Effect of Statins on Cholesterol Crystallization and Atherosclerotic Plaque Stabilization

Pleiotropic effects of statins have not been fully elucidated. Recently we demonstrated that cholesterol expands when crystallizing and may trigger plaque rupture. The present study evaluated the potential direct effects of statins in altering cholesterol crystallization as a possible mechanism for...

Full description

Saved in:
Bibliographic Details
Published in:The American journal of cardiology Vol. 107; no. 12; pp. 1710 - 1717
Main Authors: Abela, George S., MD, Vedre, Ameeth, MD, Janoudi, Abed, PhD, Huang, Ruiping, PhD, Durga, Sridevi, MD, Tamhane, Umesh, MD
Format: Journal Article
Language:English
Published: New York, NY Elsevier Inc 15-06-2011
Elsevier
Elsevier Limited
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pleiotropic effects of statins have not been fully elucidated. Recently we demonstrated that cholesterol expands when crystallizing and may trigger plaque rupture. The present study evaluated the potential direct effects of statins in altering cholesterol crystallization as a possible mechanism for plaque stabilization independent of cholesterol lowering. Cholesterol powder was dissolved in oil with and without pravastatin, simvastatin, or atorvastatin (10 to 90 mg) and then allowed to crystallize to measure peak volume expansion (ΔVE) in graduated cylinders. Effect of ΔVE on fibrous membrane damage was also evaluated. Human coronary, carotid, and peripheral arterial plaques (65 plaques from 55 patients) were incubated with statin or saline solution using matched plaque segments to evaluate direct effects of statins on preformed crystals. Also, the effect of in vivo use of oral statins on crystal structure was examined by scanning electron microscopy and crystal content in plaques scored from 0 to +3. For all statins, ΔVE decreased significantly in a dose-dependent fashion (0.76 ± 0.1 vs 0 ml at 60 mg, p <0.001). By scanning electron microscopy crystal structure with statins had loss of pointed tip geometries, averting fibrous membrane damage. Cholesterol crystal density was markedly decreased and appeared dissolved in human plaques incubated with statins (+2.1 ± 1.1 vs +1.3 ± 1.0, p = 0.0001). Also, plaques from patients taking oral statins compared to controls had significantly more dissolving crystals (p = 0.03). In conclusion, statins decreased ΔVE by altering cholesterol crystallization and blunting sharp-tipped crystal structure and dissolving cholesterol crystals in human arteries in vivo and in vitro, providing plaque stabilization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-9149
1879-1913
DOI:10.1016/j.amjcard.2011.02.336