor microenvironment in pancreatic cancer. J. Hematol. Oncol., 14, 14 (2021). 3) Awale S, Lu J, Kalauni SK, Kurashima Y, Tezuka Y, Kadota S, Esumi H. Identification of arctigenin as an antitumor agent having the ability to eliminate the tolerance of cancer cells to nutrient starvation. Cancer Res., 66, 1751–1757 (2006). 12) Fayez S, Cacciatore A, Sun S, Kim M, Aké Assi L, Feineis D, Awale S, Bringmann G. Ancistrobrevidines A–C and related naphthylisoquinoline alkaloids with cytotoxic activities against HeLa and pancreatic cancer cells, from the liana Ancistrocladus abbreviates. Bioorg. Med. Chem., 30, 115950 (2021). 28) Nishino R, Hayakawa T, Takahashi T, Suzuki T, Sato M, Ikeda K. Syntheses of 2-deoxy-2,3-didehydro-N-acetylneuraminic acid analogues modified by α-acylaminoamido Groups at the C-4 position using isocyanide-based four-component coupling and biological evaluation as inhibitors of human parainfluenza virus type 1. Chem. Pharm. Bull., 61, 69–74 (2013). 25) Ugi I. The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew. Chem. Int. Ed. Engl., 1, 8–21 (1962). 30) Stanciu S, Ionita-Radu F, Stefani C, Miricescu D, Stanescu-Spinu I-I, Greabu M, Ripszky Totan A, Jinga M. Targeting PI3K/AKT/mTOR signaling pathway in pancreatic cancer: from molecular to clinical aspects. Int. J. Mol. Sci., 23, 10132 (2022). 1) Vaziri-Gohar A, Cassel J, Mohammed FS, et al. Limited nutrient availability in the tumor microenvironment renders pancreatic tumors sensitive to allosteric IDH1 inhibitors. Nat. Cancer, 3, 852–865 (2022). 32) Cirone M. Cancer cells dysregulate PI3K/AKT/mTOR pathway activation to ensure their survival and proliferation: mimicking them is a smart strategy of gammaherpesviruses. Crit. Rev. Biochem. Mol. Biol., 56, 500–509 (2021). 33) Li X, Dai D, Chen B, Tang H, Xie X, Wei W. Efficacy of PI3K/AKT/mTOR pathway inhibitors for the treatment of advanced solid cancers: a literature-based meta-analysis of 46 randomised control trials. PLOS ONE, 13, e0192464 (2018). 27) Tomohara K, Ohashi N, Uchida T, Nose T. Synthesis of natural product hybrids by the Ugi reaction in complex media containing plant extracts. Sci. Rep., 12, 15568 (2022). 15) Tawila AM, Sun S, Kim MJ, Omar AM, Dibwe DF, Awale S. A triterpene lactone from Callistemon citrinus inhibits the PANC-1 human pancreatic cancer cells viability through suppression of unfolded protein response. Chem. Biodivers., 17, e2000495 (2020). 18) Kohyama A, Yokoyama R, Dibwe DF, El-Mekkawy S, Meselhy MR, Awale S, Matsuya Y. Synthesis of guggulsterone derivatives as potential anti-austerity agents against PANC-1 human pancreatic cancer cells. Bioorg. Med. Chem. Lett., 30, 126964 (2020). 14) Alilou M, Dibwe DF, Schwaiger S, Khodami M, Troppmair J, Awale S, Stuppner H. Antiausterity activity of secondary metabolites from the roots of Ferula hezarlalehzarica against the PANC-1 human pancreatic cancer cell line. J. Nat. Prod., 83, 1099–1106 (2020). 22 23 24 25 26 27 28 29 30 31 10 32 11 33 12 13 14 15 16 17 18 19 1 2 3 4 5 6 7 8 9 20 21 |
References_xml | – ident: 8 doi: 10.1016/j.phytochem.2020.112646 – ident: 25 doi: 10.1002/anie.196200081 – ident: 27 doi: 10.1038/s41598-022-19579-6 – ident: 22 doi: 10.1038/s41429-020-0340-3 – ident: 11 doi: 10.3390/plants10020229 – ident: 23 doi: 10.1016/j.bmc.2022.116963 – ident: 32 doi: 10.1080/10409238.2021.1934811 – ident: 29 doi: 10.1248/cpb.c17-00684 – ident: 10 doi: 10.1016/j.phyplu.2021.100101 – ident: 28 doi: 10.1248/cpb.c12-00834 – ident: 13 doi: 10.1021/acs.jnatprod.0c00330 – ident: 19 doi: 10.1002/cmdc.201900549 – ident: 33 doi: 10.1371/journal.pone.0192464 – ident: 31 doi: 10.1007/s11033-021-06607-3 – ident: 9 doi: 10.1016/j.fitote.2021.104901 – ident: 30 doi: 10.3390/ijms231710132 – ident: 12 doi: 10.1016/j.bmc.2020.115950 – ident: 15 doi: 10.1002/cbdv.202000495 – ident: 24 