Anti‐FGF‐23 neutralizing antibodies ameliorate muscle weakness and decreased spontaneous movement of Hyp mice
Fibroblast growth factor 23 (FGF‐23) plays causative roles in the development of several hypophosphatemic rickets/osteomalacia such as X‐linked hypophosphatemic rickets/osteomalacia (XLH) and tumor‐induced rickets/osteomalacia. Patients with hypophosphatemic rickets/osteomalacia often complain of mu...
Saved in:
Published in: | Journal of bone and mineral research Vol. 26; no. 4; pp. 803 - 810 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-04-2011
Wiley Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fibroblast growth factor 23 (FGF‐23) plays causative roles in the development of several hypophosphatemic rickets/osteomalacia such as X‐linked hypophosphatemic rickets/osteomalacia (XLH) and tumor‐induced rickets/osteomalacia. Patients with hypophosphatemic rickets/osteomalacia often complain of muscle weakness and bone pain that severely affect daily activities of these patients. The purpose of this study was to examine whether anti‐FGF‐23 antibodies, which have been shown to improve hypophosphatemia and rachitic changes of juvenile Hyp mice in a murine model of XLH, also ameliorate hypophosphatemic osteomalacia and affect muscle force and spontaneous motor activity in adult Hyp mice. Repeated injections of anti‐FGF‐23 antibodies increased serum phosphate and 1,25‐dihydroxyvitmain D levels and enhanced mineralization of osteoid in adult Hyp mice, whereas bone length did not change. We found that grip strength was weaker and that spontaneous movement was less in adult Hyp mice than in wild‐type mice. In addition, FGF‐23 antibodies increased grip strength and spontaneous movement. These results suggest that the inhibition of excess FGF‐23 action not only ameliorates hypophosphatemia and impaired mineralization of bone but also improves muscle weakness and daily activities of patients with FGF‐23‐related hypophosphatemic rickets/osteomalacia. © 2011 American Society for Bone and Mineral Research. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0884-0431 1523-4681 |
DOI: | 10.1002/jbmr.275 |