doi: 10.1016/j.ejmech.2019.03.013 – ident: 18 doi: 10.1016/j.bmcl.2020.126964 – ident: 2 doi: 10.1186/s13045-020-01030-w – ident: 6 doi: 10.1021/acs.jnatprod.1c00150 – ident: 20 doi: 10.1016/j.tet.2022.132931 – ident: 4 doi: 10.1016/j.tetlet.2022.153881 – ident: 14 doi: 10.1021/acs.jnatprod.9b01109 – ident: 16 doi: 10.1016/j.bmcl.2020.127352 – ident: 5 doi: 10.3390/plants11192466 – ident: 17 doi: 10.1016/j.bmc.2021.116563 – ident: 1 doi: 10.1038/s43018-022-00393-y – ident: 26 doi: 10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U – ident: 3 doi: 10.1158/0008-5472.CAN-05-3143 – ident: 7 doi: 10.1016/j.bmcl.2021.127967 – ident: 21 doi: 10.3390/md20110661 |
SSID | ssj0007023 |
Score | 2.4537652 |
Snippet | Pancreatic cancer cells have an inherent tolerance to withstand nutrition starvation, allowing them to survive in hypovascular tumor microenvironments that... |
SourceID | proquest crossref pubmed jstage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1412 |
SubjectTerms | 1-Phosphatidylinositol 3-kinase Absolute configuration Adducts AKT protein anti-austerity agent Antineoplastic Agents - pharmacology Antineoplastic Agents - therapeutic use Antineoplastic Agents, Phytogenic - pharmacology Antitumor agents Cell death Cell Line, Tumor Cytology Cytotoxicity Drug development Drug Screening Assays, Antitumor Humans Kinases natural product hybrid Natural products Pancreatic cancer Pancreatic Neoplasms Pancreatic Neoplasms - drug therapy Phosphatidylinositol 3-Kinases preferential cytotoxicity Rapamycin Signal transduction TOR protein Tumor Microenvironment Ugi reaction |
Title | Ugi Adducts as Novel Anti-austerity Agents against PANC-1 Human Pancreatic Cancer Cell Line: A Rapid Synthetic Approach |
URI | https://www.jstage.jst.go.jp/article/bpb/46/10/46_b23-00224/_article/-char/en https://www.ncbi.nlm.nih.gov/pubmed/37779042 https://www.proquest.com/docview/2889859679 https://search.proquest.com/docview/2871655126 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Biological and Pharmaceutical Bulletin, 2023/10/01, Vol.46(10), pp.1412-1420 |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELa6CxJcEHR5FBZkJNRLN7vNO0HiEJWuFlGVCrrS3iI7dh8sfahpQP33zNhO0kqA4MAlihzHivJ9Hs-MPTOEvHG4nNg8FDCRHDBQHB5YcSaFFbLAZwGme1HFYK6-hMOb6H3f6zcaZWnJuu2_Ig1tgDVGzv4D2tWg0AD3gDlcAXW4_hXu19N5JxGYxTXHGjLD1Xf5DVMEzC3M8COxVl0nmaq4NjZlc9AOO6Nk2LNs488fAQ2UIpl1esiITaeH7r0BJiRVUeyf2XoOSupuCaoj9kpMVvKD7eF5JVORWuvZgeOc76f8Vh7uxQrzRus4oXle3O4dyF2CoW02TIrtjC3KpEzoGJ5hJSi9Rqwqr7YpFTlmt3JT7Ds1nPp4nFlwQFGopRvuINQbDeofZftyMrYjsIB1BvhzqeW464VgY-tI0VLQG1-nIXT3lwuI42FQBF_zcw5fpTSceqUsTwcMP6WX14NBOu7fjI_IHQdknLLmP3yslICwqyoLVt9m0rvC8BcHgx-oQ3e_gkUwlb83dpTSM35IHhhrhSaaZo9IQy6b5CRZsu1qsaNtqs4Pq__VJPd6Ze3AJmmPNOK7MzquA_zyM_VKlSt9d0J-AF2poStlOVV0pYd0pZqu1NCVarpSRVda05VqulKkK0W6vqUJVWSlFVlpSdbH5PqyP-5dWaYWiJX5nre1uBcx1-0K4dpZ5nKRBX4ooIkJOxJRFgjh8yCLJiwCDViCeLTdTDARTWzQzwPpuU_I8XK1lM8I9btZEMcT6IsrWBbyiIehP_EZl54XxE6LtEtI0rVO-ZKiqQzYpYBdCtilCrsWeacBq7qZWa-6eQG-Bdeqf_UYAypBVrXIaYlzaiRInjpRFEd-HIRxi7yuHgN8uJEHc25VYJ8QpCio6kGLPNX8qD7BDTGDqOc8__PgL8j9et6dkuPtppAvyVEuileKyD8B9iPUMg |
link.rule.ids | 315,782,786,27933,27934 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ugi+Adducts+as+Novel+Anti-austerity+Agents+against+PANC-1+Human+Pancreatic+Cancer+Cell+Line%3A+A+Rapid+Synthetic+Approach&rft.jtitle=Biological+%26+pharmaceutical+bulletin&rft.au=Tomohara%2C+Keisuke&rft.au=Maneenet%2C+Juthamart&rft.au=Ohashi%2C+Nao&rft.au=Nose%2C+Takeru&rft.date=2023-10-01&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0918-6158&rft.eissn=1347-5215&rft.volume=46&rft.issue=10&rft_id=info:doi/10.1248%2Fbpb.b23-00224&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0918-6158&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0918-6158&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0918-6158&client=summon |